Tag Archives: incertezza

Hawking e la fine del mondo

11 Set

Visto che me lo state chiedendo in tantissimi, vorrei aprire una parentesi sulle affermazioni fatte dal celebre astrofisico Stephen Hawking riguardanti il bosone di Higgs. Per chi non lo avesse seguito, abbiamo già discusso di questo tema nella apposita sezione:

Hai domande o dubbi?

Dove un nostro caro lettore, già qualche giorno fa, ci aveva chiesto lumi a riguardo.

Di cosa stiamo parlando?

Come tutti avrete letto, nell’introduzione del suo ultimo libro “Starmus, 50 years of man in space” il celebre astrofisico avrebbe scritto che il bosone di Higgs avrebbe le potenzialità per poter distruggere l’intero universo. In pratica, ad energie elevate, così si legge, la particella potrebbe divenire improvvisamente instabile e provocare il collasso dello stato di vuoto, con conseguente distruzione dell’universo.

Cosa? Collaso del vuoto? Distruzione dell’universo?

Ci risiamo, qualcuno ha ripreso qualche spezzone in giro per la rete e ne ha fatto un caso mondiale semplicemente mescolando le carte in tavola. In realtà, a differenza anche di quanto io stesso ho affermato nella discussione linkata, la cosa è leggermente più sottile.

E’ possibile che il bosone di Higgs diventi instabile e bla bla bla?

No! Il bosone di Higgs non diviene instabile ad alte energie o perchè ne ha voglia. Stiamo entrando in un settore della fisica molto particolare e su cui la ricerca è ancora in corso.

Facciamo un piccolo excursus. Del bosone di Higgs ne abbiamo parlato in questo articolo:

Bosone di Higgs … ma che sarebbe?

dove abbiamo cercato di spiegare il ruolo chiave di questa particelle nella fisica e, soprattutto, la sua scoperta.

Inoltre, in questo articolo:

L’universo è stabile, instabile o metastabile?

Abbiamo visto come la misura della massa di questa particella abbia implicazioni profonde che esulano dalla mera fisica delle particelle. In particolare, la massa di questa particella, combinata con quella del quark top, determinerebbe la condizione di stabilità del nostro universo.

Bene, come visto nell’ultimo articolo citato, i valori attuali dei parametri che conosciamo, ci pongono nella strettissima zona di metastabilità del nostro universo. Detto in parole semplici, non siamo completamente stabili e, ad un certo punto, il sistema potrebbe collassare in un valore stabile modificando le proprietà del vuoto quantomeccanico.

Riprendiamo il ragionamento fatto nell’articolo. Siamo in pericolo? Assolutamente no. Se anche fossimo in una condizione di metastabilità, il sistema non collasserebbe da un momento all’altro e, per dirla tutta, capire cosa significhi in realtà metastabilità del vuoto quantomeccanico non è assolutamente certo. Premesso questo, come già discusso, i valori delle masse delle due particelle in questione, vista la ristretta zona in esame, non sono sufficienti a determinare la reale zona in cui siamo. Cosa significa? Come detto, ogni misura in fisica viene sempre accompagnata da incertezze, cioè un valore non è univoco ma è contenuto in un intervallo. Più è stretto questo intervallo, minore è l’incertezza, meglio conosciamo il valore in esame. Ad oggi, ripeto, vista la stretta banda mostrata nel grafico, le nostre incertezze sono compatibili sia con la metastabilità che con l’instabilità.

Dunque, pericolo scampato. Resta però da capire il perchè delle affermazioni di Hawking.

Su questo, vi dirò la mia senza fronzoli. Hawking conosce benissimo l’attuale livello di cui abbiamo discusso. Molto probabilmente, non avendolo letto non ne posso essere sicuro, nel libro ne parla in modo dettagliato spiegando tutto per filo e per segno. Nell’introduzione invece, appunto in quanto tale, si lascia andare ad affermazioni quantomeno naive.

Perchè fa questo? Le ipotesi sono due e sono molto semplici. La prima è che è in buona fede e la colpa è solo dei giornali che hanno ripreso questa “introduzione al discorso” proprio per creare il caso mediatico sfruttando il nome dell’astrofisico. La seconda, più cattiva, è che d’accordo con l’editore, si sia deciso di creare questo caso appunto per dare una spinta notevole alle vendite del libro.

Personalmente, una o l’altra non conta, l’importante è capire che non c’è nessun collasso dell’universo alle porte.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Pubblicità

Tutti i movimenti della Terra

27 Giu

Proprio ieri, una nostra cara lettrice ci ha fatto una domanda molto interessante nella sezione:

Hai domande o dubbi?

Come potete leggere, si chiede se esiste una correlazione tra i moti della Terra e l’insorgere di ere di glaciazione sul nostro pianeta. Rispondendo a questa domanda, mi sono reso conto come, molto spesso, e non è certamente il caso della nostra lettrice, le persone conoscano solo i moti principali di rotazione e rivoluzione. A questo punto, credo sia interessante capire meglio tutti i movimenti che il nostro pianeta compie nel tempo anche per avere un quadro più completo del moto dei pianeti nel Sistema Solare. Questa risposta, ovviamente, ci permetterà di rispondere, anche in questa sede, alla domanda iniziale che è stata posta.

Dunque, andiamo con ordine, come è noto la Terra si muove intorno al Sole su un’orbita ellittica in cui il Sole occupa uno dei due fuochi. Questo non sono io a dirlo, bensì questa frase rappresenta quella che è nota come I legge di Keplero. Non starò qui ad annoiarvi con tutte le leggi, ma ci basta sapere che Keplero fu il primo a descrivere cinematicamente il moto dei pianeti intorno ad un corpo più massivo. Cosa significa “cinematicamente”? Semplice, si tratta di una descrizione completa del moto senza prendere in considerazione il perché il moto avviene. Come sapete, l’orbita è ellittica perché è la legge di Gravitazione Universale a spiegare la tipologia e l’intensità delle forze che avvengono. Bene, detto molto semplicemente, Keplero ci spiega l’orbita e come il moto si evolverà nel tempo, Newton attraverso la sua legge di gravitazione ci dice il perché il fenomeno avviene in questo modo (spiegazione dinamica).

Detto questo, se nel nostro Sistema Solare ci fossero soltanto il Sole e la Terra, quest’ultima si limiterebbe a percorrere la sua orbita ellittica intorno al Sole, moto di rivoluzione, mentre gira contemporaneamente intorno al suo asse, moto di rotazione. Come sappiamo bene, il primo moto è responsabile dell’alternanza delle stagioni, mentre la rotazione è responsabile del ciclo giorno-notte.

Purtroppo, ed è un eufemismo, la Terra non è l’unico pianeta a ruotare intorno al Sole ma ce ne sono altri, vicini, lontani e più o meno massivi, oltre ovviamente alla Luna, che per quanto piccola è molto vicina alla Terra, che “disturbano” questo moto molto ordinato.

Perche questo? Semplice, come anticipato, e come noto, due masse poste ad una certa distanza, esercitano mutamente una forza di attrazione, detta appunto gravitazionale, direttamente proporzionale al prodotto delle masse dei corpi e inversamente proporzionale al quadrato della loro distanza. In altri termini, più i corpi sono massivi, maggiore è la loro attrazione. Più i corpi sono distanti, minore sarà la forza che tende ad avvicinarli. Ora, questo è vero ovviamente per il sistema Terra-Sole ma è altresì vero per ogni coppia di corpi nel nostro Sistema Solare. Se Terra e Sole si attraggono, lo stesso fanno la Terra con la Luna, Marte con Giove, Giove con il Sole, e via dicendo. Come è facile capire, la componente principale delle forze è quella offerta dal Sole sul pianeta, ma tutte queste altre “spintarelle” danno dei contributi minori che influenzano “in qualche modo” il moto di qualsiasi corpo. Bene, questo “in qualche modo” è proprio l’argomento che stiamo affrontando ora, cioè i moti minori, ad esempio, della Terra nel tempo.

Dunque, abbiamo già parlato dei notissimi moti di rotazione e di rivoluzione. Uno dei moti che invece è divenuto famoso grazie, o forse purtroppo, al 2012 è quello di precessione degli equinozi, di cui abbiamo già parlato in questo articolo:

Nexus 2012: bomba a orologeria

Come sapete, l’asse della Terra, cioè la linea immaginaria che congiunge i poli geografici ed intorno al quale avviene il moto di rotazione, è inclinato rispetto al piano dell’orbita. Nel tempo, questo asse non rimane fisso, ma descrive un doppio cono come mostrato in questa figura:

Moto di precessione degli equinozi e di nutazione

Moto di precessione degli equinozi e di nutazione

Il moto dell’asse è appunto detto di “precessione degli equinozi”. Si tratta di un moto a più lungo periodo dal momento che per compiere un intero giro occorrono circa 25800 anni. A cosa è dovuto il moto di precessione? In realtà, si tratta del risultato di un duplice effetto: l’attrazione gravitazionale da parte della Luna e il fatto che il nostro pianeta non è perfettamente sferico. Perché si chiama moto di precessione degli equinozi? Se prendiamo la linea degli equinozi, cioè quella linea immaginaria che congiunge i punti dell’orbita in cui avvengono i due equinozi, a causa di questo moto questa linea si sposterà in senso orario appunto facendo “precedere” anno dopo anno gli equinozi. Sempre a causa di questo moto, cambia la costellazione visibile il giorno degli equinozi e questo effetto ha portato alla speculazione delle “ere new age” e al famoso “inizio dell’era dell’acquario” di cui, sempre in ambito 2012, abbiamo già sentito parlare.

Sempre prendendo come riferimento la figura precedente, notiamo che c’è un altro moto visibile. Percorrendo il cono infatti, l’asse della Terra oscilla su e giù come in un moto sinusoidale. Questo è noto come moto di “nutazione”. Perché avviene questo moto? Oltre all’interazione della Luna, molto vicina alla Terra, anche il Sole gioca un ruolo importante in questo moto che proprio grazie alla variazione di posizione relativa del sistema Terra-Luna-Sole determina un moto di precessione non regolare nel tempo. In questo caso, il periodo della nutazione, cioè il tempo impiegato per per compiere un periodo di sinusoide, è di circa 18,6 anni.

Andando avanti, come accennato in precedenza, la presenza degli altri pianeti nel Sistema Solare apporta dei disturbi alla Terra, così come per gli altri pianeti, durante la sua orbita. Un altro moto da prendere in considerazione è la cosiddetta “precessione anomalistica”. Di cosa si tratta? Abbiamo detto che la Terra compie un’orbita ellittica intorno al Sole che occupa uno dei fuochi. In astronomia, si chiama “apside” il punto di massima o minima distanza del corpo che ruota da quello intorno al quale sta ruotando, nel nostro caso il Sole. Se ora immaginiamo di metterci nello spazio e di osservare nel tempo il moto della Terra, vedremo che la linea che congiunge gli apsidi non rimane ferma nel tempo ma a sua volta ruota. La figura seguente ci può aiutare meglio a visualizzare questo effetto:

Moto di precessione anomalistica

Moto di precessione anomalistica

Nel caso specifico di pianeti che ruotano intorno al Sole, questo moto è anche chiamato di “precessione del perielio”. Poiché il perielio rappresenta il punto di massimo avvicinamento di un corpo dal Sole, il perché di questo nome è evidente. A cosa è dovuta la precessioni anomalistica? Come anticipato, questo moto è proprio causato dalle interazioni gravitazionali, sempre presenti anche se con minore intensità rispetto a quelle del Sole, dovute agli altri pianeti. Nel caso della Terra, ed in particolare del nostro Sistema Solare, la componente principale che da luogo alla precessione degli apsidi è l’attrazione gravitazionale provocata da Giove.

Detto questo, per affrontare il prossimo moto millenario, torniamo a parlare di asse terrestre. Come visto studiando la precessione e la nutazione, l’asse terrestre descrive un cono nel tempo (precessione) oscillando (nutazione). A questo livello però, rispetto al piano dell’orbita, l’inclinazione dell’asse rimane costante nel tempo. Secondo voi, con tutte queste interazioni e questi effetti, l’inclinazione dell’asse potrebbe rimanere costante? Assolutamente no. Sempre a causa dell’interazione gravitazionale, Sole e Luna principalmente nel nostro caso, l’asse della Terra presenta una sorta di oscillazione variando da un massimo di 24.5 gradi ad un minimo di 22.1 gradi. Anche questo movimento avviene molto lentamente e ha un periodo di circa 41000 anni. Cosa comporta questo moto? Se ci pensiamo, proprio a causa dell’inclinazione dell’asse, durante il suo moto, uno degli emisferi della Terra sarà più vicino al Sole in un punto e più lontano nel punto opposto dell’orbita. Questo contribuisce notevolmente alle stagioni. L’emisfero più vicino avrà più ore di luce e meno di buio oltre ad avere un’inclinazione diversa per i raggi solari che lo colpiscono. Come è evidente, insieme alla distanza relativa della Terra dal Sole, la variazione dell’asse contribuisce in modo determinante all’alternanza estate-inverno. La variazione dell’angolo di inclinazione dell’asse può dunque, con periodi lunghi, influire sull’intensità delle stagioni.

