Tag Archives: teoria

Charged Lepton Flavour Violation

6 Ott

Oggi vorrei mettere da parte UFO, complotti, scie chimiche, fine del mondo, ecc., per tornare a parlare di scienza pura. Lo vorrei fare con questo articolo spceifico, per trattare nuovamente lo stato attuale della ricerca e mostrarvi quali sono i settori più “caldi” e più promettenti nel panorama della fisica delle alte energie.

Per prima cosa, in diversi articoli abbiamo parlato di modello standard:

Dafne e KLOE: alta energia in Italia

E parliamo di questo Big Bang

Universo: foto da piccolo

Ascoltate finalmente le onde gravitazionali?

Il primo vagito dell’universo

L’espansione metrica dell’universo

Come abbiamo visto, il Modello Standard è quella teoria che oggi abbiamo definito e che consente di prevedere molte delle proprietà che osserviamo per le particelle. Vi ricordo che in fisica parliamo sempre di modello proprio per indicare un qualcosa in grado di prevedere le proprietà sperimentali.

Anche se poco conosciuto ai non addetti ai lavori, il Modello Standard è stato molto citato parlando del Bosone di Higgs. Come tutti sanno, il nostro modello, che ha resistito per decenni, presenta una particolare mancanza: non è in grado di prevedere l’esistenza della massa delle particelle. Come correggere questa grave imprecisione? Che le particelle abbiano massa è noto a tutti e facilmente dimostrabile anche guardando la materia che ci circonda. Bene, per poter correggere questo “errore” è possibile inserire quello che è noto come Meccanismo di Higgs, una correzione matematica che consente al modello standard di poter prevedere l’esistenza della massa. Bene, dunque ora è tutto OK? Assolutamente no, affinché il meccanismo di Higgs possa essere inserito è necessario che sia presente quello che viene chiamato un Campo di Higgs e, soprattutto, un bosone intermedio che, neanche a dirlo, si chiama Bosone di Higgs.

Capite dunque perchè la scoperta sperimentale del Bosone di Higgs è così importante?

Del bosone di Higgs, di LHC e delle sue conseguenze abbiamo parlato in questi articoli:

Bosone di Higgs … ma cosa sarebbe?

L’universo è stabile, instabile o meta-stabile?

Hawking e la fine del mondo

2012, fine del mondo e LHC

A questo punto si potrebbe pensare di aver raggiunto il traguardo finale e di aver compreso tutto. Purtroppo, o per fortuna a seconda dei punti di vista, questo non è assolutamente vero.

Perchè?

Come è noto a tutti, esistono alcuni problemi aperti nel campo della fisica e su cui si discute già da moltissimi anni, primo tra tutti quello della materia oscura. Il nostro amato Modello Standard non prevede assolutamente l’esistenza della materia oscura di cui abbiamo moltissime verifiche indirette. Solo per completezza, e senza ripetermi, vi ricordo che di materia e energia oscura abbiamo parlato in questi post:

La materia oscura

Materia oscura intorno alla Terra?

Flusso oscuro e grandi attrattori

Troppa antimateria nello spazio

Due parole sull’antimateria

Antimateria sulla notra testa!

L’esistenza della materia oscura, insieme ad altri problemi poco noti al grande pubblico, spingono i fisici a cercare quelli che vengono chiamati Segnali di Nuova Fisica, cioè decadimenti particolari, molto rari, in cui si possa evidenziare l’esistenza di particelle finora sconosciute e non contemplate nel modello standard delle particelle.

Per essere precisi, esistono moltissime teorie “oltre il modello standard” e di alcune di queste avrete già sentito parlare. La più nota è senza ombra di dubbio la Supersimmetria, o SuSy, teoria che prevede l’esistenza di una superparticella per ogni particella del modello standard. Secondo alcuni, proprio le superparticelle, che lasciatemi dire a dispetto del nome, e per non impressionarvi, non hanno alcun super potere, potrebbero essere le componenti principali della materia oscura.

Prima importante riflessione, la ricerca in fisica delle alte energie è tutt’altro che ad un punto morto. La scoperta, da confermare come detto negli articoli precedenti, del Bosone di Higgs rappresenta un importante tassello per la nostra comprensione dell’universo ma siamo ancora molto lontani, e forse mai ci arriveremo, dalla formulazione di una “teoria del tutto”.

Detto questo, quali sono le ricerche possibii per cercare di scoprire se esiste veramente una fisica oltre il modelo Standard delle particelle?

Detto molto semplicemente, si studiano alcuni fenomeni molto rari, cioè con bassa probabilità di avvenire, e si cerca di misurare una discrepanza significativa da quanto atteso dalle teorie tradizionali. Cosa significa? Come sapete, le particelle hanno una vita molto breve prima di decadere in qualcos’altro. I modi di decadimento di una data particella possono essere molteplici e non tutti avvengono con la stessa probabilità. Vi possono essere “canali”, cioè modi, di decadimento estremamente più rari di altri. Bene, alcuni di questi possono essere “viziati” dall’esistenza di particelle non convenzionali in grado di amplificare questo effetto o, addirittura, rendere possibili modi di decadimento non previsti dalla teoria convenzionale.

L’obiettivo della fisica delle alte energie è dunque quello di misurare con precisione estrema alcuni canali rari o impossibili, al fine di evidenziare segnali di nuova fisica.

Ovviamente, anche in questo caso, LHC rappresenta un’opportunità molto importante per questo tipo di ricerche. Un collisore di questo tipo, grazie alla enorme quantità di particelle prodotte, consente di poter misurare con precisione moltissimi parametri. Detto in altri termini, se volete misurare qualcosa di molto raro, dovete prima di tutto disporre di un campione di eventi molto abbondante dove provare a trovare quello che state cercando.

Un esempio concreto, di cui abbiamo parlato in questo post, è l’esperimento LhCB del CERN:

Ancora sullo squilibrio tra materia e antimateria

Una delle ricerche in corso ad LhCB è la misura del decadimento del Bs in una coppia di muoni. Niente paura, non voglio tediarvi con una noiosa spiegazione di fisica delle alte energie. Il Bs è un mesone composto da due quark e secondo il modello standard può decadere in una coppia di muoni con una certa probabilità, estremamente bassa. Eventuali discordanze tra la probabilità misurata di decadimento del Bs in due muoni e quella prevista dal modello standard potrebbe essere un chiaro segnale di nuova fisica, cioè di qualcosa oltre il modello standard in grado di modificare queste proprietà.

Misurare la probabilità di questo decadimento è qualcosa di estremamente difficile. Se da un lato avete una particella che decade in due muoni facilmente riconoscibili, identificare questo decadimento in mezzo a un mare di altre particelle è assai arduo e ha impegnato moltissimi fisici per diverso tempo.

Purtroppo, o per fortuna anche qui, gli ultimi risultati portati da LhCB, anche in collaborazione con CMS, hanno mostrato una probabilità di decadimento paragonabile a quella attesa dal modello standard. Questo però non esclude ancora nulla dal momento che con i nuovi dati di LHC sarà possibile aumentare ancora di più la precisione della misura e continuare a cercare effetti non previsti dalla teoria.

Tra gli altri esperimenti in corso in questa direzione, vorrei poi parlarvi di quelli per la ricerca della “violazione del numero Leptonico”. Perdonatemi il campanilismo, ma vi parlo di questi semplicemente perchè proprio a questo settore è dedicata una mia parte significativa di ricerca.

Cerchiamo di andare con ordine, mantenendo sempre un profilo molto divulgativo.

Come visto negli articoli precedenti, nel nostro modello standard, oltre ai bosoni intermedi, abbiamo una serie di particelle elementari divise in quark e leptoni. Tra questi ultimi troviamo: elettrone, muone, tau e i corrispondendi neutrini. Bene, come sapete esistono delle proprietà in fisica che devono conservarsi durante i decadimenti di cui abbiamo parlato prima. Per farvi un esempio noto a tutti, in un decadimento dobbiamo mantenere la carica elettrica delle particelle, se ho una particella carica positiva che decade in qualcosa, questo qualcosa deve avere, al netto, una carica positiva. La stessa cosa avviene per il numero leptonico, cioè per quella che possiamo definire come un’etichetta per ciascun leptone. In tal caso, ad esempio, un elettrone non può decadere in un muone perchè sarebbe violato, appunto, il numero leptonico.

Facciamo un respiro e manteniamo la calma, la parte più tecnica è già conclusa. Abbiamo capito che un decadimento in cui un leptone di un certo tipo, muone, elettrone o tau, si converte in un altro non è possibile. Avete già capito dove voglio andare a finire? Se questi decadimenti non sono possibili per la teoria attuale, andiamo a cercarli per verificare se esistono influenze da qualcosa non ancora contemplato.

In realtà, anche in questo caso, questi decadimenti non sono del tutto impossibili, ma sono, come per il Bs in due muoni, fortemente soppressi. Per farvi un esempio, l’esperimento Opera dei Laboratori Nazionali del Gran Sasso, misura proprio l’oscillazione dei neutrini cioè la conversione di un neutrino di un certo tipo in un altro. Ovviamente, appartendendo alla famiglia dei leptoni, anche i neutrini hanno un numero leptonico e una loro trasformazione da un tipo all’altro rappresenta una violazione del numero leptonico, quella che si chiama Neutral Lepton Flavour Violation. Per la precisione, questi decadimenti sono possibili dal momento che, anche se estremamente piccola, i neutrini hanno una massa.

Bene, la ricerca della violazione del numero Leptonico in particelle cariche, è uno dei filoni più promettenti della ricerca. In questo settore, troviamo due esperimenti principali che, con modalità diverse, hanno ricercato o ricercheranno questi eventi, MEG a Zurigo a Mu2e a Chicago.

Mentre MEG ha già raccolto molti dati, Mu2e entrerà in funzione a partire dal 2019. Come funzionano questi esperimenti? Detto molto semplicemente, si cercano eventi di conversione tra leptoni, eventi molto rari e dominati da tantissimi fondi, cioè segnali di dcadimenti più probabili che possono confondersi con il segnale cercato.

Secondo il modello standard, questi processi sono, come già discusso, fortemente soppressi cioè hanno una probabilità di avvenire molto bassa. Una misura della probabilità di decadimemto maggiore di quella attesa, sarebbe un chiaro segnale di nuova fisica. Detto questo, capite bene perchè si parla di questi esperimenti come probabili misure da nobel qualora i risultati fossero diversi da quelli attesi.

L’esperimento MEG ha già preso moltissimi dati ma, ad oggi, ha misurato valori ancora in linea con la teoria. Questo perchè la risoluzione dell’esperimento potrebbe non essere sufficiente per evidenziare segnali di nuova fisica.

A livelo tecnico, MEG e Mu2e cercano lo stesso effetto ma sfruttando canali di decadimento diverso. Mentre MEG, come il nome stesso suggerisce, cerca un decadimento di muone in elettrone più fotone, Mu2e cerca la conversione di muone in elettrone senza fotone ma nel campo di un nucleo.

Ad oggi, è in corso un lavoro molto specifico per la definizione dell’esperimento Mu2e e per la scelta finale dei rivelatori da utilizzare. Il gruppo italiano, di cui faccio parte, è impegnato in uno di questi rivelatori che prevede la costruzione di un calorimetro a cristallo che, speriamo, dovrebbe raggiungere risoluzioni molto spinte ed in grado di evidenziare, qualora presenti, eventuali segnali di nuova fisica.

Concludnedo, la ricerca nella fisica delle alte energie è tutt’altro che morta ed è sempre attiva su molti fronti. Come detto, molti sforzi sono attualmente in atto per la ricerca di segnali di nuova fisica o, come noi stessi li abbiamo definiti, oltre il modello standard. Detto questo, non resta che attendere i prossimi risultati per capire cosa dobbiamo aspettarci e, soprattutto, per capire quanto ancora poco conosciamo del mondo dell’infinitamente piccolo che però regola il nostro stesso universo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

17 equazioni che hanno cambiato il mondo

26 Ago

Nel 2013 Ian Stewart, professore emerito di matematica presso l’università di Warwick, ha pubblicato un libro molto interessante e che consiglio a tutti di leggere, almeno per chi non ha problemi con l’inglese. Come da titolo di questo articolo, il libro si intitola “Alla ricerca dello sconosciuto: 17 equazioni che hanno cambiato il mondo”.

Perchè ho deciso di dedicare un articolo a questo libro?

In realtà, il mio articolo, anche se, ripeto, è un testo che consiglio, non vuole essere una vetrina pubblicitaria a questo testo, ma l’inizio di una riflessione molto importante. Queste famose 17 equazioni che, secondo l’autore, hanno contribuito a cambiare il mondo che oggi conosciamo, rappresentano un ottimo punto di inizio per discutere su alcune importanti relazioni scritte recentemente o, anche, molti secoli fa.

Come spesso ripetiamo, il ruolo della fisica è quello di descrivere il mondo, o meglio la natura, che ci circonda. Quando i fisici fanno questo, riescono a comprendere perchè avviene un determinato fenomeno e sono altresì in grado di “predirre” come un determinato sistema evolverà nel tempo. Come è possibile questo? Come è noto, la natura ci parla attraverso il linguaggio della matematica. Modellizare un sistema significa trovare una o più equazioni che  prendono in considerazione i parametri del sistema e trovano una relazione tra questi fattori per determinare, appunto, l’evoluzione temporale del sistema stesso.

Ora, credo che sia utile partire da queste 17 equzioni proprio per riflettere su alcuni importanti risultati di cui, purtroppo, molti ignorano anche l’esistenza. D’altro canto, come vedremo, ci sono altre equazioni estremanete importanti, se non altro per le loro conseguenze, che vengono studiate a scuola senza però comprendere la potenza o le implicazioni che tali risultati hanno sulla natura.

Senza ulteriori inutili giri di parole, vi presento le 17 equazioni, ripeto secondo Stewart, che hanno cambiato il mondo:

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Sicuramente, ognuno di noi, in base alla propria preparazione, ne avrà riconosciute alcune.

