Tag Archives: acceleratore

Charged Lepton Flavour Violation

6 Ott

Oggi vorrei mettere da parte UFO, complotti, scie chimiche, fine del mondo, ecc., per tornare a parlare di scienza pura. Lo vorrei fare con questo articolo spceifico, per trattare nuovamente lo stato attuale della ricerca e mostrarvi quali sono i settori più “caldi” e più promettenti nel panorama della fisica delle alte energie.

Per prima cosa, in diversi articoli abbiamo parlato di modello standard:

Dafne e KLOE: alta energia in Italia

E parliamo di questo Big Bang

Universo: foto da piccolo

Ascoltate finalmente le onde gravitazionali?

Il primo vagito dell’universo

L’espansione metrica dell’universo

Come abbiamo visto, il Modello Standard è quella teoria che oggi abbiamo definito e che consente di prevedere molte delle proprietà che osserviamo per le particelle. Vi ricordo che in fisica parliamo sempre di modello proprio per indicare un qualcosa in grado di prevedere le proprietà sperimentali.

Anche se poco conosciuto ai non addetti ai lavori, il Modello Standard è stato molto citato parlando del Bosone di Higgs. Come tutti sanno, il nostro modello, che ha resistito per decenni, presenta una particolare mancanza: non è in grado di prevedere l’esistenza della massa delle particelle. Come correggere questa grave imprecisione? Che le particelle abbiano massa è noto a tutti e facilmente dimostrabile anche guardando la materia che ci circonda. Bene, per poter correggere questo “errore” è possibile inserire quello che è noto come Meccanismo di Higgs, una correzione matematica che consente al modello standard di poter prevedere l’esistenza della massa. Bene, dunque ora è tutto OK? Assolutamente no, affinché il meccanismo di Higgs possa essere inserito è necessario che sia presente quello che viene chiamato un Campo di Higgs e, soprattutto, un bosone intermedio che, neanche a dirlo, si chiama Bosone di Higgs.

Capite dunque perchè la scoperta sperimentale del Bosone di Higgs è così importante?

Del bosone di Higgs, di LHC e delle sue conseguenze abbiamo parlato in questi articoli:

Bosone di Higgs … ma cosa sarebbe?

L’universo è stabile, instabile o meta-stabile?

Hawking e la fine del mondo

2012, fine del mondo e LHC

A questo punto si potrebbe pensare di aver raggiunto il traguardo finale e di aver compreso tutto. Purtroppo, o per fortuna a seconda dei punti di vista, questo non è assolutamente vero.

Perchè?

Come è noto a tutti, esistono alcuni problemi aperti nel campo della fisica e su cui si discute già da moltissimi anni, primo tra tutti quello della materia oscura. Il nostro amato Modello Standard non prevede assolutamente l’esistenza della materia oscura di cui abbiamo moltissime verifiche indirette. Solo per completezza, e senza ripetermi, vi ricordo che di materia e energia oscura abbiamo parlato in questi post:

La materia oscura

Materia oscura intorno alla Terra?

Flusso oscuro e grandi attrattori

Troppa antimateria nello spazio

Due parole sull’antimateria

Antimateria sulla notra testa!

L’esistenza della materia oscura, insieme ad altri problemi poco noti al grande pubblico, spingono i fisici a cercare quelli che vengono chiamati Segnali di Nuova Fisica, cioè decadimenti particolari, molto rari, in cui si possa evidenziare l’esistenza di particelle finora sconosciute e non contemplate nel modello standard delle particelle.

Per essere precisi, esistono moltissime teorie “oltre il modello standard” e di alcune di queste avrete già sentito parlare. La più nota è senza ombra di dubbio la Supersimmetria, o SuSy, teoria che prevede l’esistenza di una superparticella per ogni particella del modello standard. Secondo alcuni, proprio le superparticelle, che lasciatemi dire a dispetto del nome, e per non impressionarvi, non hanno alcun super potere, potrebbero essere le componenti principali della materia oscura.

Prima importante riflessione, la ricerca in fisica delle alte energie è tutt’altro che ad un punto morto. La scoperta, da confermare come detto negli articoli precedenti, del Bosone di Higgs rappresenta un importante tassello per la nostra comprensione dell’universo ma siamo ancora molto lontani, e forse mai ci arriveremo, dalla formulazione di una “teoria del tutto”.

Detto questo, quali sono le ricerche possibii per cercare di scoprire se esiste veramente una fisica oltre il modelo Standard delle particelle?

Detto molto semplicemente, si studiano alcuni fenomeni molto rari, cioè con bassa probabilità di avvenire, e si cerca di misurare una discrepanza significativa da quanto atteso dalle teorie tradizionali. Cosa significa? Come sapete, le particelle hanno una vita molto breve prima di decadere in qualcos’altro. I modi di decadimento di una data particella possono essere molteplici e non tutti avvengono con la stessa probabilità. Vi possono essere “canali”, cioè modi, di decadimento estremamente più rari di altri. Bene, alcuni di questi possono essere “viziati” dall’esistenza di particelle non convenzionali in grado di amplificare questo effetto o, addirittura, rendere possibili modi di decadimento non previsti dalla teoria convenzionale.

L’obiettivo della fisica delle alte energie è dunque quello di misurare con precisione estrema alcuni canali rari o impossibili, al fine di evidenziare segnali di nuova fisica.

Ovviamente, anche in questo caso, LHC rappresenta un’opportunità molto importante per questo tipo di ricerche. Un collisore di questo tipo, grazie alla enorme quantità di particelle prodotte, consente di poter misurare con precisione moltissimi parametri. Detto in altri termini, se volete misurare qualcosa di molto raro, dovete prima di tutto disporre di un campione di eventi molto abbondante dove provare a trovare quello che state cercando.

Un esempio concreto, di cui abbiamo parlato in questo post, è l’esperimento LhCB del CERN:

Ancora sullo squilibrio tra materia e antimateria

Una delle ricerche in corso ad LhCB è la misura del decadimento del Bs in una coppia di muoni. Niente paura, non voglio tediarvi con una noiosa spiegazione di fisica delle alte energie. Il Bs è un mesone composto da due quark e secondo il modello standard può decadere in una coppia di muoni con una certa probabilità, estremamente bassa. Eventuali discordanze tra la probabilità misurata di decadimento del Bs in due muoni e quella prevista dal modello standard potrebbe essere un chiaro segnale di nuova fisica, cioè di qualcosa oltre il modello standard in grado di modificare queste proprietà.

Misurare la probabilità di questo decadimento è qualcosa di estremamente difficile. Se da un lato avete una particella che decade in due muoni facilmente riconoscibili, identificare questo decadimento in mezzo a un mare di altre particelle è assai arduo e ha impegnato moltissimi fisici per diverso tempo.

Purtroppo, o per fortuna anche qui, gli ultimi risultati portati da LhCB, anche in collaborazione con CMS, hanno mostrato una probabilità di decadimento paragonabile a quella attesa dal modello standard. Questo però non esclude ancora nulla dal momento che con i nuovi dati di LHC sarà possibile aumentare ancora di più la precisione della misura e continuare a cercare effetti non previsti dalla teoria.