Finito qui? Non ancora. Come detto e ridetto, la Terra si muove su un orbita ellittica intorno al Sole. Uno dei parametri matematici che si usa per descrivere un’ellisse è l’eccentricità, cioè una stima, detto molto semplicemente, dello schiacciamento dell’ellisse rispetto alla circonferenza. Che significa? Senza richiamare formule, e per non appesantire il discorso, immaginate di avere una circonferenza. Se adesso “stirate” la circonferenza prendendo due punti simmetrici ottenete un’ellisse. Bene, l’eccentricità rappresenta proprio una stima di quanto avete tirato la circonferenza. Ovviamente, eccentricità zero significa avere una circonferenza. Più è alta l’eccentricità, maggiore sarà l’allungamento dell’ellisse.

Tornando alla Terra, poiché l’orbita è un’ellisse, possiamo descrivere la sua forma utilizzando l’eccentricità. Questo valore però non è costante nel tempo, ma oscilla tra un massimo e un minimo che, per essere precisi, valgono 0,0018 e 0,06. Semplificando molto il discorso, nel tempo l’orbita della Terra oscilla tra qualcosa più o meno simile ad una circonferenza. Anche in questo caso, si tratta di moti millenari a lungo periodo ed infatti il moto di variazione dell’eccentricità (massimo-minimo-massimo) avviene in circa 92000 anni. Cosa comporta questo? Beh, se teniamo conto che il Sole occupa uno dei fuochi e questi coincidono nella circonferenza con il centro, ci rendiamo subito conto che a causa di questa variazione, la distanza Terra-Sole, e dunque l’irraggiamento, varia nel tempo seguendo questo movimento.

A questo punto, abbiamo analizzato tutti i movimenti principali che la Terra compie nel tempo. Per affrontare questo discorso, siamo partiti dalla domanda iniziale che riguardava l’ipotetica connessione tra periodi di glaciazione sulla Terra e i moti a lungo periodo. Come sappiamo, nel corso delle ere geologiche si sono susseguiti diversi periodi di glaciazione sul nostro pianeta, che hanno portato allo scioglimento dei ghiacci perenni e all’innalzamento del livello dei mari. Studiando i reperti e la quantità di CO2 negli strati di ghiaccio, si può notare una certa regolarità dei periodi di glaciazione, indicati anche nella pagina specifica di wikipedia:

Wiki, cronologia delle glaciazioni

Come è facile pensare, molto probabilmente ci sarà una correlazione tra i diversi movimenti della Terra e l’arrivo di periodi di glaciazione più o meno intensi, effetto noto come “Cicli di Milanković”. Perché dico “probabilmente”? Come visto nell’articolo, i movimenti in questione sono diversi e con periodi più o meno lunghi. In questo contesto, è difficile identificare con precisione il singolo contributo ma quello che si osserva è una sovrapposizione degli effetti che producono eventi più o meno intensi.

Se confrontiamo i moti appena studiati con l’alternanza delle glaciazioni, otteniamo un grafico di questo tipo:

Relazione tra i periodi dei movimenti della Terra e le glaciazioni conosciute

Relazione tra i periodi dei movimenti della Terra e le glaciazioni conosciute

Come si vede, è possibile identificare una certa regolarità negli eventi ma, quando sovrapponiamo effetti con periodi molto lunghi e diversi, otteniamo sistematicamente qualcosa con periodo ancora più lungo. Effetto dovuto proprio alle diverse configurazioni temporali che si possono ottenere. Ora, cercare di trovare un modello matematico che prenda nell’insieme tutti i moti e li correli con le variazioni climatiche non è cosa banale e, anche se sembra strano da pensare, gli eventi che abbiamo non rappresentano un campione significativo sul quale ragionare statisticamente. Detto questo, e per rispondere alla domanda iniziale, c’è una relazione tra i movimenti della Terra e le variazioni climatiche ma un modello preciso che tenga conto di ogni causa e la pesi in modo adeguato in relazione alle altre, non è ancora stato definito. Questo ovviamente non esclude in futuro di poter avere una teoria formalizzata basata anche su future osservazioni e sull’incremento della precisione di quello che già conosciamo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’universo e’ stabile, instabile o meta-stabile?

25 Mar

Negli ultimi articoli, complici anche i tantissimi commenti e domande fatte, siamo tornati a parlare di ricerca e delle ultime misure scientifiche che tanto hanno fatto discutere. Come fatto notare pero’, molto spesso, queste discussioni che dovrebbero essere squisitamente scientifiche lasciano adito ad articoli su giornali, anche a diffusione nazionale, che male intendono o approfittano del clamore per sparare sentenze senza senso e, lasciatemelo dire, assolutamente fuori luogo.

In particole, nell’articolo precedente, abbiamo discusso l’ultima misura della massa del quark top ottenuta mediante la collaborazione dei fisici di LHC e del Tevetron. Questo risultato e’ il piu’ preciso mai ottenuto prima e ci consente, di volta in volta, di migliorare la nostra conoscenza, come spesso ripeto, sempre troppo risicata e assolutamente lontana dalla comprensione del tutto.

Per discutere la misura della massa del top, siamo partiti da una notizia apparsa sui giornali che parlava di un universo pronto a dissolversi da un istante all’altro. Premesso che, come fatto notare, questa notizia era completamente campata in aria, su suggerimento di una nostra cara lettrice, ci e’ stato chiesto di discutere con maggior dettaglio quello che molti chiamano il destino ultimo del nostro universo. Come forse avrete sentito, su alcune fonti si parla spesso di universo stabile, instabile o meta-stabile farfugliando, nel vero senso della parola, come questa particolarita’ sia legata alla massa di qualche particella.

Cerchiamo dunque di spiegare questo importante e non banale concetto cercando sempre di mantenere un approccio quanto possibile divulgativo.

Per prima cosa, dobbiamo tornare a parlare del bosone di Higgs. Come forse ricorderete, in un articolo specifico:

Bosone di Higgs, ma che sarebbe? 

abbiamo gia’ affrontato la sua scoperta, cercando in particolare di spiegare il perche’ l’evidenza di questa particella sarebbe cosi’ importnate nell’ambito del modello standard e della fisica delle alte energie. Come fatto notare pero’, anche in questo caso, parliamo ancora di “evidenza” e non di “scoperta”. Visto che me lo avete chiesto direttamente, ci tengo a sottolineare questa importante differenza.

Come sapete, la fisica e’ detta una “scienza esatta”. Il motivo di questa definizione e’ alquanto semplice: la fisica non e’ esatta perche’ basata su informazioni infinitamente esatte, ma perche’ ogni misura e’ accompagnata sempre da un’incertezza esattamente quantificata. Questa incertezza, e’ quella che comunemente viene chiamato “errore”, cioe’ il grado di confidenza statistico che si ha su un determinato valore. Per poter parlare di evidenza, e’ necessario che la probabilita’ di essersi sbagliati sia inferiore di un certo valore, ovviamente molto basso. Per poter invece gridare alla scoperta, la probabiita’ statistica che quanto misurato sia un errore deve essere ancora piu’ bassa. Questo grado di confidenza, ripeto prettamente statistico, e’ quello che spesso sentiamo valutare riferendosi alla “sigma” o “all’incertezza”.

Bene, tornando al bosone di Higgs, perche’ si dice che ancora non c’e’ la sicurezza che quanto osservato sia proprio quell’Higgs che cerchiamo? Semplice, il grado di confidenza, non ci consente ancora di poter affermare con sicurezza statistica che la particella osservata sia proprio il bosone di Higgs che cerchiamo e non “un” bosone di Higgs o un’altra particella. Come ormai sappiamo, il bosone di Higgs tanto cercato e’ proprio quello relativo al campo di Higgs che determina la massa delle particelle. Per poter essere quel bosone, la particella deve essere, in particolare, scalare e con spin zero. Che significa? Praticamente, queste sono le caratteristiche che definiscono l’identikit dell’Higgs che cerchiamo. Se per quanto riguarda il fatto di essere scalare siamo convinti, per lo spin della particella, dal momento che decade in due fotoni, potrebbe avere spin 0 o 2. Per poter essere sicuri che lo spin sia proprio zero, sara’ necessario raccogliere ancora piu’ dati per determinare con sicurezza questa proprieta’ anche se statisticamente possiamo escludere con una certa incetezza che lo spin sia 2.

Detto questo, e supposto, con una buona confidenza statistica, che quanto trovato sia proprio il bosone di Higgs, sappiamo che la massa trovata per questa particella e’ 125.6 GeV con un un’incertezza totale di 0.4 GeV. Questo valore della massa ha pero’ aperto le porte per una discussione teorica molto accesa e di cui si inizia a parlare anche sui giornali non prettamente scientifici.

Perche’?

Come anticipato, la massa del bosone di Higgs determina la condizione di stabilita’ o instabilita’ del nostro universo. Perche’ proprio l’Higgs? Ovviamente, questo bosone e’ correlato con il campo scalare di Higgs, cioe’ quello che assegna la massa delle particelle. Ora pero’, nel modello standard, troviamo particelle che hanno masse anche molto diverse tra loro. Se osserviamo i quark, passiamo dall’up, il piu’ leggero, al top, il piu’ pesante, con una differenza di massa veramente enorme per particelle che appartengono alla stessa “famiglia”. Detto questo, per determinare la condizione di equilibrio, e tra poco spiegheremo cosa significa, del nostro universo, e’ possibile ragionare considerando proprio le masse dell’Higgs e del top.

In che modo?

Senza spendere troppe parole, vi mostro un grafico molto significativo:

 

Stabilita' dell'universo data dalla correlazione delle masse Top-Higgs

Stabilita’ dell’universo data dalla correlazione delle masse Top-Higgs

Cosa significa questo grafico? Come potete vedere, incrociando il valore della massa del top con quella dell’Higgs e’ possibile capire in quale zona ci troviamo, appunto: stabile, instabile o meta-stabile. Scientificamente, queste sono le condizioni in cui puo’ trovarsi quello che e’ definito vuoto quantomeccanico dell’universo. Se l’universo fosse instabile, allora sarebbe transitato in una successione di stati diversi senza poter formare strutture complesse dovute all’evoluzione. Come potete facilmente capire, in questo caso, noi oggi non saremo qui ad interrogarci su come e’ fatto l’universo dal momento che non avremmo avuto neanche la possibilita’ di fare la nostra comparsa. In caso di universo stabile invece, come il termine stesso suggerisce, tutto rimane in uno stato stazionario senza grosse modificazioni. Meta-stabile invece cosa significa? Questo e’ un termine ricavato direttamente dalla termodinamica. Detto molto semplicemente, un sistema meta-stabile si trova in una posizione di minimo di energia non assoluto. Cioe’? Detto in altri termini, il sistema e’ in uno stato di equilibrio, ma sotto particolari condizioni puo’ uscire da questo stato e scendere verso qualcosa di piu’ stabile ancora. Per capirlo meglio, immaginate di mettere una scodella sul pavimento con dentro una pallina. Se muovete di poco la pallina questa oscillera’ e ricadra’ sul fondo, posizione di equilibrio meta-stabile. Se date un colpo piu’ forte, la pallina uscira’ dalla scodella e andra’ sul pavimento. A questo punto pero’ il vostro sistema immaginario ha raggiunto la posizione piu’ stabile.

Ora, capite bene quanto sia importante e interessante capire che tipo di sistema e’ il nostro universo per determinare eventuali e future evoluzioni temporali che potrebbero avvenire. Come visto nel grafico precedente, per capire lo stato dell’universo possiamo valutare le masse del top e dell’Higgs.

Cosa otteniamo con i valori delle masse oggi conosciuti? Come potete vedere, come per un simpatico scherzo, la massa dell’Higgs ci posizione proprio nella strettissima zona di meta-stabilita’ del nostro universo. Come anticipato, il fatto di non essere nella zona di instabilita’ e’ assolutamente comprensibile pensando al fatto che noi oggi siamo qui. Certo, una massa superiore a 126 GeV ci avrebbe piazzato nella zona stabile dove, come si dice nelle favole, “vissero felici e contenti”. Cosa comporta il fatto di essere nella regione di meta-stabilita’? Come qualcuno, incurante della scienza, cerca di farvi credere, siamo in bilico su una corda. Il nostro universo da un momento all’altro potrebbe transitare verso uno stato piu’ stabile modificando radicalmente le proprieta’ del vuoto quantomeccanico. In questo caso, il nostro universo collasserebbe e segnebbe la nostra fine.

E’ vero questo?