Passiamo attraverso questa lista per descrivere, anche solo brevemente, il significato e le implicazioni di questi importanti risultati.

Teorema di Pitagora

Tutti a scuola abbiamo appreso questa nozione: la somma dell’area dei quadrati costruiti sui cateti, è pari all’area del quadrato costruito sull’ipotenusa. Definizione semplicissima, il più delle volte insegnata come semplice regoletta da tenere a mente per risolvere esercizi. Questo risultato è invece estremamente importante e rappresenta uno dei maggiori assunti della geometria Euclidea, cioè quella che tutti conoscono e che è relativa al piano. Oltre alla tantissime implicazioni nello spazio piano, la validità del teorema di Pitagora rappresenta una prova indiscutibile della differenza tra spazi euclidei e non. Per fare un esempio, questo risultato non è più vero su uno spazio curvo. Analogamente, proprio sfruttando il teorema di Pitagora, si possono fare misurazioni sul nostro universo, parlando proprio di spazio euclideo o meno.

 

Logaritmo del prodotto

Anche qui, come riminescenza scolastica, tutti abbiamo studiato i logaritmi. Diciamoci la verità, per molti questo rappresentava un argomento abbastanza ostico e anche molto noioso. La proprietà inserita in questa tabella però non è affatto banale e ha avuto delle importanti applicazioni prima dello sviluppo del calcolo informatizzato. Perchè? Prima dei moderni calcolatori, la trasformazione tra logaritmo del prodotto e somma dei logaritmi, ha consentito, soprattutto in astronomia, di calcolare il prodotto tra numeri molto grandi ricorrendo a più semplici espedienti di calcolo. Senza questa proprietà, molti risultati che ancora oggi rappresentano basi scientifiche sarebbero arrivati con notevole ritardo.

 

Limite del rapporto incrementale

Matematicamente, la derivata di una funzione rappresenta il limite del rapporto incrementale. Interessante! Cosa ci facciamo? La derivata di una funzione rispetto a qualcosa, ci da un’indicazione di quanto quella funzione cambi rispetto a quel qualcosa. Un esempio pratico è la velocità, che altro non è che la derivata dello spazio rispetto al tempo. Tanto più velocemente cambia la nostra posizione, tanto maggiore sarà la nostra velocità. Questo è solo un semplice esempio ma l’operazione di derivata è uno dei pilastri del linguaggio matematico utilizzato dalla natura, appunto mai statica.

 

Legge di Gravitazione Universale

Quante volte su questo blog abbiamo citato questa legge. Come visto, questa importante relazione formulata da Newton ci dice che la forza agente tra due masse è direttamente proporzionale al prodotto delle masse stesse e inversamente proporzionale al quadrato della loro distanza. A cosa serve? Tutti i corpi del nostro universo si attraggono reciprocamente secondo questa legge. Se il nostro Sistema Solare si muove come lo vediamo noi, è proprio per il risultato delle mutue forze agenti sui corpi, tra le quali quella del Sole è la componente dominante. Senza ombra di dubbio, questo è uno dei capisaldi della fisica.

 

Radice quadrata di -1

Questo è uno di quei concetti che a scuola veniva solo accennato ma che poi, andando avanti negli studi, apriva un mondo del tutto nuovo. Dapprima, siamo stati abituati a pensare ai numeri naturali, agli interi, poi alle frazioni infine ai numeri irrazionali. A volte però comparivano nei nostri esercizi le radici quadrate di numeri negativi e semplicemente il tutto si concludeva con una soluzione che “non esiste nei reali”. Dove esiste allora? Quei numeri non esistono nei reali perchè vivono nei “complessi”, cioè in quei numeri che arrivano, appunto, da radici con indice pari di numeri negativi. Lo studio dei numeri complessi rappresenta un importante aspetto di diversi settori della conoscenza: la matematica, l’informatica, la fisica teorica e, soprattutto, nella scienza delle telecomunicazioni.

 

Formula di Eulero per i poliedri

Questa relazione determina una correlazione tra facce, spigoli e vertici di un poliedro cioè, in parole semplici, della versione in uno spazio tridimensionale dei poligoni. Questa apparentemente semplice relazione, ha rappresentato la base per lo sviluppo della “topologia” e degli invarianti topologici, concetti fondamentali nello studio della fisica moderna.

 

Distribuzione normale

Il ruolo della distribuzione normale, o gaussiana, è indiscutibile nello sviluppo e per la comprensione dell’intera statistica. Questo genere di curva ha la classica forma a campana centrata intorno al valore di maggior aspettazione e la cui larghezza fornisce ulteriori informazioni sul campione che stiamo analizzando. Nell’analisi statistica di qualsiasi fenomeno in cui il campione raccolto sia statisticamente significativo e indipendente, la distribuzione normale ci fornisce dati oggettivi per comprendere tutti i vari trend. Le applicazioni di questo concetto sono praticametne infinite e pari a tutte quelle situazioni in cui si chiama in causa la statistica per descrivere un qualsiasi fenomeno.

 

Equazione delle Onde

Questa è un’equazione differenziale che descrive l’andamento nel tempo e nello spazio di un qualsiasi sistema vibrante o, più in generale, di un’onda. Questa equazione può essere utilizzata per descrivere tantissimi fenomeni fisici, tra cui anche la stessa luce. Storicamente poi, vista la sua importanza, gli studi condotti per la risoluzione di questa equazione differenziale hanno rappresentato un ottimo punto di partenza che ha permesso la risoluzione di tante altre equazioni differenziali.

 

Trasformata di Fourier

Se nell’equazione precedente abbiamo parlato di qualcosa in grado di descrivere le variazioni spazio-temporali di un’onda, con la trasformata di Fourier entriamo invece nel vivo dell’analisi di un’onda stessa. Molte volte, queste onde sono prodotte dalla sovrapposizione di tantissime componenti che si sommano a loro modo dando poi un risultato finale che noi percepiamo. Bene, la trasformata di Fourier consente proprio di scomporre, passatemi il termine, un fenomeno fisico ondulatorio, come ad esempio la nostra voce, in tante componenti essenziali più semplici. La trasformata di Fourier è alla base della moderna teoria dei segnali e della compressione dei dati nei moderni cacolatori.

 

Equazioni di Navier-Stokes

Prendiamo un caso molto semplice: accendiamo una sigaretta, lo so, fumare fa male, ma qui lo facciamo per scienza. Vedete il fumo che esce e che lentamente sale verso l’alto. Come è noto, il fumo segue un percorso molto particolare dovuto ad una dinamica estremamente complessa prodotta dalla sovrapposizione di un numero quasi infinito di collissioni tra molecole. Bene, le equazioni differenziali di Navier-Stokes descrivono l’evoluzione nel tempo di un sistema fluidodinamico. Provate solo a pensare a quanti sistemi fisici includono il moto di un fluido. Bene, ad oggi abbiamo solo delle soluzioni approssimate delle equazioni di Navier-Stokes che ci consentono di simulare con una precisione più o meno accettabile, in base al caso specifico, l’evoluzione nel tempo. Approssimazioni ovviamente fondamentali per descrivere un sistema fluidodinamico attraverso simulazioni al calcolatore. Piccolo inciso, c’è un premio di 1 milione di dollari per chi riuscisse a risolvere esattamente le equazioni di Navier-Stokes.

 

Equazioni di Maxwell

Anche di queste abbiamo più volte parlato in diversi articoli. Come noto, le equazioni di Maxwell racchiudono al loro interno i più importanti risultati dell’elettromagnetismo. Queste quattro equazioni desrivono infatti completamente le fondamentali proprietà del campo elettrico e magnetico. Inoltre, come nel caso di campi variabili nel tempo, è proprio da queste equazioni che si evince l’esistenza di un campo elettromagnetico e della fondamentale relazione tra questi concetti. Molte volte, alcuni soggetti dimenticano di studiare queste equazioni e sparano cavolate enormi su campi elettrici e magnetici parlando di energia infinita e proprietà che fanno rabbrividire.

 

La seconda legge della Termodinamica

La versione riportata su questa tabella è, anche a mio avviso, la più affascinante in assoluto. In soldoni, la legge dice che in un sistema termodinamico chiuso, l’entropia può solo aumentare o rimanere costante. Spesso, questo che è noto come “principio di aumento dell’entropia dell’universo”, è soggetto a speculazioni filosofiche relative al concetto di caos. Niente di più sbagliato. L’entropia è una funzione di stato fondamentale nella termodinamica e il suo aumento nei sistemi chiusi impone, senza mezzi termini, un verso allo scorrere del tempo. Capite bene quali e quante implicazioni questa legge ha avuto non solo nella termodinamica ma nella fisica in generale, tra cui anche nella teoria della Relatività Generale di Einstein.

 

Relatività

Quella riportata nella tabella, se vogliamo, è solo la punta di un iceberg scientifico rappresentato dalla teoria della Relatività, sia speciale che generale. La relazione E=mc^2 è nota a tutti ed, in particolare, mette in relazione due parametri fisici che, in linea di principio, potrebbero essere del tutto indipendenti tra loro: massa ed energia. Su questa legge si fonda la moderna fisica degli acceleratori. In questi sistemi, di cui abbiamo parlato diverse volte, quello che facciamo è proprio far scontrare ad energie sempre più alte le particelle per produrne di nuove e sconosciute. Esempio classico e sui cui trovate diversi articoli sul blog è appunto quello del Bosone di Higgs.

 

Equazione di Schrodinger

Senza mezzi termini, questa equazione rappresenta il maggior risultato della meccanica quantistica. Se la relatività di Einstein ci spiega come il nostro universo funziona su larga scala, questa equazione ci illustra invece quanto avviene a distanze molto molto piccole, in cui la meccanica quantistica diviene la teoria dominante. In particolare, tutta la nostra moderna scienza su atomi e particelle subatomiche si fonda su questa equazione e su quella che viene definita funzione d’onda. E nella vita di tutti i giorni? Su questa equazione si fondano, e funzionano, importanti applicazioni come i laser, i semiconduttori, la fisica nucleare e, in un futuro prossimo, quello che indichiamo come computer quantistico.

 

Teorema di Shannon o dell’informazione

Per fare un paragone, il teorema di Shannon sta ai segnali così come l’entropia è alla termodinamica. Se quest’ultima rappresenta, come visto, la capicità di un sistema di fornire lavoro, il teorema di Shannon ci dice quanta informazione è contenuta in un determinato segnale. Per una migliore comprensione del concetto, conviene utilizzare un esempio. Come noto, ci sono programmi in grado di comprimere i file del nostro pc, immaginiamo una immagine jpeg. Bene, se prima questa occupava X Kb, perchè ora ne occupa meno e io la vedo sempre uguale? Semplice, grazie a questo risultato, siamo in grado di sapere quanto possiamo comprimere un qualsiasi segnale senza perdere informazione. Anche per il teorema di Shannon, le applicazioni sono tantissime e vanno dall’informatica alla trasmissione dei segnali. Si tratta di un risultato che ha dato una spinta inimmaginabile ai moderni sistemi di comunicazione appunto per snellire i segnali senza perdere informazione.

 

Teoria del Caos o Mappa di May

Questo risultato descrive l’evoluzione temporale di un qualsiasi sistema nel tempo. Come vedete, questa evoluzione tra gli stati dipende da K. Bene, ci spossono essere degli stati di partenza che mplicano un’evoluzione ordinata per passi certi e altri, anche molto prossimi agli altri, per cui il sistema si evolve in modo del tutto caotico. A cosa serve? Pensate ad un sistema caotico in cui una minima variazione di un parametro può completamente modificare l’evoluzione nel tempo dell’intero sistema. Un esempio? Il meteo! Noto a tutti è il cosiddetto effetto farfalla: basta modificare di una quantità infinitesima un parametro per avere un’evoluzione completamente diversa. Bene, questi sistemi sono appunto descritti da questo risultato.

 

Equazione di Black-Scholes

Altra equazione differenziale, proprio ad indicarci di come tantissimi fenomeni naturali e non possono essere descritti. A cosa serve questa equazione? A differenza degli altri risultati, qui entriamo in un campo diverso e più orientato all’uomo. L’equazione di Black-Scholes serve a determinare il prezzo delle opzioni in borsa partendo dalla valutazione di parametri oggettivi. Si tratta di uno strumento molto potente e che, come avrete capito, determina fortemente l’andamento dei prezzi in borsa e dunque, in ultima analisi, dell’economia.

 

Bene, queste sono le 17 equazioni che secondo Stewart hanno cambiato il mondo. Ora, ognuno di noi, me compreso, può averne altre che avrebbe voluto in questa lista e che reputa di fondamentale importanza. Sicuramente questo è vero sempre ma, lasciatemi dire, questa lista ci ha permesso di passare attraverso alcuni dei più importanti risultati storici che, a loro volta, hanno spinto la conoscenza in diversi settori. Inoltre, come visto, questo articolo ci ha permesso di rivalutare alcuni concetti che troppo spesso vengono fatti passare come semplici regolette non mostrando la loro vera potenza e le implicazioni che hanno nella vita di tutti i giorni e per l’evoluzione stessa della scienza.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

La fisica ha detto che Dio esiste!

16 Giu

Un nostro lettore mi ha contattato via mail per chiedermi maggiori normazioni, o meglio l’eventuale conferma o smentita, di un articolo apparso in questi giorni su alcuni siti, inutili che io vi dica nuovamente quale tipologia di siti. Al solito, e lo premetto subito, è vero che l’articolo in questione è apparso su diversi siti ma, come al solito, la “propagazione mediatica” attraverso internet, soprattutto in casi come questi, passa sempre per il becero copia/incolla che tanti hanno abitudine di fare, senza nemmeno degnarsi, non dico di verificare le fonti, ma almeno di riscrivere l’articolo con parole proprie.

Di cosa si tratta?

Questa volta si parla niente poco di meno che di Dio e del fatto che la sua esistenza sarebbe stata provata scientificamente attraverso deduzioni teoriche ed esperimenti. Davvero? La solita bufala? Chi è l’autore di queste misure? E qui il discorso si complica non poco. Lo scienziato che avrebbe fatto queste osservazioni non è un fisico qualunque ma il fisico teorica americano (di origini giapponesi) Michio Kaku.