Tra gli altri esperimenti in corso in questa direzione, vorrei poi parlarvi di quelli per la ricerca della “violazione del numero Leptonico”. Perdonatemi il campanilismo, ma vi parlo di questi semplicemente perchè proprio a questo settore è dedicata una mia parte significativa di ricerca.

Cerchiamo di andare con ordine, mantenendo sempre un profilo molto divulgativo.

Come visto negli articoli precedenti, nel nostro modello standard, oltre ai bosoni intermedi, abbiamo una serie di particelle elementari divise in quark e leptoni. Tra questi ultimi troviamo: elettrone, muone, tau e i corrispondendi neutrini. Bene, come sapete esistono delle proprietà in fisica che devono conservarsi durante i decadimenti di cui abbiamo parlato prima. Per farvi un esempio noto a tutti, in un decadimento dobbiamo mantenere la carica elettrica delle particelle, se ho una particella carica positiva che decade in qualcosa, questo qualcosa deve avere, al netto, una carica positiva. La stessa cosa avviene per il numero leptonico, cioè per quella che possiamo definire come un’etichetta per ciascun leptone. In tal caso, ad esempio, un elettrone non può decadere in un muone perchè sarebbe violato, appunto, il numero leptonico.

Facciamo un respiro e manteniamo la calma, la parte più tecnica è già conclusa. Abbiamo capito che un decadimento in cui un leptone di un certo tipo, muone, elettrone o tau, si converte in un altro non è possibile. Avete già capito dove voglio andare a finire? Se questi decadimenti non sono possibili per la teoria attuale, andiamo a cercarli per verificare se esistono influenze da qualcosa non ancora contemplato.

In realtà, anche in questo caso, questi decadimenti non sono del tutto impossibili, ma sono, come per il Bs in due muoni, fortemente soppressi. Per farvi un esempio, l’esperimento Opera dei Laboratori Nazionali del Gran Sasso, misura proprio l’oscillazione dei neutrini cioè la conversione di un neutrino di un certo tipo in un altro. Ovviamente, appartendendo alla famiglia dei leptoni, anche i neutrini hanno un numero leptonico e una loro trasformazione da un tipo all’altro rappresenta una violazione del numero leptonico, quella che si chiama Neutral Lepton Flavour Violation. Per la precisione, questi decadimenti sono possibili dal momento che, anche se estremamente piccola, i neutrini hanno una massa.

Bene, la ricerca della violazione del numero Leptonico in particelle cariche, è uno dei filoni più promettenti della ricerca. In questo settore, troviamo due esperimenti principali che, con modalità diverse, hanno ricercato o ricercheranno questi eventi, MEG a Zurigo a Mu2e a Chicago.

Mentre MEG ha già raccolto molti dati, Mu2e entrerà in funzione a partire dal 2019. Come funzionano questi esperimenti? Detto molto semplicemente, si cercano eventi di conversione tra leptoni, eventi molto rari e dominati da tantissimi fondi, cioè segnali di dcadimenti più probabili che possono confondersi con il segnale cercato.

Secondo il modello standard, questi processi sono, come già discusso, fortemente soppressi cioè hanno una probabilità di avvenire molto bassa. Una misura della probabilità di decadimemto maggiore di quella attesa, sarebbe un chiaro segnale di nuova fisica. Detto questo, capite bene perchè si parla di questi esperimenti come probabili misure da nobel qualora i risultati fossero diversi da quelli attesi.

L’esperimento MEG ha già preso moltissimi dati ma, ad oggi, ha misurato valori ancora in linea con la teoria. Questo perchè la risoluzione dell’esperimento potrebbe non essere sufficiente per evidenziare segnali di nuova fisica.

A livelo tecnico, MEG e Mu2e cercano lo stesso effetto ma sfruttando canali di decadimento diverso. Mentre MEG, come il nome stesso suggerisce, cerca un decadimento di muone in elettrone più fotone, Mu2e cerca la conversione di muone in elettrone senza fotone ma nel campo di un nucleo.

Ad oggi, è in corso un lavoro molto specifico per la definizione dell’esperimento Mu2e e per la scelta finale dei rivelatori da utilizzare. Il gruppo italiano, di cui faccio parte, è impegnato in uno di questi rivelatori che prevede la costruzione di un calorimetro a cristallo che, speriamo, dovrebbe raggiungere risoluzioni molto spinte ed in grado di evidenziare, qualora presenti, eventuali segnali di nuova fisica.

Concludnedo, la ricerca nella fisica delle alte energie è tutt’altro che morta ed è sempre attiva su molti fronti. Come detto, molti sforzi sono attualmente in atto per la ricerca di segnali di nuova fisica o, come noi stessi li abbiamo definiti, oltre il modello standard. Detto questo, non resta che attendere i prossimi risultati per capire cosa dobbiamo aspettarci e, soprattutto, per capire quanto ancora poco conosciamo del mondo dell’infinitamente piccolo che però regola il nostro stesso universo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’universo che si dissolve “improvvisamente”

21 Mar

Nella sezione:

Hai domande o dubbi?

una nostra cara lettrice ci ha chiesto lumi su una notizia apparsa in questi giorni sui giornali che l’ha lasciata, giustamente dico io, un po’ perplessa. La notizia in questione riguarda l’annuncio fatto solo pochi giorni fa della nuova misura della massa del quark top.

Perche’ questa notizia avrebbe suscitato tanto clamore?

Senza dirvi nulla, vi riporto un estratto preso non da un giornale qualsiasi, che comunque a loro volta hanno copiato da qui, ma dalla principale agenzia di stampa italiana:

Il più pesante dei mattoni della materia, il quark top, ha una misura più precisa e la sua massa, con quella del bosone di Higgs, potrebbe essere la chiave per capire se viviamo in un universo instabile, al punto di dissolversi improvvisamente.

Universo che si dissolve “improvvisamente”?

Vi giuro che vorrei mettermi a piangere. Solo pochi giorni fa abbiamo parlato di tutte quelle cavolate sparate dopo l’annuncio della misura di Bicep-2:

Ascoltate finalmente le onde gravitazionali?

Due notizie cosi’ importanti dal punto di vista scientifico accompagnate da sensazionalismo catastrofista nella stessa settimana sono davvero un duro colpo al cuore.

Al solito, e come nostra abitudine, proviamo a spiegare meglio l’importanza della misura ma, soprattutto, cerchiamo di capire cosa dice la scienza contrapposto a quello che hanno capito i giornali.

In diversi articoli abbiamo parlato di modello standard discutendo la struttura della materia che ci circonda e, soprattutto, presentando quelle che per noi, ad oggi, sono le particelle fondamentali, cioe’ i mattoni piu’ piccoli che conosciamo:

Due parole sull’antimateria

Piccolo approfondimento sulla materia strana

Bosone di Higgs …. ma che sarebbe?