Assolutamente no. Prima di tutto, cerchiamo di ragionare. Come detto, la massa attuale del bosone di Higgs e’ 125.6+/-0.4 GeV. Questo significa che entro una certa probabilita’, piu’ del 15%, la massa del bosone potrebbe essere maggiore di 126 GeV. In questo caso la misura sarebbe pienamente della regione “stabile” dell’universo. Ovviamente, per poter determinare con precisione questo valore e’ necessario ridurre l’incertezza che accompagna la misura in modo da “stringere” l’intervallo entro cui potrebbe essere compresa questa massa.

Se anche l’universo fosse in uno stato meta-stabile, non possiamo certo pensare che da un momento all’altro questo potrebbe uscire dallo stato di equilibrio e transitare verso altro se non in particolari condizioni. Vi ripeto nuovamente come in questo caso ci stiamo muovendo all’interno di ragionamenti prettamente teorici in cui gli stessi principi della fisica che oggi conosciamo potrebbero non essere validi. Secondo alcuni infatti, la stessa evoluzione dell’universo che ha portato oggi fino a noi potrebbe essere stata possibile proprio grazie alla natura meta-stabile del vuoto quantomeccanico.

Come ricorderete, in questi articoli:

Universo: foto da piccolo

Ascoltate finalmente le onde gravitazionali?

cosi’ come in tutti quelli richiamati a loro volta, abbiamo parlato dell’inflazione, cioe’ di quel particolare periodo nell’evoluzione dell’universo che ha portato ad una notevole espansione in tempi brevissimi. Conseguenza dell’inflazione e’ l’avere un universo omogeneo ed isotropo ed in cui le fluttuazione della radiazione di fondo sono molto ridotte. Bene, il bosone di Higgs potrebbe avere avuto un ruolo decisivo per l’innesco del periodo inflazionario. Secondo alcune teorie, infatti, le condizioni fisiche per poter accendere l’inflazione potrebbero essere state date da una particella scalare e l’Higgs potrebbe appunto essere questa particella. Se proprio devo aprire una parentesi, per poter affermare con sicurezza questa cosa, dobbiamo essere sicuri che la fisica che conosciamo oggi possa essere applicata anche in quella particolare fase dell’universo, cioe’ che i modelli attualmente conosciuti possano essere estrapolati a quella che viene comunemente definita massa di Planck dove tutte le forze fondamentali si riunificano. Ovviamente, per poter affermare con sicurezza queste teorie sono necessarie ancora molte ricerche per determinare tutti i tasselli che ancora mancano a questo puzzle.

Seguendo questa chiave di lettura, il fatto di essere in un universo meta-stabile, piu’ che un rischio potrebbe essere stata proprio la caratteristica che ha permesso l’evoluzione che poi ha portato fino ai giorni nostri, con la razza umana presente sulla Terra.

Altro aspetto curioso e importante della meta-stabilita’ dell’universo e’ la possibilita’ di includere i cosiddetti multiversi. Detto molto semplicemente, il fatto che l’universo sia meta-stabile apre gli scenari ad una serie di universi paralleli tutti uno di seguito all’altro caratterizzati da valori continui di alcuni parametri fisici. Non si tratta di racconti fantascientifici o di fantasia ma di vere e proprie teorie fisiche riguardanti il nostro universo.

Concludendo, la scoperta, o l’evidenza, del bosone di Higgs e’ stata sicuramente un ottimo risultato raggiunto dalla fisica delle alte energie, ma certamente non un punto di arrivo. La misura, ancora solo preliminare, della massa della particella apre le porte a scenari di nuova fisica o di considerazioni molto importanti circa la natura del nostro stesso universo. Come visto in questo articolo, quelli che apparentemente potrebbero sembrare campi del sapere completamente diversi e lontani, l’infinitamente piccolo e l’infinitamente grande, sono in realta’ correlati tra loro proprio da singole misure, come quella della massa dell’Higgs. A questo punto, capite bene come lo scneario si fa sempre piu’ interessante e sara’ necessario fare ancora nuove ricerche prima di arrivare a qualcosa di certo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’universo che si dissolve “improvvisamente”

21 Mar

Nella sezione:

Hai domande o dubbi?

una nostra cara lettrice ci ha chiesto lumi su una notizia apparsa in questi giorni sui giornali che l’ha lasciata, giustamente dico io, un po’ perplessa. La notizia in questione riguarda l’annuncio fatto solo pochi giorni fa della nuova misura della massa del quark top.

Perche’ questa notizia avrebbe suscitato tanto clamore?

Senza dirvi nulla, vi riporto un estratto preso non da un giornale qualsiasi, che comunque a loro volta hanno copiato da qui, ma dalla principale agenzia di stampa italiana:

Il più pesante dei mattoni della materia, il quark top, ha una misura più precisa e la sua massa, con quella del bosone di Higgs, potrebbe essere la chiave per capire se viviamo in un universo instabile, al punto di dissolversi improvvisamente.

Universo che si dissolve “improvvisamente”?

Vi giuro che vorrei mettermi a piangere. Solo pochi giorni fa abbiamo parlato di tutte quelle cavolate sparate dopo l’annuncio della misura di Bicep-2:

Ascoltate finalmente le onde gravitazionali?

Due notizie cosi’ importanti dal punto di vista scientifico accompagnate da sensazionalismo catastrofista nella stessa settimana sono davvero un duro colpo al cuore.

Al solito, e come nostra abitudine, proviamo a spiegare meglio l’importanza della misura ma, soprattutto, cerchiamo di capire cosa dice la scienza contrapposto a quello che hanno capito i giornali.

In diversi articoli abbiamo parlato di modello standard discutendo la struttura della materia che ci circonda e, soprattutto, presentando quelle che per noi, ad oggi, sono le particelle fondamentali, cioe’ i mattoni piu’ piccoli che conosciamo:

Due parole sull’antimateria

Piccolo approfondimento sulla materia strana

Bosone di Higgs …. ma che sarebbe?

Se ci concentriamo sui quark, vediamo che ci sono 6 componenti che, come noto, sono: up, down, strange, charm, bottom e top. Come gia’ discusso, i primi due, up e down, sono quelli che formano a loro volta protoni e neutroni, cioe’ le particelle che poi formano i nuclei atomici, dunque la materia che ci circonda.

Bene, il quark top e’ il piu’ pesante di questi oltre ad essere l’ultimo ad essere stato scoperto. Il primo annuncio di decadimenti con formazione di quark top e’ stato fatto nel 1995 grazie alla combinazione dei risultati di due importanti esperimenti del Fermi National Accelerator Laboratory di Batavia, nei pressi di Chicago. A questi esperimenti, oggi in dismissione, ma la cui analisi dei dati raccolti e’ ancora in corso, partecipavano e partecipano tuttora moltissimi fisici italiani dell’Istituto Nazionale di Fisica Nucleare.

La cosa piu’ sorprendente del quark top e’ la sua enorme massa, circa 170 GeV, che lo rende la particella elementare piu’ pesante mai trovata. Per darvi un’idea, il top e’ circa 180 volte piu’ pesante di un protone con una massa paragonabile a quella di un atomo di oro nel suo complesso. Il perche’ di una massa cosi’ elevata e’ una delle chiavi per capire i meccanismi che avvengono a livello microscopico e che, come e’ normale pensare, determinano il comportamento stesso del nostro universo.

Bene, cosa e’ successo in questi giorni?

Come avete letto, nel corso della conferenza:

Rencontres de Moriond

che si svolge annualmente a La Thuille in Val d’Aosta, e’ stata presentata una nuova misura della massa del quark top. Prima cosa importante da dire e’ che la misura in questione viene da una stretta collaborazione tra i fisici di LHC e quelli che analizzano i dati del Tevatron, cioe’ il collissore dove nel 1995 fu scoperto proprio il top. Queste due macchine sono le uniche al mondo, grazie alla grande energia con cui vengono fatti scontrare i fasci, in grado di produrre particelle pesanti come il quark top.

Dalla misurazione congiunta di LHC e Tevatron e’ stato possibile migliorare notevolmente l’incertezza sulla massa del top, arrivando ad un valore molto piu’ preciso rispetto a quello conosciuto fino a qualche anno fa.

Cosa comporta avere un valore piu’ preciso?

Come potete immaginare, conoscere meglio il valore di questo parametro ci consente di capire meglio i meccanismi che avvengono a livello microscopico tra le particelle. Come discusso parlando del bosone di Higgs, il ruolo di questa particella, e soprattutto del campo scalare ad essa associato, e’ proprio quello di giustificare il conferimento della massa. Se il  top ha una massa cosi’ elevata rispetto agli altri quark, il suo meccanismo di interazione con il campo di Higgs deve essere molto piu’ intenso. Inoltre, il quark top viene prodotto da interazioni forti, ma decade con canali deboli soprattutto producendo bosoni W. Non sto assolutamente cercando di confondervi. Come visto negli articoli precedenti, il W e’ uno dei bosoni messaggeri che trasportano l’interazione debole e che e’ stato scoperto da Carlo Rubbia al CERN. Detto questo, capite come conoscere con precisione la massa del top, significhi capire meglio i meccanismi che avvengono tra top, W e campo di Higgs. In ultima analisi, la conoscenza di questi modelli e’ fondamentale per capire perche’, durante l’evoluzione dell’universo, si sono formate particelle cosi’ pesanti ma anche per capire se esistono meccanismi di decadimento non ancora considerati o anche effetti, come vengono definiti, di nuova fisica che possono mettere in discussione o integrare il modello standard delle particelle.

Concludendo, la spiegazione della frase “universo che si dissolve improvvisamente” non significa nulla. Una misura piu’ precisa della massa del top implica una migliore conoscenza dei modelli ora utilizzati e soprattutto apre le porte per capire meglio cosa e’ avvenuto durante durante i primi istanti di vita dell’universo. Al solito pero’, anche sulla scia del tanto citato annuncio di Bicep-2, si e’ ben pensato di sfruttare l’occasione e trasformare anche questa importante notizia in un teatrino catastrofista. Per chi interessato ad approfondire, vi riporto anche il link di ArXiv in cui leggere l’articolo della misura in questione:

ArXiv, quark top

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Ancora sulla fusione fredda

4 Ago

Eccoci qui, tornati dalle vacanze, e pronti a ricominciare di nuovo con il blog. In questo contesto, il “ricominciare” suona quanto mai azzeccato, proprio per l’argomento che vogliamo andare a trattare in questo post.

In una discussione del forum, che per chi lo avesse perso e’ sempre disponibile a questo indirizzo:

Psicosi, forum

e’ stato richiamato in causa il discorso E-Cat di Rossi ed i relativi fenomeni LENR, cioe’ le reazioni nucleari a bassa energia.

Di questo argomento avevamo parlato in dettaglio in questo articolo:

E-cat meraviglia o grande bufala?

Come visto, l’occasione per parlare di questo argomento era venuta quando molti siti internet avevano parlato finalmente della prova indipendente fatta da scienziati. Come sapete bene, non per essere fondamentalista della scienza ne’ tantomeno per denigrare qualcuno senza i presupposti, ad oggi, non vi e’ nessun test indipendente, ma soprattutto fatto seguendo i criteri del metodo scientifico, che mostri la veridicita’ di quanto affermato dall’inventore dell’E-Cat.

Nel post precedente, avevamo visto come la presunta prova indipendente, in realta’ tanto indipendente non lo era. Prima di tutto, dobbiamo rimarcare il fatto che l’articolo successivamente pubblicato non aveva passato nessuna procedura di “peer review”, essendo un paper pubblicato su ArXiv, cioe’ sul database della Cornell University. Come evidenziato, non voglio criticare gli scienziati intervenuti alla dimostrazione, conoscendone personalmente due, ma le tante voci apparse su internet non sono in realta’ veritiere rispetto a quanto accaduto.

L’aspetto fondamentale da tenere a mente e’ che gli scienziati dell’Universita’ di Uppsala in Svezia, non hanno eseguito personalmente il test sull’E-Cat, ma si sono limitati al ruolo di spettatori. Il sistema, cosi’ come era preparato, presentava molte parti oscure paragonabili a scatole nere. Anche la misurazione del calore eseguita mediante termocamera, presenta delle incertezze della misura non facilmente preventivabili e che possono falsare notevolmente il risultato finale.

Detto questo, nell’articolo di ArXix, che potete leggere a questo link gia’ riportato nel precedente articolo:

ArXiV Uppsala

si evidenzia come, “dai dati osservati”, la quantita’ di calore prodotta dal macchinario fosse notevolmente superiore a quella di una qualsiasi reazione chimica, cosa che farebbe pensare ad una reazione di tipo nucleare.

Come visto nel precedente post, quali sono le critiche che avevamo mosso? Se si trattasse di reazione nucleare, ci dovrebbe essere emissione di una qualche forma di radiazione, in realta’ non osservata. I ricercatori non hanno assistito alla preparazione del combustibile, cioe’ della miscela Idrogeno-Nichel piu’ catalizzatore, preparata in precedenza da Rossi. Il rame prodotto, che e’ quello che farebbe pensare ad una fusione, non presentava percentuali di isotopi diversi rispetto al rame comunemente commerciale. Detto con un po’ di malignita’, quel rame potrebbe essere stato comprato e messo nella camera solo per far pensare ad un fenomeno di fusione.