Chi è Michio Kaku?

Avete mai sentito parlare della teoria delle stringhe? Bene, questo signore è uno dei due co-autori che per primi hanno proposto la teoria delle stringhe e la hanno formalizzata matematicamente.

Il fisico teorico Michio Kaku

Il fisico teorico Michio Kaku

Cavolo! Data la fonte, forse è il caso di capire meglio questo articolo e cercare di capire cosa avrebbe spinto, qualora l’articolo fosse vero, il famoso fisico ha fare queste affermazioni.

A questo punto però, se provate a leggere l’articolo vi rendete conto che … non si capisce nulla. Perché? Vi riporto qualche spezzone:

Uno degli scienziati più famosi e rispettati,  dichiara di aver trovato la prova dell’azione di una forza che “governa tutto”. Il noto Fisico teorico Michio Kaku ha affermato di aver creato una teoria che potrebbe comprovare l’esistenza di Dio.

Per raggiungere le sue conclusioni , il fisico ha utilizzato un “semi–radio primitivo di tachioni” (particelle teoriche che sono in grado di “decollare” la materia dell’universo o il contatto di vuoto con lei, lasciando tutto libero dalle influenze dell’universo intorno a loro), nuova tecnologia creata nel 2005 . Anche se la tecnologia per raggiungere le vere particelle di tachioni è ben lontano dall’essere una realtà , il semi-radio ha alcune proprietà di queste particelle teoriche, che sono in grado di creare l’effetto del reale tachyon in una scala subatomica .

E, ovviamente, non poteva mancare la frase ad effetto:

L’informazione ha creato molto scalpore nella comunità scientifica perché Michio Kaku è considerato uno degli scienziati più importanti dei nostri tempi, uno dei creatori e degli sviluppatori della rivoluzionaria teoria delle stringhe ed è quindi molto rispettato in tutto il mondo.

Avete capito la tipologia di articolo che stiamo prendendo in considerazione? Soltanto leggendo queste poche righe estratte dal testo dell’articolo, potete capire come il tutto sia orchestrato per non far capire nulla, sia stato copiato e tradotto malamente da un’altra lingua ma, soprattutto, la presenza di frasi ad effetto servono solo a creare enfasi atta a coprire la bufala che vi stanno facendo passare.

Andiamo con ordine.

Nella comunità scientifica non si parla d’altro. Falso, vi giuro che nella comunità scientifica si parla di “tutt’altro”! Nell’articolo si parla di tachioni come particelle teoriche ma di un semi-radio, che vi giuro non ho idea di cosa potrebbe essere secondo queste menti malate, che avrebbe le proprietà dei tachioni.

Apro e chiudo parentesi. I tachioni sono appunti particelle “pensate teoricamente” ma che non sono mai state osservate per via sperimentale. Per dirla tutta, dopo il primo entusiasmo nella formulazione dei tachioni, ormai la loro esistenza è stata messa da parte nella comunità scientifica. Come detto, si tratta di particelle immaginate solo a livello teorico, che avrebbero massa immaginaria e si muoverebbero a velocità maggiore di quella della luce. A livello teorico, non sono fantasie ma risultati possibili di equazioni.

Dunque questi tachioni, che non esistono, a contatto con la materia sarebbero in grado di “decollare la materia dell’universo”. Ma che significa? Senza che vi sforziate a cercare di capire, si tratta di frasi senza senso messe li giusto per fare scena. Leggendo questo articolo mi è tornato alla mente il film “amici miei° e la “supercazzola”. La valenza di questa frase è del tutto equivalente a quella della supercazzola appunto.

Perché questo articolo è stato tirato fuori ora?

Anche qui, come al solito, niente di speciale. Come detto diverse volte, la mancanza di spunti catastrofisti dell’ultimo periodo porta tanti siti a ritirare fuori dai loro archivi articoli datati giusto per riempire le loro homepage. Se provate a fare una ricerca su google, utilizzando come termini di ricerca proprio “Michio Kaku Dio”, trovate risultati anche molto datati, scritti esattamente allo stesso modo. Con buon probabilità, almeno da quello che ho visto, l’articolo originale da cui è partito lo storico copia/incolla è di un sito portoghese che ha pubblicato queste cavolate per primo nel 2011:

Articolo originale

Ultima domanda prima di chiudere: perché si cita nell’articolo proprio Kaku? E’ vero che si tratta di un fisico molto conosciuto ma, in fondo, tutti conoscono la teoria delle stringhe, o almeno ne hanno sentito parlare, ma non tutti ne conoscono gli autori. Parlare però di Kaku su argomenti di questo tipo è, in realtà, molto semplice. Oltre ad essere famoso per la teoria delle stringhe, Kaku è anche un noto divulgatore scientifico. Il luminare non è nuovo a teorie, diciamo, di confine e ad affermazioni che hanno fatto discutere sugli alieni, su Dio e sulla sua visione matematico/religiosa dell’universo. Per chi lo segue, Kaku è molto amato proprio per queste affermazioni perché si dedica a parlare di tutto, senza sfuggire ad argomenti fantascientifici e senza limitarsi in affermazioni poco “scientifiche”.

Detto questo, capite dunque l’assurdità dell’articolo di cui stiamo discutendo. Non credo sia necessario aggiungere altro per capire che si tratta di una bufala, tra l’altro anche datata e riciclata. Al solito, fate molta attenzione a quello che leggete e cercate sempre di fare delle verifiche autonome su siti “attendibili”. Solo in questo modo potrete evitare di credere ad articoli furbescamente realizzati con lo scopo di confondere le acque citando nomi ed argomenti ad effetto.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’espansione metrica dell’universo

8 Apr

In questo blog, abbiamo dedicato diversi articoli al nostro universo, alla sua storia, al suo destino, alla tipologia di materia o non materia di cui e’ formato, cercando, come e’ ovvio, ogni volta di mettere il tutto in una forma quanto piu’ possibile comprensibile e divulgativa. Per chi avesse perso questi articoli, o solo come semplice ripasso, vi riporto qualche link riassuntivo:

E parliamo di questo Big Bang

Il primo vagito dell’universo

Universo: foto da piccolo

La materia oscura

Materia oscura intorno alla Terra?

Due parole sull’antimateria

Flusso oscuro e grandi attrattori

Ascoltate finalmente le onde gravitazionali?

Come e’ ovvio, rendere questi concetti fruibili a fini divulgativi non e’ semplice. Per prima cosa, si deve evitare di mettere formule matematiche e, soprattutto, si deve sempre riflettere molto bene su ogni singola frase. Un concetto che potrebbe sembrare scontato e banale per un addetto ai lavori, potrebbe essere del tutto sconosciuto a chi, non avendo basi scientifiche solide, prova ad informarsi su argomenti di questo tipo.

Perche’ faccio questo preambolo?

Pochi giorni fa, un nostro lettore mi ha contatto via mail per chiedermi di spiegare meglio il discorso dell’espansione dell’universo. Per essere precisi, la domanda era relativa non all’espansione in se, ma a quella che viene appunto definita “espansione metrica” dell’universo. Cosa significa? Come visto varie volte, l’idea comunemente accettata e’ che l’universo sia nato da un Big Bang e durante questa espansione si sono prima formate le forze, il tempo, le particelle, poi i pianeti, le galassie e via dicendo. Ci sono prove di questo? Assolutamente si e ne abbiamo parlato, anche in questo caso, piu’ volte: la radiazione cosmica di fondo, lo spostamento verso il rosso delle galassie lontane, le conclusioni stesse portate dalla scoperta del bosone di Higgs e via dicendo. Dunque? Che significa espansione metrica dell’universo? In parole povere, noi diciamo che l’universo si sta espandendo, e che sta anche accelerando, ma come possiamo essere certi di questo? Che forma ha l’universo? Per quanto ancora si espandera’? Poi cosa succedera’? Sempre nella domanda iniziale, veniva posto anche un quesito molto interessante: ma se non fosse l’universo ad espandersi ma la materia a contrarsi? L’effetto sarebbe lo stesso perche’ la mutua distanza tra due corpi aumenterebbe nel tempo dando esattamente lo stesso effetto apparente che vediamo oggi.

Come potete capire, di domande ne abbiamo fin troppe a cui rispondere. Purtroppo, e lo dico in tutta sincerita’, rendere in forma divulgativa questi concetti non e’ molto semplice. Come potete verificare, raccontare a parole che il tutto sia nato da un Big Bang, che ci sia stata l’inflazione e si sia formata la radiazione di fondo e’ cosa abbastanza fattibile, parlare invece di forma dell’universo e metrica non e’ assolutamente semplice soprattutto senza poter citare formule matematiche che per essere comprese richiedono delle solide basi scientifiche su cui ragionare.

Cerchiamo dunque di andare con ordine e parlare dei vari quesiti aperti.

Come visto in altri articoli, si dice che il Big Bang non e’ avvenuto in un punto preciso ma ovunque e l’effetto dell’espansione e’ visibile perche’ ogni coppia di punti si allontana come se ciascun punto dell’universo fosse centro dell’espansione. Cosa significa? L’esempio classico che viene fatto e’ quello del palloncino su cui vengono disegnati dei punti:

Esempio del palloncino per spiegare l'espansione dell'universo

Esempio del palloncino per spiegare l’espansione dell’universo

Quando gonfiate il palloncino, i punti presenti sulla superficie si allontanano tra loro e questo e’ vero per qualsiasi coppia di punti. Se immaginiamo di essere su un punto della superficie, vedremo tutti gli altri punti che si allontanano da noi. Bene, questo e’ l’esempio del Big Bang.

Ci sono prove di questo? Assolutamente si. La presenza della CMB e’ proprio un’evidenza che ci sia stato un Big Bang iniziale. Poi c’e’ lo spostamento verso il rosso, come viene definito, delle galassie lontane. Cosa significa questo? Siamo sulla Terra e osserviamo le galassie lontane. La radiazione che ci arriva, non necessariamente con una lunghezza d’onda nel visibile, e’ caratteristica del corpo che la emette. Misurando questa radiazione ci accorgiamo pero’ che la frequenza, o la lunghezza d’onda, sono spostate verso il rosso, cioe’ la lunghezza d’onda e’ maggiore di quella che ci aspetteremmo. Perche’ avviene questo? Questo effetto e’ prodotto proprio dal fatto che la sorgente che emette la radiazione e’ in moto rispetto a noi e poiche’ lo spostamento e’ verso il rosso, questa sorgente si sta allontanando. A questo punto sorge pero’ un quesito molto semplice e comune a molti. Come sapete, per quanto grande rapportata alle nostre scale, la velocita’ della luce non e’ infinita ma ha un valore ben preciso. Questo significa che la radiazione emessa dal corpo lontano impiega un tempo non nullo per raggiungere la Terra. Come spesso si dice, quando osserviamo stelle lontane non guardiamo la stella come e’ oggi, ma come appariva quando la radiazione e’ stata emessa. Facciamo l’esempio classico e facile del Sole. La luce emessa dal Sole impiega 8 minuti per arrivare sulla Terra. Se noi guardiamo ora il Sole lo vediamo come era 8 minuti fa. Se, per assurdo, il sole dovesse scomparire improvvisamente da un momento all’altro, noi ce ne accorgeremmo dopo 8 minuti. Ora, se pensiamo ad una stella lontana 100 anni luce da noi, quella che vediamo e’ la stella non come e’ oggi, ma come era 100 anni fa. Tornando allo spostamento verso il rosso, poiche’ parliamo di galassie lontane, la radiazione che ci arriva e’ stata emessa moltissimo tempo fa. Domanda: osservando la luce notiamo uno spostamento verso il rosso ma questa luce e’ stata emessa, supponiamo, mille anni fa. Da quanto detto si potrebbe concludere che l’universo magari era in espansione 1000 anni fa, come da esempio, mentre oggi non lo e’ piu’. In realta’, non e’ cosi’. Lo spostamento verso il rosso avviene a causa del movimento odierno tra i corpi e dunque utilizzare galassie lontane ci consente di osservare fotoni che hanno viaggiato piu’ a lungo e da cui si ottengono misure piu’ precise. Dunque, da queste misure, l’universo e’ in espansione e’ lo e’ adesso. Queste misurazioni sono quelle che hanno portato Hubble a formulare la sua famosa legge da cui si e’ ricavata per la prima volta l’evidenza di un universo in espansione.

Bene, l’universo e’ in espansione, ma se ci pensate questo risultato e’ in apparente paradosso se pensiamo alla forza di gravita’. Perche’? Negli articoli precedentemente citati, abbiamo piu’ volte parlato della gravita’ citando la teoria della gravitazione universale di Newton. Come e’ noto, due masse poste a distanza r si attraggono con una forza che dipende dal prodotto delle masse ed e’ inversamente proporzionale al quadrato della loro distanza. Ora, nel nostro universo ci sono masse distribuite qui a la in modo piu’ o meno uniforme. Se pensiamo solo alla forza di gravita’, una coppia qualunque di queste masse si attrae e quindi le due masse tenderanno ad avvicinarsi. Se anche pensiamo ad una spinta iniziale data dal Big Bang, ad un certo punto questa spinta dovra’ terminare controbilanciata dalla somma delle forze di attrazione gravitazionale. In altre parole, non e’ possibile pensare ad un universo che si espande sempre se abbiamo solo forze attrattive che lo governano.

Questo problema ha angosciato l’esistenza di molti scienziati a partire dai primi anni del ‘900. Lo stesso Einstein, per cercare di risolvere questo problema dovette introdurre nella Relativita’ Generale quella che defini’ una costante cosmologica, a suo avviso, un artificio di calcolo che serviva per bilanciare in qualche modo l’attrazione gravitazionale. L’introduzione di questa costante venne definita dallo stesso Einstein il piu’ grande errore della sua vita. Oggi sappiamo che non e’ cosi’, e che la costante cosmologica e’ necessaria nelle equazioni non come artificio di calcolo ma, in ultima analisi, proprio per giustificare la presenza di componenti non barioniche, energia oscura in primis, che consentono di spiegare l’espansione dell’universo. Se vogliamo essere precisi, Einstein introdusse la costante non per avere un universo in espansione bensi’ un universo statico nel tempo. In altre parole, la sua costante serviva proprio a bilanciare esattamente l’attrazione e rendere il tutto fermo. Solo osservazioni successive, tra cui quella gia’ citata dello stesso Hubble, confermarono che l’universo non era assolutamente statico bensi’ in espansione.