Se ci concentriamo sui quark, vediamo che ci sono 6 componenti che, come noto, sono: up, down, strange, charm, bottom e top. Come gia’ discusso, i primi due, up e down, sono quelli che formano a loro volta protoni e neutroni, cioe’ le particelle che poi formano i nuclei atomici, dunque la materia che ci circonda.

Bene, il quark top e’ il piu’ pesante di questi oltre ad essere l’ultimo ad essere stato scoperto. Il primo annuncio di decadimenti con formazione di quark top e’ stato fatto nel 1995 grazie alla combinazione dei risultati di due importanti esperimenti del Fermi National Accelerator Laboratory di Batavia, nei pressi di Chicago. A questi esperimenti, oggi in dismissione, ma la cui analisi dei dati raccolti e’ ancora in corso, partecipavano e partecipano tuttora moltissimi fisici italiani dell’Istituto Nazionale di Fisica Nucleare.

La cosa piu’ sorprendente del quark top e’ la sua enorme massa, circa 170 GeV, che lo rende la particella elementare piu’ pesante mai trovata. Per darvi un’idea, il top e’ circa 180 volte piu’ pesante di un protone con una massa paragonabile a quella di un atomo di oro nel suo complesso. Il perche’ di una massa cosi’ elevata e’ una delle chiavi per capire i meccanismi che avvengono a livello microscopico e che, come e’ normale pensare, determinano il comportamento stesso del nostro universo.

Bene, cosa e’ successo in questi giorni?

Come avete letto, nel corso della conferenza:

Rencontres de Moriond

che si svolge annualmente a La Thuille in Val d’Aosta, e’ stata presentata una nuova misura della massa del quark top. Prima cosa importante da dire e’ che la misura in questione viene da una stretta collaborazione tra i fisici di LHC e quelli che analizzano i dati del Tevatron, cioe’ il collissore dove nel 1995 fu scoperto proprio il top. Queste due macchine sono le uniche al mondo, grazie alla grande energia con cui vengono fatti scontrare i fasci, in grado di produrre particelle pesanti come il quark top.

Dalla misurazione congiunta di LHC e Tevatron e’ stato possibile migliorare notevolmente l’incertezza sulla massa del top, arrivando ad un valore molto piu’ preciso rispetto a quello conosciuto fino a qualche anno fa.

Cosa comporta avere un valore piu’ preciso?

Come potete immaginare, conoscere meglio il valore di questo parametro ci consente di capire meglio i meccanismi che avvengono a livello microscopico tra le particelle. Come discusso parlando del bosone di Higgs, il ruolo di questa particella, e soprattutto del campo scalare ad essa associato, e’ proprio quello di giustificare il conferimento della massa. Se il  top ha una massa cosi’ elevata rispetto agli altri quark, il suo meccanismo di interazione con il campo di Higgs deve essere molto piu’ intenso. Inoltre, il quark top viene prodotto da interazioni forti, ma decade con canali deboli soprattutto producendo bosoni W. Non sto assolutamente cercando di confondervi. Come visto negli articoli precedenti, il W e’ uno dei bosoni messaggeri che trasportano l’interazione debole e che e’ stato scoperto da Carlo Rubbia al CERN. Detto questo, capite come conoscere con precisione la massa del top, significhi capire meglio i meccanismi che avvengono tra top, W e campo di Higgs. In ultima analisi, la conoscenza di questi modelli e’ fondamentale per capire perche’, durante l’evoluzione dell’universo, si sono formate particelle cosi’ pesanti ma anche per capire se esistono meccanismi di decadimento non ancora considerati o anche effetti, come vengono definiti, di nuova fisica che possono mettere in discussione o integrare il modello standard delle particelle.

Concludendo, la spiegazione della frase “universo che si dissolve improvvisamente” non significa nulla. Una misura piu’ precisa della massa del top implica una migliore conoscenza dei modelli ora utilizzati e soprattutto apre le porte per capire meglio cosa e’ avvenuto durante durante i primi istanti di vita dell’universo. Al solito pero’, anche sulla scia del tanto citato annuncio di Bicep-2, si e’ ben pensato di sfruttare l’occasione e trasformare anche questa importante notizia in un teatrino catastrofista. Per chi interessato ad approfondire, vi riporto anche il link di ArXiv in cui leggere l’articolo della misura in questione:

ArXiv, quark top

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Fascio di anti-idrogeno? FATTO!

22 Gen

Uno degli aspetti della fisica che suscita maggior interesse nei non addetti ai lavori e’ senza dubbio il concetto di antimateria. Molto probabilmente, il motivo di questo interesse e’ da ricercarsi nelle tante storie fantascientifiche che sono state ispirate dall’esistenza di un qualcosa molto simile alla materia, se non fosse per la carica delle particelle che la compongono, che era presente prima del Big Bang ma che ora sembra totalmente scomparsa. Inoltre, come tutti sanno, se materia e antimateria vengono messe vicine tra loro si ha il fenomeno dell’annichilazione, qualcosa di assolutamente esotico nella mente dei non addetti ai lavori e che ha offerto trame sensazionali per tanti film e serie TV.

Come detto tante volte, dobbiamo fare una distinzione precisa tra quelle che chiamiamo antiparticelle e quella che invece viene intesa come antimateria. Cosi’ come avviene per la materia ordinaria, composta di particelle che, in questo schema, possiamo pensare come elettroni, protoni e neutroni, l’antimateria e’ a sua volta composta da anti-particelle. Spesso si tende a confondere questi due concetti, facendo, come si suole dire, di tutta l’erba un fascio.

Produrre anti-particelle e’ semplice e siamo in grado di farlo gia’ da diversi anni. Per darvi un esempio, molti collisori utilizzati per la ricerca nella fisica delle alte energie fanno scontrare fasci di particelle con antiparticelle. In questo contesto, molto usati sono i positroni, cioe’ gli anti-elettroni, e gli anti-protoni.

Completamente diverso e’ invece il caso dell’antimateria.

Per formare anti-atomi e’ necessario assemblare insieme le anti-particelle per comporre qualcosa simile nella struttura alla materia, ma composto a partire da mattoncini di anti-particelle.

Di questi concetti abbiamo gia’ parlato in articoli precedenti che trovate a questi link:

Troppa antimateria nello spazio

Due parole sull’antimateria

Antimateria sulla notra testa!

Come anticipato, prima del Big Bang, erano presenti in eguale quantita’ materia e anti-materia. Ad un certo punto pero’, l’anti-materia e’ scomparsa lasciando il posto solo alla materia che ha poi formato l’universo che vediamo oggi. Anche se questo meccanismo e’ in linea di principio ipotizzato dalla fisica, ci sono ancora punti da chiarire in quella che viene chiamata “asimmetria materia-antimateria”. Anche di questo abbiamo gia’ parlato in questi articoli:

E parliamo di questo Big Bang

Ancora sullo squilibrio tra materia e antimateria

Se, da un lato, produrre antiparticelle e’ semplice, metterle insieme per formare antiatomi non e’ assolutamente banale.