Senza ripercorrere le conclusioni che abbiamo raggiunto nel precedente articolo, il nostro punto di vista e’ abbastanza scettico. Non voglio demonizzare i fenomeni LENR pero’, in assenza di prove scientifiche che dimostrino l’esistenza di queste reazioni, e’ difficile da mandare giu’, o megio credere, a questo risultato. Ovviamente, molti alzano gli scudi e parlano di segreto industriale da mantenere. Proprio in virtu’ di questo aspetto, viene mantenuto il segreto sulla preparazione del combustibile e su alcune parti fondamentale dell’apparato. Bene, se anche fosse vero questo, allora non si puo’ pretendere di “credere” all’E-Cat. Quando ci sara’ questa fantomatica versione comerciale, che vi ricordo aspettiamo da anni, allora diremo che la cosa e’ possibile. Scientificamente, non possiamo “credere” a qualcosa, c’e’ bisogno di prove.

Detto questo, solo pochi giorni fa, la greca Defkalion, un tempo ditta collaboratrice di Rossi, ha mandato in diretta streaming una nuova dimostrazione di un dispositivo molto simile all’E-Cat, l’R5. Le differenze fondamentali tra i due sistemi sarebbero nella temperatura di esercizio e nella pressione richiesta in camera. Per il resto, il principio di “funzionamento” sarebbe lo stesso.

Potete vedere lo streaming a questo indirizzo:

Streaming Defkalion

Vi premetto subito che lo streaming e’ stato seguito anche da una platea di addetti ai lavori della conferenza ICCF-18 sulla fusione fredda. Come al solito, nell’esperimento si mostrava un sistema in grado di produrre molta piu’ energia di quella assorbita. Come potete facilmente immaginare pero’, in seguito alla diretta, sono piovute decine di domande dagli esperti della conferenza sui metodi di misurazione del calore, sulle parti, come al solito, tenute nascoste, sul combustibile utilizzato, ecc. Ovviamente, domande che non hanno avuto una risposta. Per essere sinceri, la Defkalion ha dato delle risposte sommarie tramite un’intervista, ma poi si e’ limitata a dire che l’esperimento non era un vero test di funzionamento, bensi’ una mera dimostrazione sul sistema utilizzato. Al solito, tanto fumo e assolutamente niente arrosto.

Prima di concludere, vorrei pero’ tornare sul discorso E-Cat e Universita’ di Uppsala. Sulla rete gira la notizia, assolutamente non confermata, che Rossi sarebbe pronto a costruire una centrale da 1MW utilizzando il suo E-Cat. Personalmente, la cosa mi farebbe immensamente piacere. Come detto in precedenza, capisco molto bene, anche da scienziato, l’anima commerciale della cosa. Proprio per questo motivo, aspetto ansiosamente, ormai da troppo tempo, un qualcosa di commerciale da vedere, studiare e, ovviamente, comprare.

A seguito dell’articolo di ArXiv, ne e’ stato pubblicato un altro, sempre nello stesso archivio, di risposta alle osservazioni sul test di Rossi. Ecco il link all’articolo:

ArXiv, commento

Questi articoli sono tutti liberamente scaricabili e leggibili anche senza abbonamento. Come potete vedere, anche questo articolo e’ a firma di due ricercatori dell’Universita’ di Uppsala,i professori Ericsson e Pomp. Mentre nel primo articolo i ricercatori coinvolti erano esperti di campi diversi, fisica sperimentale, teorica, radioprotezione, ecc, Ericsson e Pomp sono due professori di fisica nucleare.

Nell’articolo vengono mosse pesanti critiche al primo report, non solo per la preparazione specifica dei ricercatori coinvolti nel primo test ma anche per il fatto che due di questi scienziati conoscono personalmente Rossi, hanno partecipato a diversi test e in passato hanno espresso apprezzamenti sull’E-cat. Certo, se vogliamo parlare di “risultato indipendente”, queste evidenze farebbero mal pensare pero’, ragionandoci su, immaginate questo scenario: avete costruito una macchina strabiliante con risultati eccezionali, avete bisogno di un risultato indipendente, a chi vi rivolgereste? Sicuramente la prima scelta ricadrebbe su qualcuno che conoscete. Personalmente, la cosa non mi scandalizza piu’ di tanto. Essendo poi tutti i ricercatori della stessa universita’, non vorrei ci fossero attriti pregressi che hanno spinto a questa diatriba.

Tolto il gossip scientifico, che non interessa a questo blog, ragioniamo invece sul discorso scienza. L’articolo di Ericsson e Pomp, muove esattamente le stesse critiche al sistema e alla prova che avevamo fatto noi nell’articolo precedente. In particolare, si evidenzia l’assoluta mancanza di uno schema elettrico, della preparazione del campione, dei cavi connessi al sistema per evitare che ci siamo linee secondarie di alimentazione non considerate. Soprattutto, viene discussa la possibilita’ di errore sperimentale nella misura del calore attraverso la termocamera e la frazione di isotopi di rame prodotti, oltre ovviamente alla mancanza di radiazione emessa.

Detto questo, capite bene che non stiamo muovendo un’accusa gratuita nei confronti di Rossi, ci stiamo limitando ad analizzare i fatti. Al momento, non si sono prove della veridicita’ delle affermazioni fatte. Ci mettiamo una pietra sopra? Assolutamente no, la scienza insegna ad essere aperti di mente. Se, un giorno, ci trovassimo tra le mani un E-cat che assorbe un’energia X e ne produce in uscita X per un coefficiente maggiore di 1, ben venga il risultato estremamente importante per la societa’. Fino a questo punto pero’, parlare di E-Cat, Rossi, LENR, ecc, e’ paragonabile a parlare di “fede”. Voglio crederci perche’ mi va. Benissimo. Pero’, signori miei, a tutti quelli che gestiscono pagine sull’argomento e che proclamano un complotto della scienza, non fate credere che ci siano prove sperimentali dei risultati perche’, come visto, di queste non vi e’ assolutamente traccia.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

1998 QE2 e la sua luna, considerazioni scientifiche

1 Giu

Solo ieri, e’ passato l’asteroide 1998 QE2, di cui avevamo parlato in questo post:

Grappoli di asteroidi in arrivo!

Come visto, questo era l’ultimo di una serie, precisamente quattro, di corpi celesti che sono passati in prossimita’ della Terra. Come spiegato nel’articolo, quando parliamo di “prossimita’”, non intendiamo assolutamente che ci sia il rischio che questi corpi possano impattare sulla Terra. Tra l’altro, 1998 QE2 che era il piu’ grande tra questi, e’ anche quello che e’ passato piu lontano, ben 5,8 milioni di Km, da noi. Solo per rispondere ad alcuni commenti fatti, ma soprattutto per rispondere alle tante teorie assurde che si leggono in rete, non vi era nessuna probabilita’ di collisione tra la Terra e 1998 QE2. In questi giorni sono comparsi su web, su siti davvero discutibili, molti articoli che parlavano di una probabilita’ elevata di collissione, dal momento che l’asteroide avrebbe potuto improvvisamente variare la sua orbita e puntare verso di noi. Premesso che il moto degli asteroidi, cosi’ come di tutti i corpi nell’universo, e’ regolato dalla forza gravitazionale, e’ assurdo pensare che cosi’ d’improvviso un corpo di questo tipo possa variare la sua direzione. Per fare questo, servirebbe una forza grande a piacere, ma soprattutto istantanea che compaia dal nulla vicino al corpo. Ora, se vogliamo credere che nell’universo possano spuntare pianeti, stelle e buchi neri da un secondo all’altro, allora dovremmo riscrivere i libri di fisica e di astronomia.

Premesso questo, la notizia piu’ interessante su 1998 QE2 e’ stata che in realta’ questo era un asteroide binario, cioe’ dotato anche di una sua Luna, cioe’ di un piccolo corpo orbitante intorno all’asteroide. Dal punto di vista scientifico, la notizia non ci deve assolutamente sorprendere. Secondo la teoria, molti di questi corpi potrebbero essere binari e addirittura arrivare ad avere anche fino a 2 lune. La spiegazione scientifica e’ molto semplice, durante il loro moto, questi corpi possono attirare, sempre mediante la loro attrazione gravitazionale, corpi minori che quindi vengono catturati ed entrano in orbita intorno a loro.

Per spiegare questo meccanismo di cattura in parole povere, cerchiamo di trovare qualche esempio di facile comprensione. Come sappiamo ciascun corpo dotato di massa, attira gli altri corpi mediante la forza gravitazionale. Questo e’ uno dei principi cardine della fisica, la teoria della gravitazione universale, formulata da Newton. Perche’ si chiama universale? Semplicemente perche’ questa e’ l’interazione che subisono tutti i corpi massivi, dalla mela che cade sulla Terra, ai pianeti che orbitano intorno al Sole o alle galassie che ruotano intorno al centro dell’universo. Tutto e’ regolato da questa legge.

Perche parlo di questo?

Nella sezione:

Hai domande o dubbi?

C’e’ stato un commento molto interessante proprio sulla luna di 1998 QE2. La domanda e’ molto semplice: come e’ possibile che la luna venga catturata e resti attaccata all’asteroide quando questo passa attraverso il sistema solare? In questo passaggio, ci sono i pianeti che sicuramente hanno una massa maggiore dell’asteroide e dunque dovrebbero strappare questa luna mediante la loro attrazione gravitazionale.

Questo commento, mi ha spinto a scrivere questo articolo piu’ scientifico, ma sempre cercando di mantenere un profilo divulgativo.

Detto questo, torniamo alla cattura della luna da parte dell’asteroide. Come anticipato, ciascun corpo dotato di massa attira altri corpi massivi, e dunque, a sua volta, viene attrato. Perche’ la mela cade sulla terra? Perche’ la terra la attrae con la sua forza gravitazionale. Da quanto detto, anche la mela attrae la terra, ma l’interazione e’ talmente debole che quella osservabile e’ solo quella del corpo piu’ grande verso quello piu’ piccolo.

Ora, per poter rispondere al commento, e’ necessario tirare fuori qualche formula e qualche numero, ma non vi spaventate.

La forza di attrazione gravitazionale esercitata tra due corpi dotati di massa puo’ essere scritta come:

F=G x m1 x m2/(r^2)

Dove F e’ la forza, ripeto solo attrattiva, m1 e m2 sono le masse dei corpi in questione, r e’ la distanza tra i corpi e G e’ la cosiddetta costante di gravitazione universale. Ora, come vedete, la forza e’ direttamente proporzionale alle masse e inversamente proporzionale al quadrato della distanza. Cosa significa? Se raddoppiate la massa, raddoppia la forza, ma se raddoppiate la distanza, la forza diventera’ 1/4 di quella precedente.

Ora, abbiamo tutti i dati per poter rispondere alla domanda iniziale. Per fare questo, non serve fare tutto il calcolo, basta vedere quale delle due forze e’ maggiore, cioe’ se l’attrazione dell’asteroide sulla sua luna e’ maggiore, ad esempio, di quella che esercita la Terra. Perche’ facciamo questo esempio? Come vedete dall’immagine:

L'orbita vicino alla Terra seguita da 1998 QE2

L’orbita vicino alla Terra seguita da 1998 QE2

L’asteroide e’ passato vicino alla Terra ad una distanza di 5,7 milioni di Km e, come chiaro dalla figura, molto piu’ vicino alla Terra che agli altri pianeti e al sole. Detto questo, possiamo suppore che la forza maggiore sarebbe quella esercitata dalla Terra.

Bene, per facilitare il calcolo, stimiamo il rapporto tra la forza di 1998 QE2, F(QE), rispetto a quella della Terra, F(T), sulla piccola luna dell’asteroide. Dalle formule viste, otteniamo:

F(QE)/F(T)= [m(QE)/m(T)] x [r(T)/r(QE)]^2

dove m(QE) e’ la massa di 1998 QE2, m(T) e’ la massa della Terra, r(QE) e’ la distanza tra 1998 QE2 e la sua luna e r(T) e’ la distanza tra la Terra e la luna di 1998 QE2. Notate che in questo modo abbiamo semplificato sia la costante che la massa della luna. Questo calcolo e’ possibile perche’ vogliamo fare un raffronto tra le due forze, non determinare in modo assoluto le singole componenti.

La massa della Terra vale 5,9 x 10^24 Kg, la distanza minima tra la Terra e 1998 QE2 e’ di 5,8 milioni di Km. Ovviamente possiamo supporre che la minima distanza tra la Terra e 1998 QE2 sia uguale alla distanza minima tra la Terra e la luna di 1998 QE2. Notate inoltre che per massimizzare l’effetto, stiamo prendendo come distanza quella minima di avvicinamento.