Ora, a questo punto, potremmo decidere insieme di suicidarci dal punto di vista divulgativo e parlare della metrica dell’universo, di coordinate comoventi, ecc. Ma questo, ovviamente, implicherebbe fogli di calcoli e basi scientifiche non banali. Abbiamo le prove che l’universo e’ in espansione, dunque, ad esempio, guardando dalla Terra vediamo gli altri corpi che si allontanano da noi. Come si allontanano? O meglio, di nuovo, che forma avrebbe questo universo?

L’esempio del palloncino fatto prima per spiegare l’espansione dell’universo, e’ molto utile per far capire questi concetti, ma assolutamente fuoriviante se non ci si riflette abbstanza. Molto spesso, si confonde questo esempio affermando che l’universo sia rappresentato dall’intero palloncino compreso il suo volume interno. Questo e’ concettualmente sbagliato. Come detto in precedenza, i punti si trovano solo ed esclusivamente sulla superficie esterna del palloncino che rappresenta il nostro universo.

A complicare, o a confondere, ancora di piu’ le idee c’e’ l’esempio del pane con l’uvetta che viene usato per spiegare l’espansione dell’universo. Anche su wikipedia trovate questo esempio rappresentato con una bella animazione:

Esempio del pane dell'uvetta utilizzato per spiegare l'aumento della distanza tra i punti

Esempio del pane dell’uvetta utilizzato per spiegare l’aumento della distanza tra i punti

Come vedete, durante l’espansione la distanza tra i punti cresce perche’ i punti stessi, cioe’ i corpi presenti nell’universo, vengono trascinati dall’espansione. Tornado alla domanda iniziale da cui siamo partiti, potremmo penare che in realta’ lo spazio resti a volume costante e quello che diminuisce e’ il volume della materia. Il lettore che ci ha fatto la domanda, mi ha anche inviato una figura esplicativa per spiegare meglio il concetto:

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Come vedete, pensando ad una contrazione della materia, avremmo esattamente lo stesso effetto con la distanza mutua tra i corpi che aumenta mentre il volume occupato dall’universo resta costante.

Ragioniamo pero’ su questo concetto. Come detto, a supporto dell’espansione dell’universo, abbiamo la legge di Hubble, e anche altre prove, che ci permettono di dire che l’universo si sta espandendo. In particolare, lo spostamento verso il rosso della radiazione emessa ci conferma che e’ aumentato lo spazio tra i corpi considerati, sorgente di radiazione e bersaglio. Inoltre, la presenza dell’energia oscura serve proprio a spiegare questa evoluzione dell’universo. Se la condizione fosse quella riportata nell’immagine, cioe’ con la materia che si contrae, non ci sarebbe lo spostamento verso il rosso, e anche quello che viene definito Modello Standard del Cosmo, di cui abbiamo verifiche sperimentali, non sarebbe utilizzabile.

Resta pero’ da capire, e ritorno nuovamente su questo punto, che forma dovrebbe avere il nostro universo. Non sto cercando di volta in volta di scappare a questa domanda, semplicemente, stiamo cercando di costruire delle basi, divulgative, che ci possano consentire di capire questi ulteriori concetti.

Come detto, parlando del palloncino, non dobbiamo fare l’errore di considerare tutto il volume, ma solo la sua superificie. In particolare, come si dice in fisica, per capire la forma dell’universo dobbiamo capire che tipo di geometria assegnare allo spazio-tempo. Purtroppo, come imparato a scuola, siamo abituati a pensare alla geometria Euclidea, cioe’ quella che viene costruita su una superifice piana. In altre parole, siamo abituati a pensare che la somma degli angoli interni di un traiangolo sia di 180 gradi. Questo pero’ e’ vero solo per un triangolo disegnato su un piano. Non e’ assolutamente detto a priori che il nostro universo abbia una geometria Euclidea, cioe’ che sia piano.

Cosa significa?

Come e’ possibile dimostrare, la forma dell’universo dipende dalla densita’ di materia in esso contenuta. Come visto in precedenza, dipende dunque, come e’ ovvio pensare, dall’intensita’ della forza di attrazione gravitazionale presente. In particolare possiamo definire 3 curvature possibili in funzione del rapporto tra la densita’ di materia e quella che viene definita “densita’ critica”, cioe’ la quantita’ di materia che a causa dell’attrazione sarebbe in grado di fermare l’espasione. Graficamente, le tre curvature possibili vengono rappresentate con tre forme ben distinte:

Curvature possibili per l'universo in base al rapporto tra densita' di materia e densita' critica

Curvature possibili per l’universo in base al rapporto tra densita’ di materia e densita’ critica

Cosa significa? Se il rapporto e’ minore di uno, cioe’ non c’e’ massa a sufficienza per fermare l’espansione, questa continuera’ per un tempo infinito senza arrestarsi. In questo caso si parla di spazio a forma di sella. Se invece la curvatura e’ positiva, cioe’ la massa presente e’ maggiore del valore critico, l’espansione e’ destinata ad arrestarsi e l’universo iniziera’ ad un certo punto a contrarsi arrivando ad un Big Crunch, opposto al Big Bang. In questo caso la geometria dell’universo e’ rappresentata dalla sfera. Se invece la densita’ di materia presente e’ esattamente identica alla densita’ critica, in questo caso abbiamo una superficie piatta, cioe’ Euclidea, e l’espansione si arrestera’ ma solo dopo un tempo infinito.

Come potete capire, la densita’ di materia contenuta nell’universo determina non solo la forma di quest’ultimo, ma anche il suo destino ultimo in termini di espansione o contrazione. Fate pero’ attenzione ad un altro aspetto importante e molto spesso dimenticato. Se misuriamo questo rapporto di densita’, sappiamo automaticamente che forma ha il nostro universo? E’ vero il discorso sul suo destino ultimo, ma le rappresentazioni grafiche mostrate sono solo esplicative e non rappresentanti la realta’.

Perche’?

Semplice, per disegnare queste superifici, ripeto utilizzate solo per mostrare graficamente le diverse forme, come si e’ proceduto? Si e’ presa una superficie bidimensionale, l’equivalente di un foglio, e lo si e’ piegato seguendo le indicazioni date dal valore del rapporto di densita’. In realta’, lo spazio tempo e’ quadrimensionale, cioe’ ha 3 dimensioni spaziali e una temporale. Come potete capire molto facilmente, e’ impossibile sia disegnare che immaginare una superificie in uno spazio a 4 dimensioni! Questo significa che le forme rappresentate sono esplicative per far capire le differenze di forma, ma non rappresentano assolutamnete la reale forma dell’universo dal momento che sono ottenute eliminando una coordinata spaziale.

Qual e’ oggi il valore di questo rapporto di densita’? Come e’ ovvio, questo valore deve essere estrapolato basandosi sui dati raccolti da misure osservative nello spazio. Dal momento che sarebbe impossibile “contare” tutta la materia, questi valori vengono utilizzati per estrapolare poi il numero di barioni prodotti nel Big Bang. I migliori valori ottenuti oggi danno rapporti che sembrerebbero a cavallo di 1 anche se con incertezze ancora troppo elevate per avere una risposta definitiva.

Concludendo, affrontare queste tematiche in chiave divulgativa non e’ assolutamente semplice. Per quanto possibile, e nel limite delle mie possibilita’, spero di essere riuscito a farvi capire prima di tutto quali sono le verifiche sperimentali di cui disponiamo oggi e che sostengono le teorie di cui tanto sentiamo parlare. Queste misure, dirette o indirette che siano, ci permettono di capire che il nostro universo e’ con buona probabilita’ nato da un Big Bang, che sta attualmente espandendosi e questa espansione, almeno allo stato attuale, e’ destinata a fermarsi solo dopo un tempo infinito. Sicuramente, qualunque sia il destino ultimo del nostro universo, questo avverra’ in un tempo assolutamente molto piu’ grande della scala umana e solo la ricerca e la continua osservazione del cosmo ci possono permettere di fare chiarezza un poco alla volta.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’universo e’ stabile, instabile o meta-stabile?

25 Mar

Negli ultimi articoli, complici anche i tantissimi commenti e domande fatte, siamo tornati a parlare di ricerca e delle ultime misure scientifiche che tanto hanno fatto discutere. Come fatto notare pero’, molto spesso, queste discussioni che dovrebbero essere squisitamente scientifiche lasciano adito ad articoli su giornali, anche a diffusione nazionale, che male intendono o approfittano del clamore per sparare sentenze senza senso e, lasciatemelo dire, assolutamente fuori luogo.

In particole, nell’articolo precedente, abbiamo discusso l’ultima misura della massa del quark top ottenuta mediante la collaborazione dei fisici di LHC e del Tevetron. Questo risultato e’ il piu’ preciso mai ottenuto prima e ci consente, di volta in volta, di migliorare la nostra conoscenza, come spesso ripeto, sempre troppo risicata e assolutamente lontana dalla comprensione del tutto.

Per discutere la misura della massa del top, siamo partiti da una notizia apparsa sui giornali che parlava di un universo pronto a dissolversi da un istante all’altro. Premesso che, come fatto notare, questa notizia era completamente campata in aria, su suggerimento di una nostra cara lettrice, ci e’ stato chiesto di discutere con maggior dettaglio quello che molti chiamano il destino ultimo del nostro universo. Come forse avrete sentito, su alcune fonti si parla spesso di universo stabile, instabile o meta-stabile farfugliando, nel vero senso della parola, come questa particolarita’ sia legata alla massa di qualche particella.

Cerchiamo dunque di spiegare questo importante e non banale concetto cercando sempre di mantenere un approccio quanto possibile divulgativo.

Per prima cosa, dobbiamo tornare a parlare del bosone di Higgs. Come forse ricorderete, in un articolo specifico:

Bosone di Higgs, ma che sarebbe? 

abbiamo gia’ affrontato la sua scoperta, cercando in particolare di spiegare il perche’ l’evidenza di questa particella sarebbe cosi’ importnate nell’ambito del modello standard e della fisica delle alte energie. Come fatto notare pero’, anche in questo caso, parliamo ancora di “evidenza” e non di “scoperta”. Visto che me lo avete chiesto direttamente, ci tengo a sottolineare questa importante differenza.

Come sapete, la fisica e’ detta una “scienza esatta”. Il motivo di questa definizione e’ alquanto semplice: la fisica non e’ esatta perche’ basata su informazioni infinitamente esatte, ma perche’ ogni misura e’ accompagnata sempre da un’incertezza esattamente quantificata. Questa incertezza, e’ quella che comunemente viene chiamato “errore”, cioe’ il grado di confidenza statistico che si ha su un determinato valore. Per poter parlare di evidenza, e’ necessario che la probabilita’ di essersi sbagliati sia inferiore di un certo valore, ovviamente molto basso. Per poter invece gridare alla scoperta, la probabiita’ statistica che quanto misurato sia un errore deve essere ancora piu’ bassa. Questo grado di confidenza, ripeto prettamente statistico, e’ quello che spesso sentiamo valutare riferendosi alla “sigma” o “all’incertezza”.

Bene, tornando al bosone di Higgs, perche’ si dice che ancora non c’e’ la sicurezza che quanto osservato sia proprio quell’Higgs che cerchiamo? Semplice, il grado di confidenza, non ci consente ancora di poter affermare con sicurezza statistica che la particella osservata sia proprio il bosone di Higgs che cerchiamo e non “un” bosone di Higgs o un’altra particella. Come ormai sappiamo, il bosone di Higgs tanto cercato e’ proprio quello relativo al campo di Higgs che determina la massa delle particelle. Per poter essere quel bosone, la particella deve essere, in particolare, scalare e con spin zero. Che significa? Praticamente, queste sono le caratteristiche che definiscono l’identikit dell’Higgs che cerchiamo. Se per quanto riguarda il fatto di essere scalare siamo convinti, per lo spin della particella, dal momento che decade in due fotoni, potrebbe avere spin 0 o 2. Per poter essere sicuri che lo spin sia proprio zero, sara’ necessario raccogliere ancora piu’ dati per determinare con sicurezza questa proprieta’ anche se statisticamente possiamo escludere con una certa incetezza che lo spin sia 2.

Detto questo, e supposto, con una buona confidenza statistica, che quanto trovato sia proprio il bosone di Higgs, sappiamo che la massa trovata per questa particella e’ 125.6 GeV con un un’incertezza totale di 0.4 GeV. Questo valore della massa ha pero’ aperto le porte per una discussione teorica molto accesa e di cui si inizia a parlare anche sui giornali non prettamente scientifici.

Perche’?

Come anticipato, la massa del bosone di Higgs determina la condizione di stabilita’ o instabilita’ del nostro universo. Perche’ proprio l’Higgs? Ovviamente, questo bosone e’ correlato con il campo scalare di Higgs, cioe’ quello che assegna la massa delle particelle. Ora pero’, nel modello standard, troviamo particelle che hanno masse anche molto diverse tra loro. Se osserviamo i quark, passiamo dall’up, il piu’ leggero, al top, il piu’ pesante, con una differenza di massa veramente enorme per particelle che appartengono alla stessa “famiglia”. Detto questo, per determinare la condizione di equilibrio, e tra poco spiegheremo cosa significa, del nostro universo, e’ possibile ragionare considerando proprio le masse dell’Higgs e del top.

In che modo?