Nel 2011 al CERN di Ginevra era stato annunciato per la prima volta un risultato molto importante: atomi di anti-idrogeno erano stati formati e osservati per un tempo di circa 1000 secondi prima si scomparire. Questa osservazione aveva permesso di osservare alcune importanti proprieta’. Nel 2012, sempre al CERN, un altro esperimento era riuscito a misurare altre importanti proprieta’ di questi anti-atomi, facendo ben sperare per il futuro.

Ora, invece, sempre il CERN ha annunciato di essere riuscito per la prima volta a produrre addirittura un fascio di anti-idrogeni. L’annuncio ‘e stato dato sul sito del laboratorio svizzero:

CERN, ASACUSA NEWS

e pubblicato sull’autorevole rivista Nature.

La scoperta e’ stata realizzata dalla collaborazione internazionale ASACUSA, di cui fanno parte anche alcuni ricercatori del nostro Istituto Nazionale di Fiscia Nucleare.

Cosa sarebbero questi anti-idrogeni?

Seguendo il ragionamento fatto, questi speciali atomi sono composti dagli analoghi di antimateria di protone e elettrone. Se l’idrogeno ha un nucleo composto da un protone con un elettrone che gira intorno, un anti-idrogeno e’ composto da un anti-protone, carico negativamente, e un positrone che gira intorno, carico positivamente. Come potete facilmente capire, in questo gioco di costruzione di atomi, siamo alla struttura piu’ semplice conosciuta ma, come vedremo tra poco, fondamentale per la comprensione dell’universo.

Come e’ stato fatto questo esperimento?

L'esperimento ASACUSA del CERN

L’esperimento ASACUSA del CERN

Senza annoiarvi con tecnicismi, gli anti-idrogeni sono prodotti da un deceleratore di antiprotoni e poi allontanati dal punto di produzione ad una distanza sufficiente a non risentire dei campi magnetici. Questo accorgimento e’ fondamentale per stabilizzare gli anti-atomi che altrimenti si scomporrebbero scomparendo. Come vedete nella foto riportata, la camera da vuoto utilizzata e’ infatti un lungo tubo e gli anti-idrogeni sono stati osservati e immobilizzati ad una distanza di quasi 3 metri dal punto di produzione.

Perche’ e’ cosi’ importante l’anti-idrogeno?

La sua semplicita’ rispetto agli atomi piu’ pesanti, sia per materia che per anti-materia, ha fatto si che questi siano stati i primi atomi stabili creati nell’universo in espansione. Secondo la teoria, idrogeno e anti-idrogeno dovrebbero avere esattamente lo stesso spettro di emissione. Poter disporre in laboratorio di un fascio stabile di anti-atomi consentira’ di studiare a fondo le caratteristiche di questa struttura analizzando nei minimi dettagli ogni minima possibile discrepanza con l’idrogeno. Queste caratteristiche aiuterebbero notevolmente nella comprensione dell’asimmetria tra materia e anti-materia dando una notevola spinta in avanti nella comprensione della nascita del nostro universo e nella ricerca di ogni possibile accumulo di anti-materia.

Concludendo, questa importante notizia apre nuovi scenari nello studio della fisica di base, offrendo un’occasione fondamentale per comprende il nostro universo. Come spesso avviene, molti siti e giornali si sono lanciati in speculazioni parlando di pericoli o applicazioni fantascientifiche che lasciano un po’ il tempo che trovano. Sicuramente, il futuro in questa branca della ricerca ha ancora molto da offrire e non possiamo che essere entusiasti delle novita’ che ancora ci attendono.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

I buchi neri che … evaporano

16 Ago

Uno degli aspetti che da sempre fa discutere e creare complottismi su LHC, e’ di sicuro la possibilita’ di creare mini buchi neri. Questa teoria nasce prendendo in considerazione le alte energie in gioco all’interno del collissore del CERN e la possibilita’ che nello scontro quark-quark possa venire a crearsi una singolarita’ simile a quella dei buchi neri.

Se avete perso i precedenti articoli, di LHC abbiamo parlato in questi post:

2012, fine del mondo e LHC

Bosone di Higgs … ma che sarebbe?

Sia ben chiaro, la storia dei buchi neri non e’ la sola creata su LHC. Il CERN ogni giorno riceve lettere che chiedono la chiusura dell’esperimento per il pericolo che questo rappresenta per l’intera terra. Diverse volte il CERN e’ anche stato chiamato in giudizio a fronte di vere e proprie denuncie di pseudo scienziati che lo accusavano farneticando teorie senza capo ne’ coda. Come potete immaginare, tutte le volte le accuse sono state rigettate e non solo LHC il prossimo anno ripartira’, ma a gia’ fornito risultati fisici di prim’ordine.

Perche’ si discute tanto di buchi neri? Qui ognuno puo’ formulare la propria ipotesi. Io ho una mia idea. Parlare di buchi neri, e’ qualcosa che da sempre stimola la curiosita’ e il timore delle persone. Un buco nero e’ visto come qualcosa di misterioso che vive nel nostro universo con caratteristiche uniche nel suo genere: mangia tutto cio’ che gli capita a tiro senza far uscire nulla. L’idea di poter avere un mostro del genere qui sulla terra, scatena gli animi piu’ catastrofisti pensando a qualcosa che nel giro di qualche minuto sarebbe in grado di divorare Ginevra, la Svizzera, il mondo intero.

Come anticipato, LHC e’ ora in stato di fermo. Si sta lavorando incessantemente per migliorare i rivelatori che vi operano al fine di ottenere risultati sempre piu’ accurati e affidabili. Alla ripartenza, avendo ormai preso piu’ confidenza con la macchina, si pensa anche di poter aumentare l’energia del centro di massa, cioe’ quella a disposizione per creare nuove particelle, portandola da 7 a 10 TeV. Come e’ ovvio, questa notizia non poteva che riaccendere gli animi catastrofisti. Al momento non si e’ creato nessun buco nero perche’ l’energia era troppo bassa, gli scienziati stanno giocando con il fuoco e porteranno alla distruzione della Terra. Queste sono le argomentazioni che cominciate a leggere in rete e che non potranno che riaumentare avvicinandoci al momento della ripartenza.

Se anche dovesse formarsi un mini buco nero, perche’ gli scienziati sono tanto sicuri che non accadra’ nulla? Come sapete, si parla di evaporazione dei buchi neri. Una “strana” teoria formulata dal fisico inglese Stephen Hawking ma che, almeno da quello che leggete, non e’ mai stata verificata, si tratta solo di un’idea e andrebbe anche in conflitto con la meccanica quantistica e la relativita’. Queste sono le argomentazioni che leggete. Trovate uno straccio di articolo a sostegno? Assolutamente no, ma, leggendo queste notizie, il cosiddetto uomo di strada, non addetto ai lavori, potrebbe lasciarsi convincere che stiamo accendendo una miccia, pensando che forse si spegnera’ da sola.