Ora, manca sia la massa di 1998 QE2 che la distanza con la sua Luna. Al momento, non e’ ancora stata stimata la massa dell’asteroide perche’ i dati sono stati raccolti al suo passaggio. Possiamo pero’, commettendo un errore sicuramente trascurabile, prendere una densita’ titpica degli asteroidi per stimare la sua massa. Se, ad esempio, prendiamo la densita’ di un altro corpo di cui abbiamo parlato tanto, Apophis, sappiamo che la densita’ e’ di 2,7 x 10^3 Kg/m^3. Il diametro di 1998 QE2 e’ di 2,7 Km, per cui abbiamo un volume di:

V(QE) = 4/3 pi r^3 = 10,3 Km^3 = 10,3 x 10^9 m^3

Come vedete, abbiamo per semplicita’ assunto che l’asteroide abbia una forma sferica. Ora, prendendo la densita’ di Apophis, possiamo stimare una massa di:

m(QE) = d(apophis) x V(QE) = 27,8 x 10^12 Kg

cioe’ circa 28 miliardi di tonnellate.

Anche per quanto riguarda la distanza tra 1998 QE2 e la sua Luna non ci sono ancora dati precisi. Questo pero’ non ci deve spaventare. Poiche’ dalle foto raccolte:

Le immagini da cui si e' evidenziata la presenza della luna per 1998 QE2

Le immagini da cui si e’ evidenziata la presenza della luna per 1998 QE2

si riesce a malapena a distinguere la luna, e considerando che il diametro massimo di 1998 QE2 e’ di 2,7 Km, possiamo esagerare e pensare che la distanza tra questi due corpi sia, ad esempio, di 1 Km. Ovviamente, questa distanza sara’ molto minore, ma nel nostro caso possiamo prendere il caso peggiorativo e considerare una distanza di 1 Km.

Bene, ora abbiamo tutti gli ingredienti per la nostra formula, sostituendo si ottiene:

F(QE)/F(T) = [27,8 x 10^12/5,9 x 10^24] x [5,8 x 10^6/1]^2 = 158

Cosa significa? Che nel caso peggiorativo, in cui abbiamo preso la minima distanza tra la Terra e 1998 QE2 e in cui abbiamo preso una distanza esagerata tra l’asteroide e la sua luna, l’attrazione esercitata dall’asteroide sulla sua luna e’ circa 160 volte maggiore di quella che esercita la Terra.

Perche’ otteniamo questo? Come evidenziato nella domanda iniziale, e’ vero che la massa della terra e’ molto maggiore di quella dell’asteroide, ma la distanza, che compare al quadrato, gioca un ruolo determinante. Detto in altri termini, in questo caso il termine fondamentale e’ quello della distanza, piuttosto che quello della massa.

Se ci pensiamo, questo risultato e’ normale. Se fosse vero il contrario, allora anche la nostra Luna dovrebbe essere strappata gravitazionalemente dal sole perche’ dotato di una massa molto maggiore di quella della Terra. In realta’, la nostra Luna e’ sempre al suo posto e tutti possiamo confermarlo.

Ultima considerazione. Prima di tutto, spero di non avervi procurato un mal di testa. Quello fatto e’ un calcolo numerico interessante, che ci ha consentito di fare qualche valutazione aggiuntiva sulla famosa luna di 1998 QE2. Notate una cosa fondamentale, in diversi punti, la massa dell’asteroide, la distanza dalla luna, ecc., abbiamo fatto delle considerazioni perche’ non conoscevamo i valori esatti di questi dati. Questo e’ quello che spesso viene fatto in fisica, si creano dei modelli e da questi si stimano parametri. Una teoria e’ tanto piu’ giusta quanto piu’ questa si avvicina alla realta’, cioe’ minore e’ l’errore che si commette passando attraverso queste approssimazioni. Ora, nel nostro caso, sicuramente ci possono essere delle variazioni rispetto ai numeri calcolati, ripensate ad esempio all’aver assunto l’asteroide sferico. Queste differenze cambiano il risultato finale? Assolutamente no. La stima fatta puo’ essere sbagliata, ad esempio, al 10, al 20%? E’ vero, ma abbiamo trovato una forza che e’ 160 volte maggiore dell’altra. Come si dice, l’errore commesso, inteso come incertezza di calcolo, e’ minore della stima che e’ stata fatta. Questo e’ il metodo di calcolo che si utilizza in fisica.

Concludendo, se siete riusciti ad arrivare fino a questo punto, abbiamo visto come e’ possibile che 1998 QE2 abbia ancora la sua luna dopo il passaggio nel sistema solare e soprattutto alla minima distanza dalla Terra. Questo e’ ovviamente un calcolo approssimato, dal momento che, oltre alle stime fatte, non sono stati valutati i contributi centrifughi al moto e altri parametri dinamici. Nel nostro caso questo non e’ necessario, l’importante e’ capire come funzionano questi calcoli, dal momento che, come detto, il moto di tutti i corpi dell’universo e’ basato sulla forza gravitazionale.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

E-Cat meraviglia o grande bufala?

30 Mag

Viste le numerose richieste di informazioni, chiarimenti e spiegazioni che ho ricevuto, ho deciso di scrivere questo articolo sull’E-Cat. Perche’ non l’ho fatto prima? Semplicemente perche’, a mio avviso, e ne riparleremo dopo, mancavano dei presupposti essenziali per parlare di questa presunta invenzione in termini scientifici.

Ora cosa e’ cambiato?

A parte le numerose richieste ricevute, la rete e’ letteralmente esplosa in questi giorni perche’ sembrerebbe che finalmente sia arrivata la dimostrazione indipendente del funzionamento di questo prodigio.

Bene, analizziamo i fatti e cerchiamo di capire meglio di cosa stiamo parlando.

Per chi non lo sapesse, l’E-Cat e’ una presunta invenzione di Andrea Rossi che produrrebbe energia in un modo non noto. Mi spiego meglio. Si tratta di una sorta di generatore, alimentato da corrente elettrica, che pero’ produce piu’ energia di quanta ne assorbe. E’ strano questo? Assolutamente no. Non pensate che si stia violando qualche principio fisico basilare, semplicemnte si potrebbe sfruttare una qualche reazione chimica, fisica o sconosciuta mediante la quale si innescano dei processi esoenergetici, cioe’ che producono energia.

Poiche’ questo punto e’ molto importante, cerchiamo di capirlo bene e in modo semplice. Prendiamo, ad esempio, la fissione nucleare. Mediante questo proceso, nuclei di elementi fissili vengono spaccati in elementi piu’ leggeri, mediante neutroni, producendo energia. Ora, per produrre i neutroni da sparare avete bisogno di energia, ma quella che otteete alla fine del processo e’ maggiore di quella che avete speso, perche’ siete riusciti ad estrarre un’energia dall’interno del nucleo. Avete creato qualcosa dal nulla? No, avete semplicemente sfruttato un processo per produrre questa energia traformandola in qualcosa di utilizzabile ai vostri scopi.

Bene, l’invenzione di Rossi dovrebbe fare un qualcosa di equivalente. L’invenzione promette infatti di produrre molta piu’ energia di quella che deve essere immessa, sfruttando un processo, almeno al mometo, sconosciuto.

Qual e’ il carburante dell’E-Cat? Piu’ o meno il sistema funziona in questo modo: mettendo insieme Nichel e Idrogeno e fornendo un’energia iniziale al sistema, si dovrebbe innescare una reazione fortemente esoenergetica, in cui viene prodotta 5 o 6 volte piu’ energia. Attenzione pero’, gli ingredienti non bastano. Per poter funzionare, c’e’ bisogno anche di un catalizzatore da aggiungere al miscuglio Ni-H, tenuto segreto per motivi di spionaggio industriale.

Perche’ spionaggio industriale? Semplice, parlando di E-Cat, non stiamo parlando di una ricerca scientifica, bensi’ di una invenzione che deve essere lanciata sul mercato. Detto in altri termini, che deve essere venduta.

Quasta cosa ci sconvolge? Assolutamente no. Chiunque di noi puo’ pensare ad un’invenzione commerciale fattta esclusivamente per guadagnare. Non c’e’ nulla di male in questo, purche’, come vedremo, ci siano tutti i presupposti di affidabilita’ dell’invenzione.

Per chi gia’ conoscesse l’E-Cat, notate che ho parlato di una misteriosa reazione. Su molti giornali e siti internet, vedete che si parla di “fusione fredda” o “reazione nucleare a bassa energia”, ho omesso appositamente di tirare in causa questi concetti. Perche’? La fusione nucleare e’ quel processo secondo il quale dei nuclei leggeri vengono fusi tra loro per produrne uno piu’ grande, producendo energia. Questa ‘e la reazione utilizzata dal sole e dalle stelle per produrre energia, ed e’ quella a cui si vorrebbe puntare per sostituire le centrali nucleari a fissione. Il motivo e’ molto semplice, favorevoli o meno al nucleare, il punto piu’ discusso su queste tematiche e’ quello della produzione di scorie, cioe’ elementi nucleari di scarto con vite medie lunghe, cioe’ che restano attivi per molto tempo.

Qual e’ il problema principale della fusione?

Come detto, si devono fondere tra loro due nuclei leggeri per formarne uno pesante. Bene, cosa c’e’ dentro il nucleo? Neutroni, particelle neutre, e protoni, particelle di carica positiva. Come sappiamo bene, se avviciniamo due cariche dello stesso segno, come i protoni dei due nuclei, questi si respingono tra loro a causa della repulsione coulombiana. Ora pero’, se riuscissimo ad avvicinare moltissimo i due nuclei, si arriverebbe ad un punto in cui la forza nucleare forte, che e’ attrattiva, sarebbe molto maggiore della repulsione dovuta alle cariche elettriche, e i due nuclei si attirerebbero tra loro. Niente di complicato. Mentre li avvicinate, i due nuclei si respingono, quindi dovete spingerli con forza per farli avvicinare. Quando poi riuscite ad arrivare oltre una certa distanza, nota come barriera di Coulomb, a questo punto i due nuclei si attirano da soli e si innesca la fusione. Il problema delle centrali a fusione e’ proprio quello di trovare il modo piu’ conveniente ed efficace per fornire l’energia necessaria al superamento della barriera di Coulomb.

E la fusione fredda?

Come detto, parlando di fusione si parla di processi ad altissima temperatura, come avviene nelle stelle. La fusione fredda invece avverrebbe a temperatura ambiente. Al contrario di quanto si legge spesso in rete, non esitono evidenze di reazioni di questo tipo. Storicamente, i primi a parlare di fusione fedda furono gli americani Fleischmann e Pons, cui seguirono altre prove. Per nessuna di queste pero’, esiste la certezza scientifica che si sia trattato realmente di una reazione nucleare di questo tipo e, ancora oggi, c’e una forte discussione a proposito.

Perche’ per l’E-Cat si parla di fusione fredda?

In diverse fonti si parla della reazione tra Nichel e Idrogeno che verrebbero fusi tra loro per produrre Rame. Questo sarebbe il processo che avverrebbe a bassa energia e che fornirebbe l’energia dell’E-Cat. Ripeto, non sono d’accordo su questo punto e a breve mostreremo anche il perche’.

Prima di tutto, rivediamo un po’ la storia di questo E-Cat. Nel 2011 si e’ iniziato a parlare di questo generatore quando Rossi ha condotto due test rendendo pubblici i risultati. In questi esperimenti, fornendo un’energia al macchinario intorno ai 35 KWh, si sarebbero prodotti in un caso 70 KWh, nell’altro 160 KWh. Stando ai numeri, la reazione sarebbe effettivamente esoenergetica e molto conveniente. Qual’era il problema di questi test? Semplicemente, non ci sono prove scientifiche della validita’ dei risultati perche’ il tutto e’ stato condotto in maniera autonoma e senza un confronto indipendente. Cosa significa? Ai test sono stati invitati giornalisti rigorosamente selezionati, in veste di spettatori. Mi spiego meglio. I giornalisti sono stati invitati in questo capannone e hanno potuto vedre e filmere il test di Rossi riportando solo ed esclusivamente quelllo che l’inventore del macchinario affermava.

Ora, vedetela in questo modo. Un signore vi invita ad una dimostrazione in cui vi mostra una scatola nera in cui mette 10 euro e dall’altra parte ne escono 20. Basta, non vi viene detto altro ne’ vi vengono forniti dettagli su cosa c’e’ dentro la scatola. Non parlo a caso di scatola nera, infatti, molte delle parti dell’apparecchiatura sono tenute coperte e chiuse alla vista. Ovviamente, si tratta dei componenti fondamentali del sistema, incluso anche il misterioso catalizzatore che darebbe il via alla reazione.

Cosa dice la scienza a proposito? Come e’ facile immaginare, questo risultato non e’ stato accettato dalla comunita’ scientifica. Per sostenere qualcosa di questo tipo, seguendo i canoni della scienza, si dovrebbe mostrare il macchinario, studiare la reazione che avviene e il tutto deve essere ripetibile ovunque nelle stesse condizioni. Se queste informazioni mancano, il test e’ del tutto simile a quello di un’illusionista che vi mostra l’assistente tagliata in due all’interno di una scatola.