Senza spendere troppe parole, vi mostro un grafico molto significativo:

 

Stabilita' dell'universo data dalla correlazione delle masse Top-Higgs

Stabilita’ dell’universo data dalla correlazione delle masse Top-Higgs

Cosa significa questo grafico? Come potete vedere, incrociando il valore della massa del top con quella dell’Higgs e’ possibile capire in quale zona ci troviamo, appunto: stabile, instabile o meta-stabile. Scientificamente, queste sono le condizioni in cui puo’ trovarsi quello che e’ definito vuoto quantomeccanico dell’universo. Se l’universo fosse instabile, allora sarebbe transitato in una successione di stati diversi senza poter formare strutture complesse dovute all’evoluzione. Come potete facilmente capire, in questo caso, noi oggi non saremo qui ad interrogarci su come e’ fatto l’universo dal momento che non avremmo avuto neanche la possibilita’ di fare la nostra comparsa. In caso di universo stabile invece, come il termine stesso suggerisce, tutto rimane in uno stato stazionario senza grosse modificazioni. Meta-stabile invece cosa significa? Questo e’ un termine ricavato direttamente dalla termodinamica. Detto molto semplicemente, un sistema meta-stabile si trova in una posizione di minimo di energia non assoluto. Cioe’? Detto in altri termini, il sistema e’ in uno stato di equilibrio, ma sotto particolari condizioni puo’ uscire da questo stato e scendere verso qualcosa di piu’ stabile ancora. Per capirlo meglio, immaginate di mettere una scodella sul pavimento con dentro una pallina. Se muovete di poco la pallina questa oscillera’ e ricadra’ sul fondo, posizione di equilibrio meta-stabile. Se date un colpo piu’ forte, la pallina uscira’ dalla scodella e andra’ sul pavimento. A questo punto pero’ il vostro sistema immaginario ha raggiunto la posizione piu’ stabile.

Ora, capite bene quanto sia importante e interessante capire che tipo di sistema e’ il nostro universo per determinare eventuali e future evoluzioni temporali che potrebbero avvenire. Come visto nel grafico precedente, per capire lo stato dell’universo possiamo valutare le masse del top e dell’Higgs.

Cosa otteniamo con i valori delle masse oggi conosciuti? Come potete vedere, come per un simpatico scherzo, la massa dell’Higgs ci posizione proprio nella strettissima zona di meta-stabilita’ del nostro universo. Come anticipato, il fatto di non essere nella zona di instabilita’ e’ assolutamente comprensibile pensando al fatto che noi oggi siamo qui. Certo, una massa superiore a 126 GeV ci avrebbe piazzato nella zona stabile dove, come si dice nelle favole, “vissero felici e contenti”. Cosa comporta il fatto di essere nella regione di meta-stabilita’? Come qualcuno, incurante della scienza, cerca di farvi credere, siamo in bilico su una corda. Il nostro universo da un momento all’altro potrebbe transitare verso uno stato piu’ stabile modificando radicalmente le proprieta’ del vuoto quantomeccanico. In questo caso, il nostro universo collasserebbe e segnebbe la nostra fine.

E’ vero questo?

Assolutamente no. Prima di tutto, cerchiamo di ragionare. Come detto, la massa attuale del bosone di Higgs e’ 125.6+/-0.4 GeV. Questo significa che entro una certa probabilita’, piu’ del 15%, la massa del bosone potrebbe essere maggiore di 126 GeV. In questo caso la misura sarebbe pienamente della regione “stabile” dell’universo. Ovviamente, per poter determinare con precisione questo valore e’ necessario ridurre l’incertezza che accompagna la misura in modo da “stringere” l’intervallo entro cui potrebbe essere compresa questa massa.

Se anche l’universo fosse in uno stato meta-stabile, non possiamo certo pensare che da un momento all’altro questo potrebbe uscire dallo stato di equilibrio e transitare verso altro se non in particolari condizioni. Vi ripeto nuovamente come in questo caso ci stiamo muovendo all’interno di ragionamenti prettamente teorici in cui gli stessi principi della fisica che oggi conosciamo potrebbero non essere validi. Secondo alcuni infatti, la stessa evoluzione dell’universo che ha portato oggi fino a noi potrebbe essere stata possibile proprio grazie alla natura meta-stabile del vuoto quantomeccanico.

Come ricorderete, in questi articoli:

Universo: foto da piccolo

Ascoltate finalmente le onde gravitazionali?

cosi’ come in tutti quelli richiamati a loro volta, abbiamo parlato dell’inflazione, cioe’ di quel particolare periodo nell’evoluzione dell’universo che ha portato ad una notevole espansione in tempi brevissimi. Conseguenza dell’inflazione e’ l’avere un universo omogeneo ed isotropo ed in cui le fluttuazione della radiazione di fondo sono molto ridotte. Bene, il bosone di Higgs potrebbe avere avuto un ruolo decisivo per l’innesco del periodo inflazionario. Secondo alcune teorie, infatti, le condizioni fisiche per poter accendere l’inflazione potrebbero essere state date da una particella scalare e l’Higgs potrebbe appunto essere questa particella. Se proprio devo aprire una parentesi, per poter affermare con sicurezza questa cosa, dobbiamo essere sicuri che la fisica che conosciamo oggi possa essere applicata anche in quella particolare fase dell’universo, cioe’ che i modelli attualmente conosciuti possano essere estrapolati a quella che viene comunemente definita massa di Planck dove tutte le forze fondamentali si riunificano. Ovviamente, per poter affermare con sicurezza queste teorie sono necessarie ancora molte ricerche per determinare tutti i tasselli che ancora mancano a questo puzzle.

Seguendo questa chiave di lettura, il fatto di essere in un universo meta-stabile, piu’ che un rischio potrebbe essere stata proprio la caratteristica che ha permesso l’evoluzione che poi ha portato fino ai giorni nostri, con la razza umana presente sulla Terra.

Altro aspetto curioso e importante della meta-stabilita’ dell’universo e’ la possibilita’ di includere i cosiddetti multiversi. Detto molto semplicemente, il fatto che l’universo sia meta-stabile apre gli scenari ad una serie di universi paralleli tutti uno di seguito all’altro caratterizzati da valori continui di alcuni parametri fisici. Non si tratta di racconti fantascientifici o di fantasia ma di vere e proprie teorie fisiche riguardanti il nostro universo.

Concludendo, la scoperta, o l’evidenza, del bosone di Higgs e’ stata sicuramente un ottimo risultato raggiunto dalla fisica delle alte energie, ma certamente non un punto di arrivo. La misura, ancora solo preliminare, della massa della particella apre le porte a scenari di nuova fisica o di considerazioni molto importanti circa la natura del nostro stesso universo. Come visto in questo articolo, quelli che apparentemente potrebbero sembrare campi del sapere completamente diversi e lontani, l’infinitamente piccolo e l’infinitamente grande, sono in realta’ correlati tra loro proprio da singole misure, come quella della massa dell’Higgs. A questo punto, capite bene come lo scneario si fa sempre piu’ interessante e sara’ necessario fare ancora nuove ricerche prima di arrivare a qualcosa di certo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Interpretazioni libere della Bibbia

26 Dic

Nella sezione:

Hai domande o dubbi?

una nostra cara amica ci ha richiesto maggiori informazioni su Mauro Biglino. Per chi non lo conoscesse, si tratta di uno studioso di storia delle religioni che sta facendo molto discutere dopo l’uscita dei suoi libri in cui mostra una interpretazione “diversa” della Bibbia.

Come risposto allo stesso commento iniziale, la teoria di Biglino e’ molto vasta e, provando a cercare sulla rete, vi accorgerete di quanto e’ stato scritto a sostegno o a smentita delle sue teorie. Anche considerando solo la rete, ci sono decine di siti di esperti di antiche scritture o di ebraismo che hanno dedicato moltissimi articoli a queste interpretazioni.

Dal nostro punto di vista, senza peccare di presunzione, ci limiteremo ad analizzare i punti salienti di questa discussione arrivando poi a formulare un nostro pensiero sulla base di quanto appreso. Nel nostro caso, non siamo assolutamente esperti di lingua ebraica per cui ci limiteremo solo ad analizzare senza preconcetti la discussione.

In soldoni, i libri di Biglino partono dall’analisi dei testi sacri originali, cercando un’interpretazione diversa rispetto a quella “canonica”. Nei suoi scritti l’autore si concentra in particolare su molti passaggi in ebraico mostrando come la traduzione ufficiale riconosciuta dalla CEI non sia corretta.

Quali sono le conclusioni a cui arriva Biglino? Per prima cosa, secondo questa nuova visione, la Bibbia non parlerebbe assolutamente del Dio che conosciamo bensi’ narrerebbe la creazione dell’universo e dell’uomo per opera di entita’ aliene superiori. Secondo l’autore, nel testo sarebbe contenuta la chiave di lettura per vedere Dio non come un singolo ma come un gruppo di esseri extraterrestri con grandi poteri. Biglino ha pubblicato diverse opere negli ultimi anni, concentrandosi su passaggi salienti o mostrando come le traduzioni universalmente riconosciute fino ad ora sono in realta’ frutto di incomprensioni o, peggio ancora, derivate da un’opera di offuscamento della verita’ da parte della Chiesa.

I due libri principali pubblicati da Biglino ci fanno capire molto bene, gia’ dal testo, le basi della sua teoria:

– Il libro che cambierà per sempre le nostre idee sulla Bibbia – Gli dèi che giunsero dallo spazio?

– Il Dio alieno della Bibbia

Nei testi si affrontano i temi salienti del pensiero Cristiano: la creazione, l’essere superiore, l’Eden. Inoltre, vengono messi in discussione aspetti comunemente accettati dalla Chiesa come: l’esistenza degli Angeli, l’esistenza del Demonio e via dicendo.

Detto in altri termini, Biglino ci propone, attraverso i suoi scritti, una visione completamente stravolta della religione e dei dogmi del cristianesimo rivisitando il tutto sulla base di un universo creato da esseri extraterrestri e che avrebbero affidato alla Bibbia la loro storia.

Quali sono i punti di forza di questa interpretazione? Leggendo in rete, trovate scritto che Biglino e’ un esperto di storia delle religioni e profondo conosciutore della lingua ebraica. Avrebbe lavorato per diversi anni con le “Edizioni San Paolo” occupandosi, tra l’altro, anche della traduzione ufficiale, quella accettata anche dalla CEI per intenderci, della Bibbia. Dopo l’uscita dei suoi libri sarebbe poi stato licenziato dalla casa editrice interrompendo la sua collaborazione. Questo solo a riprova della scomoda verita’ contenuta nei suoi scritti.

Piu’ o meno, senza scendere troppo nei dettagli, questi sono i punti salienti della vicenda Biglino. Certo, se ragioniamo su quanto trovato in rete abbiamo: un esperto di storia delle religioni e di lingua ebraica che ha lavorato per anni con una delle piu’ importanti case editrici legate al Vaticano, una interpretazione diversa della Bibbia frutto di studi profondi, decine di siti che lo osannano come nuovo messia. Insomma, una storia credibile e che potrebbe stare in piedi.

Ora pero’, proviamo a ragionare per conto nostro e cerchiamo di capire meglio questa vicenda.

Come anticipato, soprattutto in rete, trovate molti siti di reali esperti di ebraismo che controbattono a queste interpretazioni dei testi sacri mostrando diversi errori “grammaticali” nelle traduzioni di Biglino. Solo per darvi un esempio, molto si e’ discusso riguardo al fatto che il Dio della Bibbia viene chiamato in diversi modi ma con nomi plurali accompagnati da verbi al singolare. Biglino interpeta questo come una chiara evidenza che la Bibbia si stia riferendo ad un gruppo di esseri e non ad un singolo. Secondo gli esperti di ebraico invece, cosi’ come avviene nel Corano, Dio viene sempre indicato con nomi diversi, in realta’ aggettivi, per indicare la sua grandezza e perche’ l’uomo non conosce l’esatto nome di un essere che non saprebbe comprendere in pieno.

A parte questo, che comunque ha un peso rilevante se ragioniamo su interpretazioni letterali dell’ebraico, cerchiamo di analizzare la cosa sotto un’ottica diversa. Prima di tutto, non e’ esattamente vero quanto scritto in rete sul ruolo di Biglino presso le edizioni San Paolo. I siti sostenitori parlano di ruolo chiave nella scrittura della versione ufficiale della Bibbia. Biglino si e’ in realta’ occupato di scrivere piccoli, ma frequenti, spezzoni di traduzione per opere curate da altri. Anche se il suo contributo e’ presente, la versione ufficiale della Bibbia e’ stata gestita e curata da altre personalita’ molto esperte di ebraismo. Questo non per denigrare il curriculum dell’autore, ma solo per essere sicuri di quanto affermato.

Dal punto di vista dell’ebraico, come sappiamo bene, questa lingua, ma soprattutto i testi sacri, vanno ben oltre la semplice traduzione letterale. Anche la Bibbia che conosciamo e’ derivata da una serie di interpretazioni fatte nel corso dei secoli da studiosi. Non per niente, ancora oggi, ci sono ricercatori che passano la loro vita lavorativa leggendo e cercando di interpretare le Sacre Scritture. In quest’ottica, Biglino ha proposto una sua interpretazione cosi’ come fatto da molti altri che invece vengono riconosciuti dalla Chiesa.

Cosa dire dunque su queste interpretazioni?

Ragioniamo, Biglino propone una interpretazione della Bibbia basata su traduzioni fatte da lui. E’ sbagliato denigrare in tutto e per tutto la figura di questo scrittore dal momento che, indipendentemente da dove proviene, e’ un conoscitore, forse non esperto e sicuramente non madre lingua, dell’ebraico. Ovviamente, come accennato in precedenza, ci sono diversi punti in cui le traduzioni letterali, non le interpretazioni, presentano errori grammaticali. Nonostante questo, quanto ottenuto da Biglino e’ un’interpretazione della Bibbia cosi’ come quella che conosciamo ufficialmente.

E’ dunque possibile che quella di Biglino sia l’interpretazione corretta?