Date queste premesse, credo sia il caso di affrontare il discorso dell’evaporazione dei buchi neri. Purtroppo, si tratta di teorie abbastanza complicate e che richiedono molti concetti fisici. Cercheremo di mantenere un profilo divulgativo al massimo, spesso con esempi forzati e astrazioni. Cio’ nonostante, parleremo chiaramente dello stato dell’arte, senza nascondere nulla ma solo mostrando risultati accertati.

Cominciamo proprio dalle basi parlando di buchi neri. La domanda principale che viene fatta e’ la seguente: se un buco nero non lascia sfuggire nulla dal suo interno, ne’ particelle ne’ radiazione, come potrebbe evaporare, cioe’ emettere qualcosa verso l’esterno? Questa e’ un’ottima domanda, e per rispondere dobbiamo capire meglio come e’ fatto un buco nero.

Secondo la teoria della relativita’, un buco nero sarebbe un oggetto estremamente denso e dotato di una gravita’ molto elevata. Questa intensa forza di richiamo non permette a nulla, nemmeno alla luce, di sfuggire al buco nero. Essendo pero’ un oggetto molto denso e compatto, questa forza e’ estremamente concentrata e localizzata. Immaginatelo un po’ come un buco molto profondo creato nello spazio tempo, cioe’ una sorta di inghiottitoio. La linea di confine tra la singolarita’ e l’esterno e’ quello che viene definito l’orizzonte degli eventi. Per capire questo concetto, immaginate l’orizzonte degli eventi come una cascata molto ripida che si apre lungo un torrente. Un pesce potra’ scendere e risalire il fiume senza problemi finche’ e’ lontano dalla cascata. In prossimita’ del confine, cioe’ dell’orizzonte degli eventi, la forza che lo trascina giu’ e’ talmente forte che il pesce non potra’ piu’ risalire e verra’ inghiottito.

Bene, questo e’ piu’ o meno il perche’ dal buco nero non esce nulla, nemmeno la luce. Dunque? Come possiamo dire che il buco nero evapora in queste condizioni?

La teoria dell’evaporazione, si basa sulle proprieta’ del vuoto. Come visto in questo articolo:

Se il vuoto non e’ vuoto

nella fisica, quello che immaginiamo come vuoto, e’ un continuo manifestarsi di coppie virtuali particella-antiparticella che vivono un tempo brevissimo e poi si riannichilano scomparendo. Come visto nell’articolo, non stiamo parlando di idee campate in aria, ma di teorie fisiche dimostrabili. L’effetto Casimir, dimostrato sperimentalmente e analizzato nell’articolo citato, e’ uno degli esempi.

Ora, anche in prossimita’ del buco nero si creeranno coppie di particelle e questo e’ altresi’ possibile quasi in prossimita’ dell’orizzonte degli eventi. Bene, ragioniamo su questo caso specifico. Qualora venisse creata una coppia di particelle virtuali molto vicino alla singolarita’, e’ possibile che una delle due particelle venga assorbita perche’ troppo vicina all’orizzonte degli eventi. In questo caso, la singola particella rimasta diviene, grazie al principio di indeterminazione di Heisenberg, una particella reale. Cosa succede al buco nero? Nei testi divulgativi spesso leggete che il buco nero assorbe una particella con energia negativa e dunque diminuisce la sua. Cosa significa energia negativa? Dal vuoto vengono create due particelle. Per forza di cose queste avranno sottratto un po’ di energia dal vuoto che dunque rimarra’ in deficit. Se ora una delle due particelle virtuali e’ persa, l’altra non puo’ che rimanere come particella reale. E il deficit chi lo paga? Ovviamente il buco nero, che e’ l’unico soggetto in zona in grado di pagare il debito. In soldoni dunque, e’ come se il buco nero assorbisse una particella di energia negativa e quindi diminuisse la sua. Cosa succede alla particella, ormai reale, rimasta? Questa, trovandosi oltre l’orizzonte degli eventi puo’ sfuggire sotto forma di radiazione. Questo processo e’ quello che si definisce evaporazione del buco nero.

Cosa non torna in questo ragionamento?

Il problema principale e’, come si dice in fisica, che questo processo violerebbe l’unitarieta’. Per le basi della meccanica quantistica, un qualunque sistema in evoluzione conserva sempre l’informazione circa lo stato inziale. Cosa significa? In ogni stato e’ sempre contenuta l’indicazione tramite la quale e’ possibile determinare con certezza lo stato precedente. Nel caso dei buchi neri che evaporano, ci troviamo una radiazione termica povera di informazione, creata dal vuoto, e che quindi non porta informazione.

Proprio da questa assunzione nascono le teorie che potete leggere in giro circa il fatto che l’evaporazione non sarebbe in accordo con la meccanica quantistica. Queste argomentazioni, hanno fatto discutere anche i fisici per lungo tempo, cioe’ da quando Hawking ha proposto la teoria. Sia ben chiaro, la cosa non dovrebbe sorprendere. Parlando di buchi neri, stiamo ragionando su oggetti molto complicati e per i quali potrebbero valere  leggi modificate rispetto a quelle che conosciamo.

Nonostante questo, ad oggi, la soluzione al problema e’ stata almeno “indicata”. Nel campo della fisica, si racconta anche di una famosa scommessa tra Hawking e Preskill, un altro fisico teorico del Caltech. Hawking sosteneva che la sua teoria fosse giusta e che i buchi neri violassero l’unitarieta’, mentre Perskill era un fervido sostenitore della inviolabilita dei principi primi della meccanica quantistica.

La soluzione del rebus e’ stata indicata, anche se ancora non confermata, come vedremo in seguito, chiamando in causa le cosiddette teorie di nuova fisica. Come sapete, la teoria candidata a risolvere il problema della quantizzazione della gravita’ e’ quella delle stringhe, compatibile anche con quella delle brane. Secondo questi assunti, le particelle elementari non sarebbero puntiformi ma oggetti con un’estensione spaziale noti appunto come stringhe. In questo caso, il buco nero non sarebbe piu’ una singolarita’ puntiforme, ma avrebbe un’estensione interna molto piu’ complessa. Questa estensione permette pero’ all’informazione di uscire, facendo conservare l’unitarieta’. Detto in altri termini, togliendo la singolarita’, nel momento in cui il buco nero evapora, questo fornisce ancora un’indicazione sul suo stato precedente.

Lo studio dei buchi neri all’interno della teoria delle stringhe ha portato al cosiddetto principio olografico, secondo il quale la gravita’ sarebbe una manifestazione di una teoria quantistica che vive in un numero minore di dimensioni. Esattamente come avviene in un ologramma. Come sapete, guardando un ologramma, riuscite a percepire un oggetto tridimensionale ma che in realta’ e’ dato da un immagine a 2 sole dimensioni. Bene, la gravita’ funzionerebbe in questo modo: la vera forza e’ una teoria quantistica che vive in un numero ridotto di dimensioni, manifestabili, tra l’altro, all’interno del buco nero. All’esterno, con un numero di dimensioni maggiori, questa teoria ci apparirebbe come quella che chiamiamo gravita’. Il principio non e’ assolutamente campato in aria e permetterebbe anche di unificare agevolmente la gravita’ alle altre forze fondamentali, separate dopo il big bang man mano che l’universo si raffreddava.