Come forse sapete, a seguito di questi test, e del completo rifiuto della scienza su questi risultati, Rossi e’ divenuto un “mito telematico”, metafora di quel genio che trova l’invenzione del secolo per il bene dell’umanita’ e a cui la scienza mette i bastoni tra le ruote perche’ corrotta dalle grandi multinazionali.

Se invece di gridare allo scandalo, si ragionasse su quanto detto, tutti si renderebbero conto che affermazioni di questo tipo non possono essere credibili se non verificate sperimentalmente. Il problema energetico dell’umanita’ non si risolve con la fiducia sulla parola, ma con numeri chiari verificabili e indiscutibili.

Perche’ ora, come anticipato, si parla di verifica indipendente? Nei mesi scorsi sarebbero stati condotti altri test. Questa volta pero’, avrebbero partecipato anche scienziati di diverse parti del mondo che avrebbero assistito agli esperimenti. Anche in questo caso, i risultati avrebbero mostrato un guadagno energetico del processo, confermando dunque la correttezza del metodo su cui si basa l’E-Cat.

Attenzione, facciamo una considerazione. Come premesso, in ambito commerciale, e’ lecito parlare di segreto industriale. Le regole del commercio sono diverse da quelle della scienza. A mio avviso, se il tutto venisse mostrato ad un gruppo di scienziati affidabili ed in grado di fornire un’opinione scientifica, sicuramente il test acquisterebbe di credibilita’. Purtroppo, non e’ andata cosi’.

L’altro punto fondamentale su cui si e’ dibattuo a lungo e’ la mancanza di una “peer review” sull’esperimento. Cosa significa? Quando si pubblica un articolo su una qualche rivista internazionale, si passa attraverso il processo di “referaggio”. Prima di pubblicare il lavoro, la rivista nomina un altro ricercatore internazionale di chiara fama ed esperto del settore che ha il compito di analizzare in dettaglio il contenuto dell’articolo. Se ci sono punti poco chiari, l’esperto puo’ chiedere maggiori spiegazioni al fine di chiarire il tutto ed evitare, nella migliore delle ipotesi, errori sfuggiti agli autori. Solo al termine di questo processo il vostro lavoro, se accettato, viene pubblicato.

Partendo proprio da questo punto, gli ultimi test seguiti dal gruppo di scienziati avrebbero risolto anche questo problema.

Perche’?

Solo pochi giorni fa, e’ stato pubblicato un articolo sull’archivio della Cornell University, che trovate a questo link:

ArXiv E-Cat

A questo punto, tutti i dubbi iniziali dovrebbero essere risolti: il test e’ stato eseguito indipendentemente da un gruppo di ricercatori e questi hanno anche pubblicato un articolo, ovviamente confermando i risultati dei primi test.

Cosa c’e’ che non va?

Prima di tutto, quello di cui vi ho dato il link, non e’ un articolo su rivista internazionale che ha subito un processo di peer review. Il database in questione e’ semplicemente un archivio di articoli in cui i ricercatori possono mettere i loro lavori. Non c’e’ nessun controllo sul contenuto degli articoli, a parte la buona fede dei ricercatori stessi. Generalmente, almeno nel campo della fisica, i lavori vengono caricati su arXiv prima che questi vengano pubblicati sulle riviste, cioe’ mentre e’ in corso il processo di review. Detto questo, non e’ assolutamente risolto il problema del peer review per l’E-Cat.

Purtroppo, neanche la prima critica e’ stata risolta. Come potete leggere nel testo dell’articolo, non si e’ trattato assolutamente di una verifica indipendente, ma solo di uno spettacolino riservato a persone esperte del settore. Cosa significa? Nei primi test erano stati invitati dei giornalisti, ora dei ricercatori, ma lo svolgimento e’ stato esattamente lo stesso. I ricercatori non hanno potuto toccare nulla, ma si sono limitati a guardare il test condotto da Rossi nei suoi laboratori. Inoltre, molte delle parti del sistema su cui si era discusso, sono rimaste chiuse all’interno di scatole nere in cui era impossibile guardare dentro e, come e’ facile pensare, tra queste vi era anche il misterioso catalizzatore. L’articolo di cui stiamo parlando e’ dunque un insieme di osservazioni e considerazioni fatte dai ricercatori.

Cosa e’ cambiato rispetto al passato? Ovviamente, i ricercatori intervenuti hanno potuto misurare il calore in uscita mediante una termocamera, valutando in questo modo sia la potenza in uscita che quella in ingresso utilizzando sistemi elettrici. A parte al correttezza o meno di questo processo indiretto e della valutazione dell’incertezza ottenuta misurando la potenza con una termocamera, non  si e’ assolutamente trattato di una prova “indipendente”.

C’e’ anche qualche altra considerazione importante da fare. Come detto in precedenza, a mio avviso non si e’ trattato di fusione fredda. Un processo di questo tipo necessariamente producce radiazione in uscita. Effetto non riportato in nessun caso e impossibile da schermare in sistemi di questo tipo. Tra l’altro, conosco personalmente uno dei ricercatori intervenuti ed e’ un esperto di radioprotezione dell’Universita’ di Uppsala in Svezia.

Oltre a questo, la quantita’ d rame che si sarebbe prodotta corrisponderebbe ad un rendimento del sistema molto piu’ alto di quello che ci si aspetta e soprattutto il rame in questione sarebbe non eterogeneo, cioe’ mancano isotopi diversi dalla forma piu’ commerciale e abbondamente in natura.

Ulima considerazione scientifica, dal punto di vista energetico, la fusione di nichel e idrogeno sarebbe possibile e verrebbe prodotto rame, ma la barriera coulombiana per questi nuclei e’ elevatissima. Questo solo per dire che un processo del genere a bassa energia e’ scientificamente molto difficile da digerire. Teoricamente si potrebbe citare l’effetto tunnel, ma questo non spiegherebbe neanche la certezza della reazione di fusione cosi’ come altri processi quantistici non deterministici.

Concludendo, alla luce delle considerazioni fatte e degli ultimi aggiornamenti, non pssiamo assolutamente affermare che l’E-Cat sia un sistema reale e che possa essere accettato dalla scienza. Questo non significa che potrebbe esistere questo generatore in grado di fare quello che Rossi promette. Semplicemente, se anche esistesse, non e’ comprensibile la reazione su cui sarebbe basato e soprattutto mancano dati certi su cui ragionare e da cui estrarre certezze scientifiche. Al momento, almeno secondo me, siamo ancora al livello dll’illusionista che taglia l’assistente con la sega.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Il Muos di Niscemi

2 Apr

Diversi lettori del blog mi hanno scritto per chiedere il mio punto di vista sul sistema MUOS la cui costruzione era prevista a Niscemi in Sicilia.

Per chi fosse completamente a digiuno, il MUOS e’ un sistema di comunicazione satellitare che prevede 4 satelliti in orbita e 4 stazioni di terra. Questo sistema e’ direttamente gestito e voluto dal Dipartimento della Difesa degli Stati Uniti e servira’ per gestire, comandare e controllare in ogni parte del globo, le unita’ marine, aeree e di terra. Il sistema prevede diversi servizi tra cui la comunicazione vocale, lo scambio dati e la connessione di rete, tutto ad accesso riservato per scopi militari e di coordinamento. Le stazioni di terra verranno utilizzate per comunicare direttamente con i satelliti in orbita e la costruzione era prevista nelle Hawaii, in Australia, in Virginia e, come anticipato, a Niscemi a circa 60 Km dalla base militare di Sigonella.

Le stazioni di terra prevedono la costruzione di antenne operanti ad altissima frequenza e a banda stretta. Ecco una foto dell’installazione nelle isole Hawaii:

MUOS: stazione di terra nelle Hawaii

MUOS: stazione di terra nelle Hawaii

Perche’ stiamo parlando di questo sistema? Per quanto riguarda la costruzione della stazione di Niscemi, per diverso tempo ci sono stati dibattiti e scontri circa l’eventuale pericolo che queste antenne avrebbero costituito per la popolazione del posto. Nel corso degli anni, si sono formati comitati cittadini creati per impedire la costruzione di questa stazione e il dibattito ha riempito le pagine di molti quotidiani anche a livello nazionale. Ovviamente non e’ mancata la discussione politica. Diverse volte l’aministrazione regionale ha tentato di bloccare i lavori causando una discussione tra Parlamento Italiano, regione Sicilia e governo degli Stati Uniti. Come forse avrete letto, solo pochi giorni fa, l’amministrazione Crocetta ha bloccato definitivamente la costruzione della stazione ma, almeno a mio avviso, la discussione durera’ ancora per molto tempo.

Detto questo, non voglio assolutamente entrare in discussioni politiche sul MUOS e sulla regione Sicilia. Quello che molti utenti mi hanno richiesto e’ solo un parere scientifico sull’inquinamento elettromagnetico della stazione MUOS. Ovviamente, non entrero’ nel merito della discussione politica, degli accordi bilaterali tra Italia e USA ne tantomeno sull’eventuale valutazione di impatto ambientale che una stazione del genere sicuramente comporta sul panorama della zona.

A questo punto, la domanda su cui vorrei aprire una discussione e’: il MUOS e’ dannoso per la salute della popolazione?

A livello scientifico, ci sono due voci principali che si sono mosse parlando del MUOS. Da un lato Antonino Zichichi sostiene che l’installazione non e’ assolutamente dannosa per la popolazione vista la bassa potenza in gioco, dall’altro il Prof. Massimo Zucchetti del politecnico di Torino afferma che questa installazione potrebbe comportare seri rischi per la salute dei cittadini.

Come vedete, l’inizio non e’ dei migliori. Siamo di fronte a due punti di vista completamente opposti.

Ora, mentre Zichichi si e’ limitato a rilasciare interviste a diversi quotidiani, Zucchetti ha preparato una relazione tecnica sull’installazione che potete leggere a questo indirizzo:

Zucchetti, relazione MUOS

Come vedete anche dalla pagina, la relazione di Zucchetti viene pubblicizzata proprio da uno dei comitati cittadini nati per impedire l’installazione del MUOS a Niscemi, il comitato NoMuos.

Detto questo, proviamo a commentare la relazione di Zucchetti per cercare di capire se e come il MUOS potrebbe rappresentare un pericolo per la popolazione.

Prima di tutto, ci tengo a sottolineare che Zucchetti e’ esperto di radioprotezione ma e’ importante ragionare su quanto scritto per capire le motivazioni che spingono questa relazione nella direzione di considerare il MUOS come pericoloso.

Per prima cosa, dove doveva sorgere il nuovo impianto e’ gia’ presente un sistema radar detto NRTF le cui antenne sono in funzione dal 1991. Le analisi quantitative presentate nella relazione di Zucchetti riguardano proprio questo esistente impianto e vengono fatte considerazioni circa l’eventuale aggiunta del MUOS alle emissioni del NRTF.

Nella relazione vengono mostrate misure di campo elettrico fatte in diverse zone dell’impianto e che possiamo riassumere in questa tabella:

5,9 ± 0,6 V/m in località Ulmo (centralina 3)
4,0 ± 0,4 V/m in località Ulmo (centralina 8)
2 ± 0,2 V/m in località Martelluzzo (centralina 1)
1 ± 0,1 V/m in località del fico (centralina 7)

Come potete leggere nella relazione, queste misure, fatte dall’ARPA della Sicilia, potrebbero essere affette da un’incertezza al livello del 10%. Ora, per chi non lo sapesse, i limiti per la legislazione italiana impongono un campo inferiore a 6 V/m. Come potete vedere, anche considerando un’incertezza del 10%, solo il primo valore, se l’incertezza tendesse ad amentare la misura, sarebbe leggermente superiore al limite.

Cosa comporterebbe superare i 6 V/m? In realta’ assolutamente nulla. Cerchiamo di capire bene questo punto. Ad oggi, vi sono molte voci anche molto discordi sui reali effetti dell’inquinamento elettromagnetico. Mentre ci sono particolari frequenze ed esposizioni per cui e’ stato accertato un reale rischio per la salute, in moltissimi altri casi il discorso e’ ancora aperto e non si e’ giunti ad una conclusione. Pensate solo un attimo al discorso cellulari: fanno male? Non fanno male? Causano problemi al cervello? Tutte domande su cui spesso viene posta l’attenzione e su cui non esistono ancora dati certi. Con questo non voglio assolutamente tranquillizzare nessuno, ma solo far capire l’enorme confusione ancora presente su queste tematiche.

Tornando al discorso limiti di legge, superare di poco i 6 V/m non comporta assolutamente nulla. Perche’? Come detto siamo di fronte a fenomeni non ancora capiti dal punto di vista medico. Proprio per questo motivo esiste il “principio di precauzione”, cioe’ in caso di fenomeni scientificamente controversi si deve puntare ad una precauzione maggiore. Detto in altri termini, se non sappiamo se una determinata cosa fa male o meno, meglio mettere limiti molto stringenti.