Su questo sono molto scettico, ma, come detto in precedenza, si tratta di un mio pensiero personale. Premessi gli errori grammaticali, e’ vero che ognuno puo’ interpretare quello che legge a modo proprio, ma non vi sono assolutamente prove ne tantomeno certezze per affermare che la Bibbia sia una cronaca extraterrestre di creazione dell’universo. Come spesso accade, non esiste un senso univoco di un’opera ma ognuno che legge puo’ dare il suo anche molto diverso da quello degli altri. Nonostante questo, passare dagli angeli alle astronavi e da un Essere Superiore ad una banda di alieni intenti a creare l’universo mi sembra quanto meno azzardato. Parlare di interpretazione possibile della Bibbia sarebbe come pensare che il Codice da Vinci corrisponda a realta’.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Aerei: come fanno a volare e sicurezza

13 Nov

Attraverso i commenti del  blog, un nostro caro lettore ci ha fatto una domanda, a suo dire, apparentemente molto semplice ma che, come potete verificare molto facilmente, genera tantissima confusione. In sintesi la domanda e’ questa: perche’ si dice che volare in aereo e’ cosi sicuro?

Per poter rispondere a questa domanda, si devono ovviamente scartabellare i numeri ufficiali degli incidenti aerei. Questo ci consente di poter verificare la probabilita’ di un incidente aereo rapportato, ad esempio, a quelli ben piu’ noti automobilistici. Partendo da questa domanda, mi sono pero’ chiesto qualcosa in piu’: sappiamo veramente perche’ gli aerei riescono a volare? Anche questa potrebbe sembrare una domanda molto semplice. Si tratta di una tecnologia conosciuta da diversi decenni eppure, incredibile ma vero, non tutti sanno perche’ questi enormi oggetti riescono a stare in aria. Facendo un giro su internet, ho scoperto come anche molti siti di divulgazione della scienza fanno delle omissioni o dicono cose formalmente sbagliate.

Detto questo, credo sia interessante affrontare un discorso piu’ ampio prima di poter arrivare a rispondere alla domanda sugli incidenti aerei.

Partiamo dalle basi, come sapete ruolo fondamentale nel volo aereo e’ quello delle ali. Mentre il motore spinge in avanti l’apparecchio, le ali hanno la funzione di far volare l’aereo. Ora, per poter restare in quota, o meglio per salire, senza dover parlare di fisica avanzata, c’e’ bisogno di una forza che spinga l’aereo verso l’alto e che sia maggiore, o al limite uguale per rimanere alle stessa altezza, del peso dell’aereo stesso.

Come fanno le ali ad offrire questa spinta verso l’alto?

Forze agenti sull'ala durante il volo

Forze agenti sull’ala durante il volo

Tutto il gioco sta nel considerare l’aria che scorre intorno all’ala. Vediamo la figura a lato per capire meglio. L’aria arriva con una certa velocita’ sull’ala, attenzione questo non significa che c’e’ vento con questa velocita’ ma, pensando al moto relativo dell’aereo rispetto al suolo, questa e’ in prima approssimazione la velocita’ stessa con cui si sta spostando l’aereo. Abbiamo poi il peso dell’aereo che ovviamente e’ rappresentato da una forza che spinge verso il basso. D e’ invece la resistenza offerta dall’ala. Vettorialmente, si stabilisce una forza L, detta “portanza”, che spinge l’aereo verso l’alto.

Perche’ si ha questa forza?

Come anticipato, il segreto e’ nell’ala, per la precisione nel profilo che viene adottato per questa parte dell’aereo. Se provate a leggere la maggiorparte dei siti divulgativi, troverete scritto che la forza di portanza e’ dovuta al teorema di Bernoulli e alla differenza di velocita’ tra l’aria che scorre sopra e sotto l’ala. Che significa? Semplicemente, l’ala ha una forma diversa nella parte superiore, convessa, e inferiore, quasi piatta. Mentre l’aereo si sposta taglia, come si suole dire, l’aria che verra’ spinta sopra e sotto. La differenza di forma fa si che l’aria scorra piu’ velocemente sopra che sotto. Questo implica una pressione maggiore nella parte inferiore e dunque una spinta verso l’alto. Per farvi capire meglio, vi mostro questa immagine:

Percorso dell'aria lungo il profilo alare

Percorso dell’aria lungo il profilo alare

Come trovate scritto in molti siti, l’aria si divide a causa del passaggio dell’aereo in due parti. Vista la differenza di percorso tra sopra e sotto, affinche’ l’aria possa ricongiungersi alla fine dell’ala, il fluido che scorre nella parte superiore avra’ una velocita’ maggiore. Questo crea, per il teorema di Bernoulli, la differenza di pressione e quindi la forza verso l’alto che fa salire l’aereo.

Spiegazione elegante, semplice, comprensibile ma, purtroppo, fortemente incompleta.

Perche’ dico questo?

Proviamo a ragionare. Tutti sappiamo come vola un aereo. Ora, anche se gli aerei di linea non lo fanno per ovvi motivi, esistono apparecchi acrobatici che possono volare a testa in giu’. Se fosse vero il discorso fatto, il profilo dell’ala in questo caso fornirebbe una spinta verso il basso e sarebbe impossibile rimanere in aria.

Cosa c’e’ di sbagliato?

In realta’ non e’ giusto parlare di spiegazione sbagliata ma piuttosto bisogna dire che quella data e’ fortemente semplificata e presenta, molto banalmente come visto, controesempi in cui non e’ applicabile.

Ripensiamo a quanto detto: l’aria scorre sopra e sotto a velocita’ diversa e crea la differenza di pressione. Chi ci dice pero’ che l’aria passi cosi’ linearmente lungo l’ala? Ma, soprattutto, perche’ l’aria dovrebbe rimanere incollata all’ala lungo tutto il percorso?

La risposta a queste domande ci porta alla reale spiegazione del volo aereo.

L'effetto Coanda sperimentato con un cucchiaino

L’effetto Coanda sperimentato con un cucchiaino

Prima di tutto, per capire perche’ l’aria rimane attaccata si deve considerare il profilo aerodinamico e il cosiddetto effetto Coanda. Senza entrare troppo nella fisica, questo effetto puo’ semplicemente essere visualizzato mettendo un cucchiaino sotto un lieve flusso d’acqua. Come sappiamo bene, si verifica quello che e’ riportato in figura. L’acqua, che cosi’ come l’aria e’ un fluido, scorre fino ad un certo punto lungo il profilo del metallo per poi uscirne. Questo e’ l’effetto Coanda ed e’ quello che fa si che l’aria scorra lungo il profilo alare. Questo pero’ non e’ ancora sufficiente.

Nella spiegazione del volo utilizzando il teorema di Bernoulli, si suppone che il moto dell’aria lungo l’ala sia laminare, cioe’, detto in modo improprio, “lineare” lungo l’ala. In realta’ questo non e’ vero, anzi, un moto turbolento, soprattutto nella parte superiore, consente all’aria di rimanere maggiormente attaccata evitando cosi’ lo stallo, cioe’ il distaccamento e la successiva diminuzione della spinta di portanza verso l’alto.

In realta’, quello che avviene e’ che il moto dell’aria lungo il profilo compie una traiettoria estremamente complicata e che puo’ essere descritta attraverso le cosiddette equazioni di Navier-Stokes. Bene, allora scriviamo queste equazioni, risolviamole e capiamo come si determina la portanza. Semplice a dire, quasi impossibile da fare in molti sistemi.

Cosa significa?

Le equazioni di Navier-Stokes, che determinano il moto dei fluidi, sono estremamente complicate e nella maggior parte dei casi non risolvibili esattamente. Aspettate un attimo, abbiamo appena affermato che un aereo vola grazie a delle equazioni che non sappiamo risolvere? Allora ha ragione il lettore nel chiedere se e’ veramente sicuro viaggiare in aereo, praticamente stiamo dicendo che vola ma non sappiamo il perche’!

Ovviamente le cose non stanno cosi’, se non in parte. Dal punto di vista matematico e’ impossibile risolvere “esattamente” le equazioni di Navier-Stokes ma possiamo fare delle semplificazioni aiutandoci con la pratica. Per poter risolvere anche in modo approssimato queste equazioni e’ necessario disporre di computer molto potenti in grado di implementare approssimazioni successive. Un grande aiuto viene dalla sperimentazione che ci consente di determinare parametri e semplificare cosi’ la trattazione matematica. Proprio in virtu’ di questo, diviene fondamentale la galleria del vento in cui vengono provati i diversi profili alari. Senza queste prove sperimentali, sarebbe impossibile determinare matematicamente il moto dell’aria intorno al profilo scelto.

In soldoni, e senza entrare nella trattazione formale, quello che avviene e’ il cosiddetto “downwash” dell’aria. Quando il fluido passa sotto l’ala, viene spinto verso il basso determinando una forza verso l’alto dell’aereo. Se volete, questo e’ esattamente lo stesso effetto che consente agli elicotteri di volare. In quest’ultimo caso pero’, il downwash e’ determinato direttamente dal moto dell’elica.

Detto questo, abbiamo capito come un aereo riesce a volare. Come visto, il profilo dell’ala e’ un parametro molto importante e, ovviamente, non viene scelto in base ai gusti personali, ma in base ai parametri fisici del velivolo e del tipo di volo da effettuare. In particolare, per poter mordere meglio l’aria, piccoli velivoli lenti hanno ali perfettamente ortogonali alla fusoliera. Aerei di linea piu’ grandi hanno ali con angoli maggiori. Al contrario, come sappiamo bene, esistono caccia militari pensati per il volo supersonico che possono variare l’angolo dell’ala. Il motivo di questo e’ semplice, durante il decollo, l’atterraggio o a velocita’ minori, un’ala ortogonale offre meno resitenza. Al contrario, in prossimita’ della velocita’ del suono, avere ali piu’ angolate consente di ridurre al minimo l’attrito viscoso del fluido.

Ultimo appunto, i flap e le altre variazioni di superficie dell’ala servono proprio ad aumentare, diminuire o modificare intensita’ e direzione della portanza dell’aereo. Come sappiamo, e come e’ facile immaginare alla luce della spiegazione data, molto importante e’ il ruolo di questi dispositivi nelle fasi di decollo, atterraggio o cambio quota di un aereo.

In soldoni dunque, e senza entrare in inutili quanto disarmanti dettagli matematici, queste sono le basi del volo.

Detto questo, cerchiamo di capire quanto e’ sicuro volare. Sicuramente, e come anticipato all’inizio dell’articolo, avrete gia’ sentito molte volte dire: l’aereo e’ piu’ sicuro della macchina. Questo e’ ovviamente vero, se consideriamo il numero di incidenti aerei all’anno questo e’ infinitamente minore di quello degli incidenti automobilistici. Ovviamente, nel secondo caso mi sto riferendo solo ai casi mortali.

Cerchiamo di dare qualche numero. In questo caso ci viene in aiuto wikipedia con una pagina dedicata proprio alle statistiche degli incidenti aerei:

Wiki, incidenti aerei

Come potete leggere, in media negli ultimi anni ci sono stati circa 25 incidenti aerei all’anno, che corrispondono approssimativamente ad un migliaio di vittime. Questo numero puo’ oscillare anche del 50%, come nel caso del 2005 in cui ci sono state 1454 vittime o nel 2001 in cui gli attentati delle torri gemelle hanno fatto salire il numero. La maggiorparte degli incidenti aerei sono avvenuti in condizioni di meteo molto particolari o in fase di atterraggio. Nel 75% degli incidenti avvenuti in questa fase, gli aerei coinvolti non erano dotati di un sistema GPWS, cioe’ di un sistema di controllo elettronico di prossimita’ al suolo. Cosa significa? Un normale GPS fornisce la posizione in funzione di latitudine e longitudine. Poiche’ siamo nello spazio, manca dunque una coordinata, cioe’ la quota a cui l’oggetto monitorato si trova. Il compito del GPWS e’ proprio quello di fornire un sistema di allarme se la distanza dal suolo scende sotto un certo valore. La statistica del 75% e’ relativa agli incidenti avvenuti tra il 1988 e il 1994. Oggi, la maggior parte degli aerei civili e’ dotato di questo sistema.

Solo per concludere, sempre in termini statistici, e’ interessante ragionare, in caso di incidente, quali siano i posti lungo la fusoliera piu’ sicuri. Attenzione, prendete ovviamente questi numeri con le pinze. Se pensiamo ad un aereo che esplode in volo o che precipita da alta quota, e’ quasi assurdo pensare a posti “piu’ sicuri”. Detto questo, le statistiche sugli incidenti offrono anche una distribuzione delle probabilita’ di sopravvivenza per i vari posti dell’aereo.

Guardiamo questa immagine:

Statistiche della probabilita' di sopravvivenza in caso di incidente aereo

Statistiche della probabilita’ di sopravvivenza in caso di incidente aereo

Come vedete, i posti piu’ sicuri sono quelli a prua, cioe’ quelli piu’ vicini alla cabina di pilotaggio ma esiste anche una distribuzione con picco di sicurezza nelle file centrali vicino alle uscite di emergenza. Dal momento che, ovviamente in modo grottesco, i posti a prua sono quelli della prima classe, il fatto di avere posti sicuri anche dietro consente di offrire una minima ancora di salvataggio anche ad i passeggeri della classe economica.

Concudendo, abbiamo visto come un aereo riesce a volare. Parlare solo ed esclusivamente di Bernoulli e’ molto riduttivo anche se consente di capire intuitivamente il principio del volo. Questa assunzione pero’, presenta dei casi molto comuni in cui non e’ applicabile. Per quanto riguarda le statistiche degli incidenti, l’aereo resta uno dei mezzi piu’ sicuri soprattutto se viene confrontato con l’automobile. Come visto, ci sono poi dei posti che, per via della struttura ingegneristica dell’aereo, risultano statisticamente piu’ sicuri con una maggiore probabilita’ di sopravvivena in caso di incidente.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

I buchi neri che … evaporano

16 Ago

Uno degli aspetti che da sempre fa discutere e creare complottismi su LHC, e’ di sicuro la possibilita’ di creare mini buchi neri. Questa teoria nasce prendendo in considerazione le alte energie in gioco all’interno del collissore del CERN e la possibilita’ che nello scontro quark-quark possa venire a crearsi una singolarita’ simile a quella dei buchi neri.