Seguendo il ragionamento, capite bene il punto in cui siamo arrivati. Concepire i buchi neri in questo modo non violerebbe assolutamente nessun principio primo della fisica. Con un colpo solo si e’ riusciti a mettere insieme: la meccanica quantistica, la relativita’ generale, il principio di indeterminazione di Heisenberg, le proprieta’ del vuoto e la termodinamica studiando la radiazione termica ed estendendo il secondo principio ai buchi neri.

Attenzione, in tutta questa storia c’e’ un pero’. E’ vero, abbiamo messo insieme tante cose, ma ci stiamo affidando ad una radiazione che non abbiamo mai visto e alla teoria delle stringhe o delle brance che al momento non e’ confermata. Dunque? Quanto sostenuto dai catastrofisti e’ vero? Gli scienziati rischiano di distruggere il mondo basandosi su calcoli su pezzi di carta?

Assolutamente no.

Anche se non direttamente sui buchi neri, la radiazione di Hawking e’ stata osservata in laboratorio. Un gruppo di fisici italiani ha osservato una radiazione paragonabile a quella dell’evaporazione ricreando un orizzonte degli eventi analogo a quello dei buchi neri. Come visto fin qui, l’elemento fondamentale del gioco, non e’ il buco nero, bensi’ la curvatura della singolarita’ offerta dalla gravita’. Bene, per ricreare un orizzonte degli eventi, basta studiare le proprieta’ ottiche di alcuni materiali, in particolare il loro indice di rifrazione, cioe’ il parametro che determina il rallentamento della radiazione elettromagnetica quando questa attraversa un mezzo.

Nell’esperimento, si e’ utilizzato un potente fascio laser infrarosso, in grado di generare impulsi cortissimi, dell’ordine dei miliardesimi di metro, ma con intensita’ miliardi di volte maggiore della radiazione solare. Sparando questo fascio su pezzi di vetro, il punto in cui la radiazione colpisce il mezzo si comporta esattamente come l’orizzonte degli eventi del buco nero, creando una singolarita’ dalla quale la luce presente nell’intorno non riesce ad uscire. In laboratorio si e’ dunque osservata una radiazione con una lunghezza d’onda del tutto paragonabile con quella che ci si aspetterebbe dalla teoria di Hawking, tra 850 e 900 nm.

Dunque? Tutto confermato? Se proprio vogliamo essere pignoli, no. Come visto, nel caso del buco nero gioca un ruolo determinante la gravita’ generata dal corpo. In laboratorio invece, la singolarita’ e’ stata creata otticamente. Ovviamente, mancano ancora degli studi su questi punti, ma l’aver ottenuto una radiazione con la stessa lunghezza d’onda predetta dalla teoria di Hawking e in un punto in cui si genera un orizzonte degli eventi simile a quello del buco nero, non puo’ che farci sperare che la teoria sia giusta.

Concludendo, l’evaporazione dei buchi neri e’ una teoria molto complessa e che richiama concetti molto importanti della fisica. Come visto, le teorie di nuova fisica formulate in questi anni, hanno consentito di indicare la strada probabile per risolvere le iniziali incompatibilita’. Anche se in condizioni diverse, studi di laboratorio hanno dimostrato la probabile esistenza della radiazione di Hawking, risultati che confermerebbero l’esistenza della radiazione e dunque la possibilita’ dell’evaporazione. Ovviamente, siamo di fronte a teorie in parte non ancora dimostrate ma solo ipotizzate. I risultati ottenuti fino a questo punto, ci fanno capire pero’ che la strada indicata potrebbe essere giusta.

Vorrei chiudere con un pensiero. Se, a questo punto, ancora pensate che potrebbero essere tutte fantasie e che un buco nero si potrebbe creare e distruggere la Terra, vi faccio notare che qui parliamo di teorie scientifiche, con basi solide e dimostrate, e che stanno ottenendo le prime conferme da esperimenti diretti. Quando leggete le teorie catastrofiste in rete, su quali basi si fondano? Quali articoli vengono portati a sostegno? Ci sono esperimenti di laboratorio, anche preliminari ed in condizioni diverse, che potrebbero confermare quanto affermato dai catastrofisti?

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Perche’ la ricerca: economia

5 Gen

Nel post precedente:

Perche’ la ricerca: scienza e tecnologia

abbiamo cercato di rispondere alla domanda “perche’ fare ricerca?” discutendo il lato tecnologico e le possibili ricadute scientifiche nella vita di tutti i giorni. Come detto, stiamo cercando di rispondere a questa domanda non in senso generale, ma proprio contestualizzando la risposta in questi anni di profonda crisi economica o, comunque, investendo nella ricerca a discapito di settori considerati piu’ importanti o vitali per tutti i cittadini.

Dopo queste considerazioni piu’ tecniche, vorrei invece analizzare il discorso economico della ricerca. Come sappiamo, e come abbiamo visto nel precedente post, fare ricerca ad alti livelli implica investimenti molto massicci. Tolte le ricadute tecnologiche, cerchiamo invece di capire se sono investimenti a fondo perduto o se implicano un ritorno economico tangibile per le nazioni.

Come nel caso precedente, prendiamo come esempio tra grandi ricerche in settori diversi per cercare di quantificare in modo pratico, numeri alla mano. I soliti tre esempi sono: ITER, il reattore a fusione per scopi di ricerca, le missioni spaziali e il CERN, come esempio di grande laboratorio per la fisica delle particelle.

Partiamo da ITER e partiamo con una considerazione che ci deve far riflettere. ITER e’ una collaborazione internazionale in cui entrano gli Stati Uniti, il Giappone e alcuni paesi europei. Come detto, parliamo di un investimento dell’ordine di 10 miliardi di euro. Forse vi fara’ riflettere il fatto che Francia e Giappone hanno discusso per lungo tempo proprio per cercare di costruire il reattore nel proprio paese. Ovviamente averlo in casa offre dei vantaggi notevoli in termini di ricadute tecnologiche, ma sicuramente implica una maggiore spesa per il paese ospitante. Conoscendo la situazione economica attuale, se un paese cerca in tutti i modi di averlo in casa e dunque spendere di piu’, significa che qualcosa indietro deve avere.

Passiamo invece alle missioni spaziali. Altro tema scottante nel discorso economico e molte volte visto come una spesa enorme ma non necessaria in tempi di crisi. Partiamo, ad esempio, dal discorso occupazionale. Molte volte sentiamo dire dai nostri politicanti o dagli esperti di politica ecnomica che si devono fare investimenti per creare posti di lavoro. Vi faccio un esempio, al suo apice, il programma di esplorazione Apollo dava lavoro a circa 400000 persone. Non pensiamo solo agli scienziati. Un programma del genere crea occupazione per tutte le figure professionali che vanno dall’operaio fino al ricercatore, dall’addetto alle pulizie dei laboratori fino all’ingegnere. Ditemi voi se questo non significa creare posti di lavoro.