Nel caso dei campi elettrici, il limite dei 6 V/m e’ nettamente inferiore a quello di altre nazioni europee, anche se, ad esempio, nel Canton Ticino il limite e’ di 3 V/m, e circa 500 volte inferiore al valore in cui ci si dovrebbero aspettare effetti diretti. Detto questo, se invece di 6 V/m, ne abbiamo 6,5 V/m, non succede assolutamente nulla. Non siamo ovviamente in presenza di un effetto a soglia, sotto il limite non succede nulla, appena sopra ci sono effetti disastrosi. Fermo restando che stiamo pensando l’incertezza del 10% sulla misura tutta nel verso di aumentarne il valore.

Detto questo, nella relazione da cui siamo partiti, si afferma pero’ che queste misure potrebbero essere sottistimate perche’ la strumentazione utilizzata non era sensibile alle emissioni a bassa frequenza intorno ai 45 KHz. In realta’, su questo punto non possono essere assolutamente d’accordo. La legge italiana stabilisce i limiti di cui abbiamo parlato per frequenze sopra i 100 KHz. Sotto questo valore, le onde elettromagnetiche sono assorbite pochissimo dal corpo umano per cui la loro emissione non viene neanche regolamentata. Questo solo per dire come le misure riportate nella relazione e fatte dall’ARPA della Sicilia sono del tutto attendibili e assolutamente non sottostimate.

Fin qui dunque, i valori misurati per l’installazione gia’ in funzione non mostrano nessun superamento dei limiti di legge italiani e potrebbero dunque essere considerati sicuri.

Andiamo ora invece, sempre seguendo la relazione da cui siamo partiti, al MUOS vero e proprio.

Per come dovrebbero essere fatte le antenne, e se la fisica non e’ un’opinione, il campo prodotto da un’antenna parabolica ha una forma cilindrica con una divergenza molto bassa. Detto in altri termini, il campo e’ all’interno dell’area della parabola e tende molto poco ad allargarsi appunto per non disperdere potenza. Detto questo, al di fuori del cilindro prodotto delle antenne, il campo e’ praticamente nullo e non comporta nessun problema nelle vicinanze.

Proviamo a fare due calcoli. Alla potenza di 1600 W, cioe’ la massima prevista per le antenne, il campo all’interno del cilindro sarebbe di circa 50 W/m^2. Questo valore e’ abbondantemente al di sopra dei limiti di legge di 1 W/m^2, ma per l’esposizione delle persone. Come potete facilmente immaginare, le antenne devono essere puntate verso il cielo per poter funzionare e per comunicare con i satelliti. Da quanto detto per la dispersione angolare fuori-cilindro, lontano dalle antenne il campo e’ praticamente nullo, diminuendo molto rapidamente.

Da questi numeri, e’ ovvio che se le antenne venissero puntate verso l’abitato, l’inquinamento elettromagnetico sarebbe elevatissimo, ma antenne di questo tipo hanno dei ferma-corsa meccanici che impediscono l’avvicinarsi dell’antenna troppo vicino all’orizzonte, oltre ovviamente a limitazioni software pensate appositamente per impedire queste esposizioni.

Detto in questo senso, le antenne del MUOS non dovrebbero essere un pericolo per la popolazione.

Sempre secondo la relazione e secondo le voci del web, le antenne del MUOS entrerebbero in funzione insieme a quelle gia’ discusse del NRTF. Cosa comporta questo? Ovviamente i due contributi si sommano, ma non linearmente come qualcuno potrebbe erroneamente pensare. Premesso che il MUOS sarebbe in funzione simultaneamente al NRTF solo inizialmente per poi sostituirlo del tutto, i due sistemi, alla luce dei calcoli fatti, non dovrebbero superare il limite di legge neanche quando sono simultaneamente accesi.

Se proprio vogliamo essere pignoli, resta quella misura dell’ARPA quasi al limite di legge. Sicuramente quella zona dovrebbe essere monitorata per capire meglio se il limite viene sistematicamente superato oppure no, ma solo a scopo di precauzione. Inoltre, bisognerebbe valutare la presenza di altre installazioni minori e il loro contributo totale, anche se non possono che rappresentare una piccola aggiunta al totale, oltre ovviamente ad eventuali fluttuazioni fuori asse delle emissioni. Questo genere di problematiche necessiterebbero di un monitoraggio continuo e completo dell’intera zona al fine di costruire una mappa del campo e valutare eventuali zone di picchi anomali.

Detto questo, se ci limitiamo al puro aspetto scientifico, il MUOS non dovrebbe rappresentare un pericolo per la popolazione della zona. Ovviamente, siamo in un campo molto difficile e ancora poco noto sia della scienza ma soprattutto della medicina. Non voglio assolutamente schierarmi a favore o contro il MUOS anche perche’ restano da valutare, indipendentemente da questa installazione, eventuali danni alla salute derivanti da un’esposizione prolungata nel tempo anche a limiti inferiori a quelli di legge. Come anticipato, questa tematica e’ ancora molto discussa e non si e’ ancora giunti ad un quadro completo.

Nella discussione, ho appositamente non valutato problematiche di natura diversa da quella dei campi elettromagnetici. Perche’ dobbiamo costruire una stazione radar degli USA in Italia? E’ giusto? Non e’ giusto? Questa installazione rovina il paesaggio della zona? I valori dichiarati per il progetto saranno quelli veri di esercizio?

Concludendo, alla luce dei dati analizzati, per l’installazione MUOS i limiti di legge sarebbero ampiamente soddisfatti. L’unico problema potrebbe derivare, anche se impossibile tenendo conto dei limiti meccanici imposti, da un puntamento diretto verso le abitazioni. L’ingresso del MUOS sostituirebbe il pre-esistente NTRF sicuramente piu’ vecchio ed operante a potenze e frequenze diverse. Purtroppo, il discorso non puo’ limitarsi a queste considerazioni, ma deve necessariamente racchiudere tematiche ambientali, politiche e mediche a cui non e’ possibile dare una risposta univoca in questo momento.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Universo: foto da piccolo

24 Mar

In questi ultimi giorni, tutti i giornali, i telegiornali, i siti internet specializzati, sono stati invasi da articoli scientifici riguardanti le ultime scoperte fatte con il telescopio Planck. I dati di questo telescopio, gestito interamente dalla nostra Agenzia Spaziale Europea, hanno mostrato una foto dell’universo quando aveva solo 380000 anni. Ecco la foto che sicuramente vi sara’ capitato di vedere:

L'universo alla tenera eta' di 380000 anni

L’universo alla tenera eta’ di 380000 anni

Si parla anche di risultati sconvolgenti: l’universo e’ piu’ vecchio di quello che si pensava fino ad oggi. Inoltre, la radiazione cosmica di fondo presenta delle differenze tra i due emisferi oltre a mostrare una regione fredda piu’ estesa di quella che si pensava.

Fantastico, direi io, questi risultati mi hanno veramente impressionato. Ora pero’, la domanda che mi sono posto e’ molto semplice, anche su giornali nazionali, ho visto articoli che commentavano questa foto parlando di CMB, anisotropie, fase inflazionistica. In pochissimi pero’, si sono degnati di spiegare in modo semplice il significato di questi termini. Purtroppo, spesso vedo molti articoli che ripetono a pappagallo le notizie senza neanche chiedersi cosa significano quei termini che stanno riportando.

Cerchiamo, per quanto possibile, di provare a fare un po’ chiarezza spiegando in maniera completamente divulgativa cosa significa: radiazione cosmica di fondo, periodo inflazionistitico, ecc.

Andiamo con ordine. La foto da cui siamo partiti ritrae l’universo quando aveva 380000 anni ed in particolare mostra la mappa della radiazione cosmica di fondo.

Prima cosa, come facciamo a fare una foto dell’universo del passato? In questo caso la risposta e’ molto semplice e tutti noi siamo in grado di sperimentarla facilmente. Quando alziamo lo sguardo e vediamo il cielo stellato, in realta’ e’ come se stessimo facendo un viaggio nel tempo. Se guardiamo una stella distante 100 anni luce da noi, significa che quell’immagine che osserviamo ha impiegato 100 anni per giungere fino a noi. Dunque, quella che vediamo non e’ la stella oggi, bensi’ com’era 100 anni fa. Piu’ le stelle sono lontane, maggiore e’ il salto indietro che facciamo.

Bene, questo e’ il principio che stiamo usando. Quando mandiamo un telescopio in orbita, migliore e’ la sua ottica, piu’ lontano possiamo vedere e dunque, equivalentemente, piu’ indietro nel tempo possiamo andare.

Facciamo dunque un altro piccolo passo avanti. Planck sta osservando l’universo quando aveva solo 380000 anni tramite la CMB o radiazione cosmica a microonde. Cosa sarebbe questa CMB?

Partiamo dall’origine. La teoria accettata sull’origine dell’universo e’ che questo si sia espanso inizialmente da un big bang. Un plasma probabilmente formato da materia e antimateria ad un certo punto e’ esploso, l’antimateria e’ scomparsa lasciando il posto alla materia che ha iniziato ad espandersi e, di conseguenza, si e’ raffreddata. Bene, la CMB sarebbe un po’ come l’eco del big bang e, proprio per questo, e’ considerata una delle prove a sostegno dell’esplosione iniziale.

Come si e’ formata la radiazione di fondo? Soltanto 10^(-37) secondi dopo il big bang ci sarebbe stata una fase detta di inflazione in cui l’espansione dell’universo ha subito una rapida accelerazione. Dopo 10^(-6) secondi, l’universo era ancora costituito da un plasma molto caldo di  fotoni, elettroni e protoni, l’alta energia delle particelle faceva continuamente scontrare i fotoni con gli elettroni che dunque non potevano espandersi liberamente. Quando poi la temperatura dell’universo e’ scesa intorno ai 3000 gradi, elettroni e protoni hanno cominciato a combianrsi formando atomi di idrogeno e i fotoni hanno potuto fuoriuscire formando una radiazione piu’ o meno uniforme. Bene, questo e’ avvenuto, piu’ o meno, quando l’universo aveva gia’ 380000 anni.

Capiamo subito due cose: la foto da cui siamo partiti e’ dunque relativa a questo periodo, cioe’ quando la materia (elettroni e protoni) hanno potuto separarsi dalla radiazione (fotoni). Stando a questo meccanismo, capite anche perche’ sui giornali trovate che questa e’ la piu’ vecchia foto che potrebbe essere scattata. Prima di questo momento infatti, la radiazione non poteva fuoriuscire e non esisteva questo fondo di fotoni.

Bene, dopo la separazione tra materia e radiazione, l’universo ha continuato ad espandersi, dunque a raffreddarsi e quindi la temperatura della CMB e’ diminuita. A 380000 anni di eta’ dell’universo, la CMB aveva una temperatura di circa 3000 gradi, oggi la CMB e’ nota come fondo cosmico di microonde con una temperatura media di 2,7 gradi Kelvin. Per completezza, e’ detta di microonde perche’ oggi la temperatura della radiazione sposta lo spettro appunto su queste lunghezze d’onda.

Capite bene come l’evidenza della CMB, osservata per la prima volta nel 1964, sia stata una conferma proprio del modello del big bang sull’origine del nostro universo.

E’ interessante spendere due parole proprio sulla scoperta della CMB. L’esistenza di questa radiazione di fondo venne predetta per la prima volta nel 1948 da Gamow, Alpher e Herman ipotizzando una CMB a 5 Kelvin. Successivamente, questo valore venne piu’ volte corretto a seconda dei modelli che venivano utilizzati e dai nuovi calcoli fatti. Dapprima, a questa ipotesi non venne dato molto peso tra la comunita’ astronomica, fino a quando a partire dal 1960 l’ipotesi della CMB venne riproposta e messa in relazione con la teoria del Big Bang. Da questo momento, inizio’ una vera e propria corsa tra vari gruppi per cercare di individuare per primi la CMB.

Penzias e Wilson davanti all'antenna dei Bell Laboratories

Penzias e Wilson davanti all’antenna dei Bell Laboratories

Con grande sorpresa pero’ la CMB non venne individuata da nessuno di questi gruppi, tra cui i principali concorrenti erano gli Stati Uniti e la Russia, bensi’ da due ingegneri, Penzias e Wilson, con un radiotelescopio pensato per tutt’altre applicazioni. Nel 1965 infatti Penzias e Wilson stavano lavorando al loro radiotelescopio ai Bell Laboratories per lo studio della trasmissione dei segnali attraverso il satellite. Osservando i dati, i due si accorsero di un rumore di fondo a circa 3 Kelvin che non comprendenvano. Diversi tentativi furono fatti per eliminare quello che pensavano essere un rumore elettronico del telescopio. Solo per darvi un’idea, pensarono che questo fondo potesse essere dovuto al guano dei piccioni sull’antenna e per questo motivo salirono sull’antenna per ripulirla a fondo. Nonostante questo, il rumore di fondo rimaneva nei dati. Il punto di svolta si ebbe quando l’astronomo Dicke venne a conoscenza di questo “problema” dell’antenna di Penzias e Wilson e capi’ che in realta’ erano riusciti ad osservare per la prima volta la CMB. Celebre divenne la frase di Dicke quando apprese la notizia: “Boys, we’ve been scooped”, cioe’ “Ragazzi ci hanno rubato lo scoop”. Penzias e Wilson ricevettero il premio Nobel nel 1978 lasciando a bocca asciutta tutti gli astronomi intenti a cercare la CMB.