Se avete perso i precedenti articoli, di LHC abbiamo parlato in questi post:

2012, fine del mondo e LHC

Bosone di Higgs … ma che sarebbe?

Sia ben chiaro, la storia dei buchi neri non e’ la sola creata su LHC. Il CERN ogni giorno riceve lettere che chiedono la chiusura dell’esperimento per il pericolo che questo rappresenta per l’intera terra. Diverse volte il CERN e’ anche stato chiamato in giudizio a fronte di vere e proprie denuncie di pseudo scienziati che lo accusavano farneticando teorie senza capo ne’ coda. Come potete immaginare, tutte le volte le accuse sono state rigettate e non solo LHC il prossimo anno ripartira’, ma a gia’ fornito risultati fisici di prim’ordine.

Perche’ si discute tanto di buchi neri? Qui ognuno puo’ formulare la propria ipotesi. Io ho una mia idea. Parlare di buchi neri, e’ qualcosa che da sempre stimola la curiosita’ e il timore delle persone. Un buco nero e’ visto come qualcosa di misterioso che vive nel nostro universo con caratteristiche uniche nel suo genere: mangia tutto cio’ che gli capita a tiro senza far uscire nulla. L’idea di poter avere un mostro del genere qui sulla terra, scatena gli animi piu’ catastrofisti pensando a qualcosa che nel giro di qualche minuto sarebbe in grado di divorare Ginevra, la Svizzera, il mondo intero.

Come anticipato, LHC e’ ora in stato di fermo. Si sta lavorando incessantemente per migliorare i rivelatori che vi operano al fine di ottenere risultati sempre piu’ accurati e affidabili. Alla ripartenza, avendo ormai preso piu’ confidenza con la macchina, si pensa anche di poter aumentare l’energia del centro di massa, cioe’ quella a disposizione per creare nuove particelle, portandola da 7 a 10 TeV. Come e’ ovvio, questa notizia non poteva che riaccendere gli animi catastrofisti. Al momento non si e’ creato nessun buco nero perche’ l’energia era troppo bassa, gli scienziati stanno giocando con il fuoco e porteranno alla distruzione della Terra. Queste sono le argomentazioni che cominciate a leggere in rete e che non potranno che riaumentare avvicinandoci al momento della ripartenza.

Se anche dovesse formarsi un mini buco nero, perche’ gli scienziati sono tanto sicuri che non accadra’ nulla? Come sapete, si parla di evaporazione dei buchi neri. Una “strana” teoria formulata dal fisico inglese Stephen Hawking ma che, almeno da quello che leggete, non e’ mai stata verificata, si tratta solo di un’idea e andrebbe anche in conflitto con la meccanica quantistica e la relativita’. Queste sono le argomentazioni che leggete. Trovate uno straccio di articolo a sostegno? Assolutamente no, ma, leggendo queste notizie, il cosiddetto uomo di strada, non addetto ai lavori, potrebbe lasciarsi convincere che stiamo accendendo una miccia, pensando che forse si spegnera’ da sola.

Date queste premesse, credo sia il caso di affrontare il discorso dell’evaporazione dei buchi neri. Purtroppo, si tratta di teorie abbastanza complicate e che richiedono molti concetti fisici. Cercheremo di mantenere un profilo divulgativo al massimo, spesso con esempi forzati e astrazioni. Cio’ nonostante, parleremo chiaramente dello stato dell’arte, senza nascondere nulla ma solo mostrando risultati accertati.

Cominciamo proprio dalle basi parlando di buchi neri. La domanda principale che viene fatta e’ la seguente: se un buco nero non lascia sfuggire nulla dal suo interno, ne’ particelle ne’ radiazione, come potrebbe evaporare, cioe’ emettere qualcosa verso l’esterno? Questa e’ un’ottima domanda, e per rispondere dobbiamo capire meglio come e’ fatto un buco nero.

Secondo la teoria della relativita’, un buco nero sarebbe un oggetto estremamente denso e dotato di una gravita’ molto elevata. Questa intensa forza di richiamo non permette a nulla, nemmeno alla luce, di sfuggire al buco nero. Essendo pero’ un oggetto molto denso e compatto, questa forza e’ estremamente concentrata e localizzata. Immaginatelo un po’ come un buco molto profondo creato nello spazio tempo, cioe’ una sorta di inghiottitoio. La linea di confine tra la singolarita’ e l’esterno e’ quello che viene definito l’orizzonte degli eventi. Per capire questo concetto, immaginate l’orizzonte degli eventi come una cascata molto ripida che si apre lungo un torrente. Un pesce potra’ scendere e risalire il fiume senza problemi finche’ e’ lontano dalla cascata. In prossimita’ del confine, cioe’ dell’orizzonte degli eventi, la forza che lo trascina giu’ e’ talmente forte che il pesce non potra’ piu’ risalire e verra’ inghiottito.

Bene, questo e’ piu’ o meno il perche’ dal buco nero non esce nulla, nemmeno la luce. Dunque? Come possiamo dire che il buco nero evapora in queste condizioni?

La teoria dell’evaporazione, si basa sulle proprieta’ del vuoto. Come visto in questo articolo:

Se il vuoto non e’ vuoto

nella fisica, quello che immaginiamo come vuoto, e’ un continuo manifestarsi di coppie virtuali particella-antiparticella che vivono un tempo brevissimo e poi si riannichilano scomparendo. Come visto nell’articolo, non stiamo parlando di idee campate in aria, ma di teorie fisiche dimostrabili. L’effetto Casimir, dimostrato sperimentalmente e analizzato nell’articolo citato, e’ uno degli esempi.

Ora, anche in prossimita’ del buco nero si creeranno coppie di particelle e questo e’ altresi’ possibile quasi in prossimita’ dell’orizzonte degli eventi. Bene, ragioniamo su questo caso specifico. Qualora venisse creata una coppia di particelle virtuali molto vicino alla singolarita’, e’ possibile che una delle due particelle venga assorbita perche’ troppo vicina all’orizzonte degli eventi. In questo caso, la singola particella rimasta diviene, grazie al principio di indeterminazione di Heisenberg, una particella reale. Cosa succede al buco nero? Nei testi divulgativi spesso leggete che il buco nero assorbe una particella con energia negativa e dunque diminuisce la sua. Cosa significa energia negativa? Dal vuoto vengono create due particelle. Per forza di cose queste avranno sottratto un po’ di energia dal vuoto che dunque rimarra’ in deficit. Se ora una delle due particelle virtuali e’ persa, l’altra non puo’ che rimanere come particella reale. E il deficit chi lo paga? Ovviamente il buco nero, che e’ l’unico soggetto in zona in grado di pagare il debito. In soldoni dunque, e’ come se il buco nero assorbisse una particella di energia negativa e quindi diminuisse la sua. Cosa succede alla particella, ormai reale, rimasta? Questa, trovandosi oltre l’orizzonte degli eventi puo’ sfuggire sotto forma di radiazione. Questo processo e’ quello che si definisce evaporazione del buco nero.

Cosa non torna in questo ragionamento?

Il problema principale e’, come si dice in fisica, che questo processo violerebbe l’unitarieta’. Per le basi della meccanica quantistica, un qualunque sistema in evoluzione conserva sempre l’informazione circa lo stato inziale. Cosa significa? In ogni stato e’ sempre contenuta l’indicazione tramite la quale e’ possibile determinare con certezza lo stato precedente. Nel caso dei buchi neri che evaporano, ci troviamo una radiazione termica povera di informazione, creata dal vuoto, e che quindi non porta informazione.

Proprio da questa assunzione nascono le teorie che potete leggere in giro circa il fatto che l’evaporazione non sarebbe in accordo con la meccanica quantistica. Queste argomentazioni, hanno fatto discutere anche i fisici per lungo tempo, cioe’ da quando Hawking ha proposto la teoria. Sia ben chiaro, la cosa non dovrebbe sorprendere. Parlando di buchi neri, stiamo ragionando su oggetti molto complicati e per i quali potrebbero valere  leggi modificate rispetto a quelle che conosciamo.

Nonostante questo, ad oggi, la soluzione al problema e’ stata almeno “indicata”. Nel campo della fisica, si racconta anche di una famosa scommessa tra Hawking e Preskill, un altro fisico teorico del Caltech. Hawking sosteneva che la sua teoria fosse giusta e che i buchi neri violassero l’unitarieta’, mentre Perskill era un fervido sostenitore della inviolabilita dei principi primi della meccanica quantistica.

La soluzione del rebus e’ stata indicata, anche se ancora non confermata, come vedremo in seguito, chiamando in causa le cosiddette teorie di nuova fisica. Come sapete, la teoria candidata a risolvere il problema della quantizzazione della gravita’ e’ quella delle stringhe, compatibile anche con quella delle brane. Secondo questi assunti, le particelle elementari non sarebbero puntiformi ma oggetti con un’estensione spaziale noti appunto come stringhe. In questo caso, il buco nero non sarebbe piu’ una singolarita’ puntiforme, ma avrebbe un’estensione interna molto piu’ complessa. Questa estensione permette pero’ all’informazione di uscire, facendo conservare l’unitarieta’. Detto in altri termini, togliendo la singolarita’, nel momento in cui il buco nero evapora, questo fornisce ancora un’indicazione sul suo stato precedente.

Lo studio dei buchi neri all’interno della teoria delle stringhe ha portato al cosiddetto principio olografico, secondo il quale la gravita’ sarebbe una manifestazione di una teoria quantistica che vive in un numero minore di dimensioni. Esattamente come avviene in un ologramma. Come sapete, guardando un ologramma, riuscite a percepire un oggetto tridimensionale ma che in realta’ e’ dato da un immagine a 2 sole dimensioni. Bene, la gravita’ funzionerebbe in questo modo: la vera forza e’ una teoria quantistica che vive in un numero ridotto di dimensioni, manifestabili, tra l’altro, all’interno del buco nero. All’esterno, con un numero di dimensioni maggiori, questa teoria ci apparirebbe come quella che chiamiamo gravita’. Il principio non e’ assolutamente campato in aria e permetterebbe anche di unificare agevolmente la gravita’ alle altre forze fondamentali, separate dopo il big bang man mano che l’universo si raffreddava.

Seguendo il ragionamento, capite bene il punto in cui siamo arrivati. Concepire i buchi neri in questo modo non violerebbe assolutamente nessun principio primo della fisica. Con un colpo solo si e’ riusciti a mettere insieme: la meccanica quantistica, la relativita’ generale, il principio di indeterminazione di Heisenberg, le proprieta’ del vuoto e la termodinamica studiando la radiazione termica ed estendendo il secondo principio ai buchi neri.

Attenzione, in tutta questa storia c’e’ un pero’. E’ vero, abbiamo messo insieme tante cose, ma ci stiamo affidando ad una radiazione che non abbiamo mai visto e alla teoria delle stringhe o delle brance che al momento non e’ confermata. Dunque? Quanto sostenuto dai catastrofisti e’ vero? Gli scienziati rischiano di distruggere il mondo basandosi su calcoli su pezzi di carta?

Assolutamente no.

Anche se non direttamente sui buchi neri, la radiazione di Hawking e’ stata osservata in laboratorio. Un gruppo di fisici italiani ha osservato una radiazione paragonabile a quella dell’evaporazione ricreando un orizzonte degli eventi analogo a quello dei buchi neri. Come visto fin qui, l’elemento fondamentale del gioco, non e’ il buco nero, bensi’ la curvatura della singolarita’ offerta dalla gravita’. Bene, per ricreare un orizzonte degli eventi, basta studiare le proprieta’ ottiche di alcuni materiali, in particolare il loro indice di rifrazione, cioe’ il parametro che determina il rallentamento della radiazione elettromagnetica quando questa attraversa un mezzo.

Nell’esperimento, si e’ utilizzato un potente fascio laser infrarosso, in grado di generare impulsi cortissimi, dell’ordine dei miliardesimi di metro, ma con intensita’ miliardi di volte maggiore della radiazione solare. Sparando questo fascio su pezzi di vetro, il punto in cui la radiazione colpisce il mezzo si comporta esattamente come l’orizzonte degli eventi del buco nero, creando una singolarita’ dalla quale la luce presente nell’intorno non riesce ad uscire. In laboratorio si e’ dunque osservata una radiazione con una lunghezza d’onda del tutto paragonabile con quella che ci si aspetterebbe dalla teoria di Hawking, tra 850 e 900 nm.

Dunque? Tutto confermato? Se proprio vogliamo essere pignoli, no. Come visto, nel caso del buco nero gioca un ruolo determinante la gravita’ generata dal corpo. In laboratorio invece, la singolarita’ e’ stata creata otticamente. Ovviamente, mancano ancora degli studi su questi punti, ma l’aver ottenuto una radiazione con la stessa lunghezza d’onda predetta dalla teoria di Hawking e in un punto in cui si genera un orizzonte degli eventi simile a quello del buco nero, non puo’ che farci sperare che la teoria sia giusta.

Concludendo, l’evaporazione dei buchi neri e’ una teoria molto complessa e che richiama concetti molto importanti della fisica. Come visto, le teorie di nuova fisica formulate in questi anni, hanno consentito di indicare la strada probabile per risolvere le iniziali incompatibilita’. Anche se in condizioni diverse, studi di laboratorio hanno dimostrato la probabile esistenza della radiazione di Hawking, risultati che confermerebbero l’esistenza della radiazione e dunque la possibilita’ dell’evaporazione. Ovviamente, siamo di fronte a teorie in parte non ancora dimostrate ma solo ipotizzate. I risultati ottenuti fino a questo punto, ci fanno capire pero’ che la strada indicata potrebbe essere giusta.

Vorrei chiudere con un pensiero. Se, a questo punto, ancora pensate che potrebbero essere tutte fantasie e che un buco nero si potrebbe creare e distruggere la Terra, vi faccio notare che qui parliamo di teorie scientifiche, con basi solide e dimostrate, e che stanno ottenendo le prime conferme da esperimenti diretti. Quando leggete le teorie catastrofiste in rete, su quali basi si fondano? Quali articoli vengono portati a sostegno? Ci sono esperimenti di laboratorio, anche preliminari ed in condizioni diverse, che potrebbero confermare quanto affermato dai catastrofisti?