Passando invece all’esempio del CERN, sicuramente i numeri occupazionali sono piu’ piccoli, ma di certo non trascurabili. Al CERN ci sono circa 2500 persone che tutti i giorni lavorano all’interno del laboratorio. A questi numeri si devono poi sommare quelli dei paesi che partecipano agli esperimenti ma non sono stanziali a Ginevra. In questo caso, arriviamo facilmente ad una stima intorno alle 15000 unita’.

A questo punto pero’ sorge una domanda che molti di voi si staranno gia’ facendo. LHC, come esempio, e’ costato 6 miliardi di euro. E’ vero, abbiamo creato posti di lavoro, ma la spesa cosi’ elevata giustifica questi posti? Con questo intendo, se il ritorno fosse solo di numeri occupazionali, allora tanto valeva investire cifre minori in altri settori e magari creare piu’ posti di lavoro.

L’obiezione e’ corretta. Se il ritorno fosse solo questo, allora io stesso giudicherei l’investimento economico, non scientifico, fallimentare. Ovviamente c’e’ molto altro in termini finanziari.

Prima di tutto vi devo spiegare come funziona il CERN. Si tratta di un laboratorio internazionale, nel vero senso della parola. Il finanziamento del CERN viene dai paesi membri. Tra questi, dobbiamo distinguere tra finanziatori principali e membri semplici. Ovviamente i finanziatori principali, che poi sono i paesi che hanno dato il via alla realizzazione del CERN, sono venti, tra cui l’Italia, ma, ad esempio, alla costruzione di LHC hanno partecipato circa 50 paesi. Essere un finanziatore principale comporta ovviamente una spesa maggiore che viene pero’ calcolata anno per anno in base al PIL di ogni nazione.

Concentriamoci ovviamente sul caso Italia, ed in particolare sugli anni caldi della costruzione di LHC, quelli che vanno dal 2000 al 2006, in cui la spesa richiesta era maggiore.

Nel 2009, ad esempio, il contributo italiano e’ stato di 83 milioni di euro, inferiore, in termini percentuali, solo a Francia, Germania e Regno Unito.

Contributo italiano al CERN in milioni di euro. Fonte: S.Centro, Industrial Liasion Officer

Contributo italiano al CERN in milioni di euro. Fonte: S.Centro, Industrial Liaison Officer

Il maggiore ritorno economico per i paesi e’ ovviamente in termini di commesse per le industrie. Che significa questo? Servono 100 magneti, chi li costruisce? Ovviamente le industrie dei paesi membri che partecipano ad una gara pubblica. Il ritorno economico comincia dunque a delinearsi. Investire nel CERN implica un ritorno economico per le industrie del paese che dunque assumeranno personale per costruire questi magneti. Stiamo dunque facendo girare l’economia e stiamo creando ulteriori posti di lavoro in modo indiretto.

Apriamo una parentesi sull’assegnazione delle commesse. Ovviamente si tratta di gare pubbliche di appalto. Come viene decretato il vincitore? Ogni anno, il CERN calcola un cosiddetto “coefficiente di giusto ritorno”, e’ un parametro calcolato come il rapporto tra il ritorno in termini di commesse per le industrie e il finanziamento offerto alla ricerca. Facciamo un esempio, voi investite 100 per finanziare la costruzione di LHC, le vostre industrie ottengono 100 di commesse dal CERN, il coefficiente di ritorno vale 1.

Ogni anno, in base al profilo di spesa, ci saranno coefficienti diversi per ciascun paese. Si parla di paesi bilanciati e non bilanciati a seconda che il loro coefficiente sia maggiore o minore del giusto ritorno. In una gara per una commessa, se l’industria di un paese non bilanciato arriva seconda dietro una di un paese gia’ bilanciato, e lo scarto tra le offerte e’ inferiore al 20%, allora l’industria del paese non bilanciato puo’ aggiudicarsi la gara allineandosi con l’offerta del vincitore. In questo modo, viene ripartito equamente, secondo coefficienti matematici, il ritorno per ciascun paese.

Cosa possiamo dire sull’Italia? Negli anni della costruzione di LHC, LItalia ha sempre avuto un coefficiente molto superiore al giusto ritorno. Per dare qualche numero, tra il 1995 e il 2008, il nostro paese si e’ aggiudicato commesse per le nostre aziende per un importo di 337 milioni di euro.

Vi mostro un altro grafico interessante, sempre preso dal rapporto del prof. S.Centro dell'”Industrial Liaison Officer for Italian industry at CERN”:

Commesse e coefficiente di ritorno per l'Italia. Fonte: S.Centro, Industrial Liaison Officer

Commesse e coefficiente di ritorno per l’Italia. Fonte: S.Centro, Industrial Liaison Officer

A sinistra vedete gli importi delle commesse per gli anni in esame per il nostro Paese, sempre in milioni di euro, mentre a destra troviamo il coefficiente di ritorno per l’Italia calcolato in base all’investimento fatto. Tenete conto che in quesgli anni, la media del giusto ritorno calcolato dal CERN era di 0.97.

Guardando i numeri, non possiamo certo lamentarci o dire che ci abbiano trattato male. La conclusione di questo ragionamento e’ dunque che un investimento nella ricerca scientifica di qualita’, permette un ritorno economico con un indotto non indifferente per le aziende del paese. Ogni giorno sentiamo parlare di rilancio delle industrie, di creazione di posti di lavoro, di rimessa in moto dell’economia, mi sembra che LHC sia stato un ottimo volano per tutti questi aspetti.

Ultima considerazione scientifico-industriale. Le innovazioni apportate facendo ricerca scientifica, non muoiono dopo la realizzazione degli esperimenti. Soluzioni tecnologiche e migliorie entrano poi nel bagaglio industriale delle aziende che le utilizzano per i loro prodotti di punta. Molte aziende vengono create come spin-off di laboratori, finanziate in grossa parte dalla ricerca e poi divengono delle realta’ industriali di prim’ordine. L’innovazione inoltra porta brevetti che a loro volta creano un ritorno economico futuro non quantificabile inizialmente.

Concludendo, anche dal punto di vista economico, fare ricerca non significa fare finanziamenti a fondo perduto o fallimentari. Questo sicuramente comporta un ritorno economico tangibile immediato. Inoltre, il ritorno in termini tecnologici e di innovazione non e’ quantificabile. Fare ricerca in un determinato campo puo’ portare, immediatamente o a distanza di anni, soluzioni che poi diventeranno di uso comune o che miglioreranno settori anche vitali per tutti.

Vi lascio con una considerazione. Non per portare acqua al mulino della ricerca, ma vorrei farvi riflettere su una cosa. In questi anni di crisi, molti paesi anche europei, ma non l’Italia, hanno aumentato i fondi dati alla ricerca scientifica. A fronte di quanto visto, forse non e’ proprio uno sperpero di soldi.