Da quanto detto, capite bene l’importanza di questa scoperta. La CMB e’ considerata una delle conferme sperimentali al modello del Big Bang e quindi sull’origine del nostro universo. Proprio questa connessione, rende la radiazione di fondo un importante strumento per capire quanto avvenuto dopo il Big Bang, cioe’ il perche’, raffreddandosi, l’universo ha formato aggreggati di materia come stelle e pianeti, lasciando uno spazio quasi vuoto a separazione.

Le osservazioni del telescopio Planck, e dunque ancora la foto da cui siamo partiti, hanno permesso di scoprire nuove importanti dinamiche del nostro universo.

Prima di tutto, la mappa della radiazione trovata mostra delle differenze, o meglio delle anisotropie. In particolare, i due emisferi presentano delle piccole differenze ed inoltre e’ stata individuata una regione piu’ fredda delle altre, anche detta “cold region”. Queste differenze furono osservate anche con la precedente missione WMAP della NASA, ma in questo caso si penso’ ad un’incertezza strumentale del telescopio. Nel caso di Plack, la tecnologia e le performance del telescopio confermano invece l’esistenza di regioni “diverse” rispetto alle altre.

Anche se puo’ sembrare insignificante, l’evidenza di queste regioni mette in dubbio uno dei capisaldi dell’astronomia, cioe’ che l’universo sia isotropo a grande distanza. Secondo i modelli attualmente utilizzati, a seguito dell’espansione, l’universo dovrebbe apparire isotropo, cioe’ “uniforme”, in qualsiasi direzione. Le differenze mostrate da Planck aprono dunque lo scenario a nuovi modelli cosmologici da validare. Notate come si parli di “grande distanza”, questo perche’ su scale minori esistono anisotropie appunto dovute alla presenza di stelle e pianeti.

Ci sono anche altri importanti risultati che Planck ha permesso di ottenere ma di cui si e’ parlato poco sui giornali. In primis, i dati misurati da Planck hanno permesso di ritoccare il valore della costante di Hubble. Questo parametro indica la velocita’ con cui le galassie si allontanano tra loro e dunque e’ di nuovo collegato all’espansione dell’universo. In particolare, il nuovo valore di questa costante ha permesso di modificare leggermente l’eta’ dell’universo portandola a 13,82 miliardi di anni, circa 100 milioni di anni di piu’ di quanto si pensava. Capite dunque perche’ su alcuni articoli si dice che l’universo e’ piu’ vecchio di quanto si pensava.

Inoltre, sempre grazie ai risultati di Planck e’ stato possibile ritoccare le percentuali di materia, materia oscura e energia oscura che formano il nostro universo. Come saprete, la materia barionica, cioe’ quella di cui siamo composti anche noi, e’ in realta’ l’ingrediente meno abbondante nel nostro universo. Solo il 4,9% del nostro universo e’ formato da materia ordinaria che conosciamo. Il 26,8% dell’universo e’ invece formato da “Materia Oscura”, qualcosa che sappiamo che esiste dal momento che ne vediamo gli effetti gravitazionali, ma che non siamo ancora stati in grado di indentificare. In questo senso, un notevole passo avanti potra’ essere fatto con le future missioni ma anche con gli acceleratori di particelle qui sulla terra.

Una considerazione, 4,9% di materia barionica, 26,8% di materia oscura e il resto? Il 68,3% del nostro universo, proprio l’ingrediente piu’ abbondante, e’ formato da quella che viene detta “Energia Oscura”. Questo misterioso contributo di cui non sappiamo ancora nulla si ritiene essere il responsabile proprio dell’espansione e dell’accelerazione dell’universo.

Da questa ultima considerazione, capite bene quanto ancora abbiamo da imparare. Non possiamo certo pensare di aver carpito i segreti dell’universo conoscendo solo il 5% di quello che lo compone. In tal senso, la ricerca deve andare avanti e chissa’ quante altre cose strabilinati sara’ in grado di mostrarci in futuro.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Adesso e’ il turno di Marte

27 Feb

Negli ultimi giorni, oltre ovviamente ad ingovernabilita’, spread e premio di maggioranza, argomenti che comunque esulano dalle tematiche di questo blog, molto si e’ parlato di asteroidi e pericolo di impatto con i pianeti.

Come sapete bene, la psicosi su questi argomenti e’ nata dopo l’episodio avvenuto in Russia, in cui un meteorite si e’ frantumato ad alcuni Km da Terra ed i cui frammenti hanno causato un notevole numero di feriti. Di questo abbiamo parlato in diversi post:

Meteorite anche a Cuba e Dark Rift

Pioggia di meteore in Russia

Come anticipato sempre in queste discussioni, questo episodio ha riacceso i tanti complottisti che popolano la rete e di queste tematiche si parla in continuazione su diversi siti citando avvistamenti di nuovi oggetti nei nostri cieli o anche solo spaventando le persone circa il rischio di impatto con la Terra.

Inoltre, a partire dal 2012, molto si e’ parlato di comete citando appunto la ISON, la ELENIN, la PANSTARS. Comete di cui abbiamo parlato in questi post:

Che la ISON abbia pieta’ di noi!

2013 o ancora piu’ oltre?

E se ci salvassimo?

e che molto spesso sono state viste come ipotetiche cause di una prossima fine del mondo.

Sulla scia di questo, in queste ultime ore si e’ diffusa una nuova notizia riguardante una cometa ma sempre in pericolo di impatto con un pianeta del Sistema Solare. Per fortuna, si fa per dire, questa volta il bersaglio dell’oggetto non saremo noi, bensi’ Marte.

A cosa mi riferisco?

La cometa in questione e’ la C/2013 A1, anche detta “Siding Spring” dal nome del laboratorio dove e’ stata osservata per la prima volta. Secondo quanto riportato in rete, questa cometa presenterebbe un elevato rischio di impatto con il pianeta rosso il 19 Ottobre del 2014.

Perche’ questo impatto sta richiamando l’attenzione di molti siti internet? Prima di tutto, come detto in precedenza, questo genere di notizie serve a tenere alto il livello di attenzione delle persone. Proprio per questo motivo, non mancano assolutamente confronti tra Marte e la Terra. Pensate che in caso di impatto, la cometa potrebbe lasciare un cratere sulla superficie del diametro di 500 Km ed una profondita’ massima di 2 Km, causati dall’apparente nucleo della cometa stimato dell’ordine di 40 Km.

Prima di tutto occorre fare una precisazione. Qui stiamo parlando di valori massimi di diametro e profondita’. Come visto in diverse occasioni, il segno lasciato da un eventuale impatto dipende da altri parametri oltre ovviamente al diametro del corpo. Solo per darvi un’idea, l’angolo di impatto sul pianeta modifica in modo sostanziale il cratere risultante. I valori che trovate in rete sono ovviamente massimali solo per sparare numeri grandi ed alimentare le fobie. E’ ovvio che se un corpo di questo tipo impattasse sulla Terra causarebbe notevoli danni, ma ovviamente le informazioni vanno pesate nel verso giusto e comunque questa volta parliamo di Marte e non della Terra.

Dopo questo necessario preambolo sui segni eventuali lasciati dalla cometa, discutiamo invece di questa presunta probabilita’ di impatto con Marte.

La scoperta della C/2013 A1 e’ avvenuta il 3 Gennaio 2013. Subito dopo la sua identificazione, gli astronomi sono andati a ricercare le immagini della porzione di cielo scattate nei mesi precedenti. In questo modo, hanno ritrovato ulteriori immagini risalenti all’8 Dicembre 2012, in cui pero’ questa cometa non era stata notata. Faccio questa precisazione perche’ in realta’ e’ estremamente importante per capire meglio la probabilita’ di impatto con Marte.

Da dicembre 2012 ad oggi, ci sono circa 75 giorni di osservazione del corpo. Questo breve lasso temporale consente di disporre di pochi dati circa la C/2013 A1 e dunque di avere in mano solo poche informazioni circa i suoi parametri orbitali. Per essere piu’ precisi, la scarsita’ delle informazioni consente di avere un’incertezza ancora molto elevata sull’effettiva orbita della cometa.

Perche’ dico questo?

Ad oggi, ripeto con le informazioni ricavate da 75 giorni di osservazione, la distanza a cui ci si aspetta il passaggio della C/2013 A1 da Marte e’ di circa 100000 Km. Dato questo valore cosi’ elevato, perche’ allora si parla di collisione? Come anticipato, l’incertezza su questa misura e’ ancora molto elevata. Quando parliamo di incertezza, intendiamo non un singolo valore, bensi’ un intervallo di valori possibili centrati ovviamente intorno al valore medio. Detto in parole semplici, la distanza a cui la cometa dovrebbe passare da Marte e’ compresa tra 0, dunque impatto certo, e 1200000 Km, cioe’ assolutamente lontana. Capite bene che in questo caso ci sono piu’ di un milione di Km di incertezza di cui tenere conto. In queste condizioni, e’ assolutamente sbagliato parlare sia di impatto certo che di impatto scongiurato.

Ora, tenendo conto del fatto che il valore medio e’ comunque intorno ai 100000 Km, gran parte di questo intervallo previsto di distanze non prevede una collisione tra la cometa e Marte. Questo punto ci fa capire perche’, a livello scientifico, si parla comunque di probabilita’ piccola, anche se non nulla, di impatto.

Questa storia ci ricorda molto quella dell’ipotetico scontro tra la Terra e Apophis, di cui abbiamo parlato in questi post:

Attenzione, tra poche ore passa Apophis!

Asteroidi: sappiamo difenderci?

Anche in questo caso, alle prime osservazioni, la probabilita’ di scontro con la Terra presentava valori piccoli ma non nulli. Proprio da questo e’ nata poi una pesante speculazione parlando appunto di impatto certo. Come visto nei post precedenti, ad oggi, cioe’ disponendo di un campione di dati molto piu’ grande, la probabilita’ di impatto con il nostro pianeta e’ divenuta praticamente nulla.

Il paragone con Apophis ci deve insegnare, nel caso di C/2013 A1 cosi’ come di qualsiasi altro oggetto dello spazio, che le prime osservazioni presentano sempre delle incertezze osservative troppo grandi per poter giungere a qualsiasi conclusione. Per poter disporre di dati certi, occorre aspettare qualche tempo e continuare a monitorare il corpo in questione al fine di raffinare i dati in nostro possesso. Ovviamente, in base a quanto detto, non e’ possibile, al momento, stabilire se il 19 Ottobre 2014 ci sara’ questo impatto oppure no.

Colgo l’occasione anche per ricordarvi il programma NEO della NASA creato appunto per monitorare i corpi orbitanti intorno alla Terra e che possono rappresentare un eventuale pericolo per noi. In queste osservazioni vengono ovviamente inclusi anche gli altri oggetti che sono in giro per il Sistema Solare appunto per seguirne le orbite e misurare le probabilita’ eventuali di impatto con il nostro pianeta. In questo caso trovate anche tutte le informazioni su C/2013 A1, che potete leggere in questa pagina:

NASA NEO C/2013 A1

Nella stessa pagina trovate anche la simulazione dell’orbita della cometa di cui vi riporto un breve video costruito proprio a cavallo dei giorni del presunto impatto:

Come vedete, ad oggi i dati non sono affatto aggiornati. Il 19 Ottobre 2014 la simulazione presenta un valore della distanza da Marte ancora piu’ grande di quella riportata in precedenza. Questa discrepanza e’ dovuta al fatto che i numeri per costruire la simulazione sono basati non su tutto il campione dei 75 giorni di osservazione, ma solo su quelli compresi tra Dicembre 2012 (vecchie foto) e Gennaio 2013 (prima identificazione). Come ormai avrete capito, un campione ancora piu’ piccolo di dati implica ovviamente un’incertezza ancora piu’ grande di quella che abbiamo appena discusso.

Concludendo, esiste la probabilita’ di un impatto tra Marte e la cometa C/2013 A1 per Ottobre 2014. Ad oggi pero’ queste probabilita’ sono stimate usando un campione ancora troppo piccolo di dati il che implica un’incertezza sui valori troppo elevata e assolutamente non risolutiva. Detto questo, occorrera’ aspettare ancora qualche tempo per avere informazioni piu’ precise.

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.