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Autocombustione umana, non solo al cinema

14 Ago

Su tutti i maggiori quotidiani e siti internet, in questi giorni  si parla incessantemente della storia di un bambino indiano probabilmente affetto da una rarissima malattia. Senza dilungarci troppo in dettagli che sicuramente avete gia’ letto, questa e’ la storia del piccolo Rahul, un bimbo indiano di soi 2 mesi e mezzo, che sarebbe gia’ stato ricoverato quattro volte per presunti casi di autocombustione. Come riportato dai medici, in tutte le occasioni il bimbo ha subito ustioni su diverse parti del corpo e i medici non risceono ad individuare la causa degli accaduti.

Come spesso avviene, molti giornali si dilungano in inutili chiacchiere cercando principalmente la spettacolarizzazione della notizia, soprattutto durante l’estate in cui le notizie di politica, gossip ed economia scarseggiano.

Nel nostro caso, senza voler speculare sulla notizia, quanto accaduto ci permette di parlare proprio della presunta “autocombustione umana”, che spesso trovate indicata anche come SHC, cioe’ “spontaneus human combustion”. Molti pensano che casi del genere siano solo delle leggende metropolitane o casi fantastici raccontati al cinema. Al contrario invece, negli ultimi 300 anni si sono registrati circa 200 presunti casi di SHC nel mondo.

Qual e’ l’origine di questa malattia? Esistono prove mediche a sostegno della sua esistenza?

Per rispondere a queste domande, e’ necessario fare delle considerazioni un po’ piu’ ampie. Prima di tutto, quando si parla di autocombustione, questo termine e’ leggermente fuorviante. Non dovete pensare ad un essere umano che da un momento all’altro prende fuoco senza un’apparente causa. In casi di questo tipo, e’ sempre presente un innesco esterno. Quello che deve essere compreso e’ invece il combustibile in grado di alimentare la fiamma. Come riportato in letteratura, nei casi di SHC documentati, molto spesso rimangono solo piccole parti intatte del corpo della persona. In alcuni casi, si racconta invece di arti o interi pezzi del corpo rimasti misteriosamente interi, mentre il resto del corpo e’ ormai ridotto in cenere.

Altro aspetto che ha contribuito a creare molte leggende sull’autocombustione umana e’ il fatto che in casi di questo tipo, magari avvenuti all’interno di abitazioni, gli oggetti della stanza non vengono bruciati, mentre il corpo e’ stato completamente arso. In alcune testimonianze, si parla di moquette bruciata in corrispondenza del corpo o di oggetti in plastica ammorbiditi dalle alte temperature.

Proprio questi aspetti sono quelli che creano maggior curiosita’. Nei forni per la cremazione, si utilizzano temperature prossime ai 1000 gradi per ridurre il corpo in cenere. Questi valori sono necessari affinche’ il processo sia molto rapido. Se anche volessimo ottenere lo stesso risultato in tempi piu’ lunghi, non potremmo comunque scendere sotto valori intorno ai 500-600 gradi. Con temperature del genere, appare dunque del tutto strano come gli oggetti della stanza non siano bruciati durante la combustione.

Ovviamente, salteremo tutta la parte relative alle cause paranormali della SHC. Come potete facilmente immaginare, non manca chi parla di possessioni demoniache, strani fenomeni elettromagnetici che innescherebbero la combustione o anche castigo divino per punire i peccatori. La cosa incredibile e’ che c’e’ chi, ancora oggi, pensa che queste potrebbero essere le cause dall’autocombustione.

Detto questo, cerchiamo di fare un po’ di chiarezza. Vi dico subito che esistono alcuni studi scientifici su questo argomento, ma una risposta chiara ed univoca non e’ ancora stata data.

Secondo molte fonti, l’autocombustione umana non sarebbe assolutamente possibile. I casi documentati sarebbero invece spiegabili con la cosiddetta teoria della “candela inversa”. Come trovate in letteratura, molti dei casi riportati riguardano persone sovrappeso e fumatrici. Secondo questa interpretazione, l’innesco potrebbe essere avvenuto per cause, diciamo, di routine a causa della sigaretta accesa, mentre la combustione sarebbe stata alimentata dal grasso corporeo. Mi spiego meglio, i vestiti possono impregnarsi di grasso comportandosi come uno stoppino che avvolge il corpo. Una volta accesa la fiamma, le temperature sviluppate sciolgono il grasso corporeo alimentando ancora di piu’ la combustione. Possibile che nessuno si sia accorto che stava prendendo fuoco? Secondo questa interpretazione, in molti casi si parlerebbe di persone che hanno assunto sonniferi prima di bruciare.

Personalmente, trovo questa interpretazione un po’ forzata e un abbastanza riduttiva.

Allo stesso modo, si parla anche di persone affette da alcolismo che avrebbero subito l’autocombustione. Secondo questa interpretazione, i tessuti del corpo sarebbero intrisi di alcool a tal punto da far sviluppare la combustione, poi a sua volta alimentata dal grasso come visto in precedenza.

Possibile tutto questo?

Anche in questo caso, mi sento di dire di no. Per prima cosa, partiamo dalla notizia iniziale. Non credo che si possa parlare di alcolismo o di obesita’ in un bimbo di due mesi e mezzo. Capite dunque che, se vogliamo, quest’ultima notizia smentisce questa interpretazione.

A sostegno dell’obiezione ci sono anche degli studi di laboratorio condotti con carne di maiale in cui si vede come la carne non sostenga affatto la combustione anche dopo essere stata diverse ore a bagno di alcool puro. Premesso poi che per avere una concentrazione talmente alta nei tessuti, la quantita’ di alcol avrebbe gia’ ucciso il soggetto.

Quale potrebbe essere allora la spiegazione?

Secondo alcune fonti, la spiegazione sarebbe da cercare nella chetosi, cioe’ nell’errato metabolismo degli acidi grassi. In questo caso, il corpo produce un eccesso di corpi chetonici che non potendo essere smaltiti viaggiano con il sangue. Alcuni corpi chetonici molto volatili, come ad esempio l’acetone, si liberano a livello degli alveoli. Proprio per questo motivo, le persone affette da chetosi hanno un caratteristico odore dell’alito.

La chetosi si presenta in molti casi a livello infantile, con intensita’ piu’ o meno alta. Oltre ai bambini, persone affette da chetosi possono essere i malati di diabete, gli alcolisti, soggetti con diete troppo povere di carboidrati o che presentano pancreatite o problemi gastrointestinali.

E’ possibile che l’acetone produca l’autocombustione?

Analoghi studi a quelli riportati con l’alcool sono stati fatti utilizzando l’acetone. In questo caso, si parla di una sostanza con punto di ebollizione molto basso, 56 gradi centigradi, e che, come dimostrato dagli studi sulle carni animali, sarebbe in grado di provocare l’effetto riportato nei casi di autocombustione. Per quanto riguarda l’innesco, anche in questo caso si parla di sorgenti esterne o di effetto candela inverso in grado di accelerare o aumentare il processo. Sicuramente, l’alta volatilita’ dell’acetone, sarebbe compatibile con un fenomeno di bruciamento dovuto a sorgenti esterne normalmente disponibili.

L’ipotesi acetone, almeno a mio avviso, sarebbe compatibile con molti dei casi riportati in letteratura ed e’ anche sostenuta da studi medici che documentano il disturbo in grado di generarlo.

Come anticipato, ad oggi non esiste ancora una spiegazione chiara della SHC anche se l’ipotesi chetosi e’ quella maggiormente citata. Purtroppo, o per fortuna, casi del genere non sono cosi’ frequenti e proprio per questo motivo gli studi si basano su poche testimonianze, molto spesso distorte dal racconto dei presenti.

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Lago Vostok, c’e’ vita?

12 Lug

Qualche mese fa, avevamo parlato del lago Vostok:

I misteri del lago Vostok

Come visto, questo e’ un lago cosiddetto subglaciale, che si trova sotto piu’ o meno 4 Km di ghiaccio dell’Antartide e la cui esistenza, anche se predetta negli anni prcedenti, e’ stata confermata solo nei primi anni ’90 grazie ai monitoraggi satellitari.

Perche’ e’ interessante questo lago?

Prima di tutto, pensare ad uno specchio d’acqua sepolto sotto 4 Km di ghiaccio ben compatto, fa impressione. Inoltre, molti studi sono stati condotti su questo lago per cercare di capire se potesse asserci vita al suo interno. Questa supposizione e’ ovviamente molto affascinante. Il lago Vostok presenta condizioni veramente difficili. Oltre alla sua profondita’ sotto il ghiaccio, dobbiamo considerare la totale assenza di luce solare, ma anche l’enorme pressione a cui le sue acque sarebbero sottoposte.

Come visto nell’articolo precedentemente riportato, le acque del lago sarebbero sotto un attento studio, appunto per valutare la presenza o meno di forme di vita aliene. Con questo termine non intendiamo assolutamente forme di vita provenienti da altri pianeti, bensi’ organismi viventi completamente isolati dall’ecosistema Terra e che, in linea di principio, potrebbero aver avuto uno sviluppo del tutto autonomo e indipendente.

Foto satellitare del ghiaccio sopra al Vostok

Foto satellitare del ghiaccio sopra al Vostok

Per meglio comprendere questo concetto, pensate che le acque del Vostok sono rimaste isolate per circa 15 milioni di anni. In questo periodo infatti, il Vostok e’ stato isolato dalla sua calotta di ghiaccio, lasciando al loro destino tutte le forme di vita eventualmente contenute nel lago.

Bene, detto questo, nell’articolo precedente abbiamo illustrato la tecnica pensata per prelevare un campione di acqua. Come visto, questa tipologia di analisi evita assolutamente un contatto tra la trivella di perforazione e l’acqua del lago. Per fare questo, le trivelle lasciano un setto di ghiaccio, che viene poi spaccato dalle pressioni interne. Questo metodo di ricerca permette di evitare il contatto, raccogliere un campione, ma soprattutto l’acqua fuoriuscita dal lago viene immediatamente congelata, sigillando nuovamente il lago dall’esterno.

Perche’ stiamo tornado a parlare del lago?

Come visto nell’articolo precedente, attraverso queste perforazioni erano stati raccolti circa 40 litri di acqua superficiale del lago. Ad una prima analisi, si era evidenziata la presenza di tracce di DNA e RNA non conosciute, cioe’ non appartenenti a specie animali conosciute sulla terra.

Queste prime misure, avevano suscitato un vespaio di polemiche da parte della comunita’ scientifica dal momento che molti esperti considerano la tecnica utilizzata non sicura. Con questo si intende che ci potrebbero essere contaminazioni dall’esterno in grado di falsare il risultato delle analisi.

Ora, a distanza di mesi, sono state condotte ulteriori analisi sul campione di acqua. I risultati ottenuti sono davvero interessanti. Delle 3507 sequenze di geni trovate, 1623 appartengono a specie conosciute. Di che tipo di sequenze si tratta? Il 94% proviene da batteri mentre il 6% viene da organismi piu’ complessi.

Cosa significa organismi piu’ complessi?

Questo 6% appartiene a funghi, molluschi e crostacei. Ma c’e’ di piu’, una frazione di questi geni appartengono a specie che normalmente vivono all’interno di animali piu’ grandi come, ad esempio, pesci.

Come interpretare questo risultato?

Sulle ali dell’entusiamo, si potrebbe arrivare alla conclusione che il lago Vostok nasconda un ecosistema molto complesso, formato non solo da batteri, ma anche da animali piu’ grandi. Le sequenze sconosciute di DNA e RNA possono farci pensare che nei 15 milioni di anni di isolamento, la vita abbia subito uno sviluppo diverso rispetto a quella della superficie. Questo sarebbe normale pensando alle condizioni estreme all’interno del lago. Proprio in questo ambiente inospitale, come detto buio assoluto e forti pressioni, potrebbero vivere non solo batteri, e questo non ci sorprende visto che sono stati trovati batteri in ambienti in cui si pensava impossibile avere la vita, ma soprattutto animali piu’ grandi e complessi. Una prima supposizione che potrebbe essere fatta e’ che ci siano sorgenti calde all’interno del lago, in grado di riscaldare alcuni strati delle acque.

E’ possibile questo scenario?

In linea di principio si, ma bisogna essere molto cauti. Come avvenne qualche mese fa, e come raccontato nel precedente articolo, anche in questo caso possono essere mosse le stesse critiche alla tecnica di raccolta dei campioni. Come detto, le trivelle, dal momento che non erano pensate per questo scopo, non sono state sterilizzate. Questo ovviamente potrebbe aver causato una contaminazione del campione con sequenze precedentemente attaccate alle trivelle. Inoltre, diversi esperti pensano che il metodo di ritorno del campione in superificie non assicuri una chiusura ermetica e che quindi, durante il suo ritorno attraverso i 4 Km di ghiaccio, il volume potrebbe essere stato contaminato.

Sicuramente, alla luce di quanto detto, e’ molto affascinante pensare al Vostok come un ecosistema ricco, completamente isolato e potenzialmente diverso da nostro. Dal punto di vista scientifico pero’, e’ doveroso andare con i piedi di piombo. In analisi di questo tipo bisogna essere sicuri che tutto sia stato fatto a regola d’arte per evitare di incorrere in errori macroscopici.

Uno studio attento del Vostok e’ importante anche per capire l’eventualita’ di formazione della vita su altri pianeti. Come sappiamo, le condizioni del lago sono simili a quelle che potremmo trovare su altri pianeti del Sistema Solare e non. Comprendere l’eventualita’ di formazione della vita in luoghi cosi’ inospitali, potrebbe farci capire se esite la possibilita’ che ecosistemi di questo tipo si possano formare anche fuori dal nostro pianeta. Nei prossimi mesi ci saranno sicuramente ulteriori risultati da discutere e, alla luce di quanto detto, non resta che aspettarli con ansia.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.