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Perche’ la ricerca: scienza e tecnologia

4 Gen

Molte volte, parlando di scienza e di ricerca scientifica, mi viene fatta una domanda apparentemente banale, ma che in realta’ nasconde un vero e proprio mondo: Perche’ fare ricerca?

Ovviamente in questo caso non parlo del senso letterale della domanda. E’ noto a tutti che la ricerca scientifica ci permette di aumentare la nostra conoscenza del mondo, dei meccanimi della natura e ci consente di dare un piccolo contributo al dilemma: da dove veniamo e dove andiamo?

In questo post e nel successivo, vorrei cercare di parlare proprio del senso piu’ pratico di questa domanda. Al giorno d’oggi, con la crisi che imperversa, molti si chiedono che senso abbia “sperperare” soldi nella ricerca scientifica invece di utilizzarli per fini piu’ pratici e tangibili per la societa’.

In questo primo post vorrei parlare delle motivazioni scientifiche e tenologiche della ricerca scientifica, mentre nel prossimo post mi vorrei concentrare sugli aspetti piu’ prettamente economici.

Premesso questo, cerchiamo di capire quali sono le implicazioni e le migliorie scientifiche apportate dall’attivita’ di ricerca.

Molti di voi sapranno gia’ che diverse tecniche di diagnostica medica, come la radiografia, la TAC, la PET, provengono e sono state pensate nell’ambito della ricerca scientifica ed in particolare per la costruzione di rivelatori per le particelle. Questi sono discorsi abbastanza noti e per principio non vi faro’ la solita storiella con date e introduzione negli ospedali di queste tecniche.

Parliamo invece di cose meno note, ma forse ben piu’ importanti.

A costo di sembrare banale, vorrei proprio iniziare da LHC al CERN di Ginevra e dalla ricerca nella fisica delle alte energie. In questo caso, stiamo parlando del piu’ grande acceleratore in questo settore e ovviamente anche del piu’ costoso. Con i suoi 6 miliardi di euro, solo per l’acceleratore senza conteggiare gli esperimenti, parliamo di cifre che farebbero saltare sulla sedia molti non addetti ai lavori.

Che vantaggi abbiamo ottenuto a fronte di una spesa cosi grande?

Next: il primo server WWW del CERN

Next: il primo server WWW del CERN

Partiamo dalle cose conosciute. Solo per darvi un esempio, il “world wide web” e’ nato proprio al CERN di Ginevra, dove e’ stato sviluppato per creare un modo semplice e veloce per lo scambio di dati tra gli scienziati. Ad essere sinceri, un prototipo del WWW era gia’ stato sviluppato per ambiti militari, ma l’ottimizzazione e la resa “civile” di questo mezzo si deve a due ricercartori proprio del CERN:

CERN, were the web was born

Restando sempre in ambito tecnlogico, anche l’introduzione del touchscreen e’ stata sviluppata al CERN e sempre nell’ambito della preparazione di rivelatori di particelle. A distanza di quasi 20 anni, questi sistemi sono ormai di uso collettivo e vengono utilizzati in molti degli elettrodomestici e dei gadget a cui siamo abituati.

Uno dei primi sistemi touch introdotti al CERN

Uno dei primi sistemi touch introdotti al CERN

Pensandoci bene, tutto questo e’ normale. Rendiamoci conto che costruire un acceleratore o un esperimento sempre piu’ preciso, impone delle sfide tecnologiche senza precedenti. Laser, sistemi di controllo ad alta frequenza, magneti, rivelatori sono solo alcuni esempi dei sistemi che ogni volta e’ necessario migliorare e studiare per poter costruire una nuova macchina acceleratrice.

Anche in ambito informatico, la ricerca in fisica delle alte energie impone dei miglioramenti che rappresentano delle vere e proprie sfide tecnologiche. Un esperimento di questo tipo, produce un’enorme quantita’ di dati che devono essere processati e analizzati in tempi brevissimi. Sotto questo punto di vista, la tecnologia di connessione ad altissima velocita’, le realizzazione di sistemi di contenimento dei dati sempre piu’ capienti e lo sviluppo di macchine in grado di fare sempre piu’ operazioni contemporaneamente, sono solo alcuni degli aspetti su cui la ricerca scientifica per prima si trova a lavorare.

Saltando i discorsi della diagnostica per immagini di cui tutti parlano, molte delle soluzioni per la cura di tumori vengono proprio dai settori della fisica delle alte energia. Basta pensare alle nuove cure adroterapiche in cui vengono utilizzati fasci di particelle accelerati in piccoli sistemi per colpire e distruggere tumori senza intaccare tessuti sani. Secondo voi, dove sono nate queste tecniche? Negli acceleratori vengono accelerate particelle sempre piu’ velocemente pensando sistemi sempre piu’ tecnologici. La ricerca in questi settori e’ l’unico campo che puo’ permettere di sviluppare sistemi via via piu’ precisi e che possono consentire di colpire agglomerati di cellule tumorali di dimensioni sempre minori.

Detto questo, vorrei cambiare settore per non rimanere solo nel campo della fisica delle alte energie.

In Francia si sta per realizzare il primo reattore a fusione per scopi di ricerca scientifica. Questo progetto, chiamato ITER, e’ ovviamente una collaborazione internazionale che si prefigge di studiare la possibile realizzazione di centrali necleari a fusione in luogo di quelle a fissione. Parlare di centrali nucleari e’ un discorso sempre molto delicato. Non voglio parlare in questa sede di pericolosita’ o meno di centrali nucleari, ma il passaggio della fissione alla fusione permetterebbe di eliminare molti degli svantaggi delle normali centrali: scorie, fusione totale, ecc. Capite dunque che un investimento di questo tipo, parliamo anche in questo caso di 10 miliardi di euro investiti, potrebbe portare un’innovazione nel campo della produzione energetica senza eguali. Se non investiamo in queste ricerche, non potremmo mai sperare di cambiare i metodi di produzione dell’energia, bene primario nella nostra attuale societa’.

La sonda Curiosity della NASA

La sonda Curiosity della NASA

Passando da un discorso all’altro, in realta’ solo per cercare di fare un quadro variegato della situazione, pensiamo ad un altro settore sempre molto discusso, quello delle missioni spaziali. Se c’e’ la crisi, che senso ha mandare Curiosity su Marte? Perche’ continuiamo ad esplorare l’universo?

Anche in questo caso, saltero’ le cose ovvie cioe’ il fatto che questo genere di missioni ci consente di capire come il nostro universo e’ nato e come si e’ sviluppato, ma parlero’ di innovazione tecnologica. Una missione spaziale richiede l’utilizzo di sistemi elettronici che operano in ambienti molto difficili e su cui, una volta in orbita, non potete certo pensare di mettere mano in caso di guasto. L’affidabilita’ di molte soluzioni tecnologiche attuali, viene proprio da studi condotti per le missioni spaziali. Esperimenti di questo tipo comportano ovviamente la ricerca di soluzioni sempre piu’ avanzate, ad esempio, per i sistemi di alimentazione. L’introduzione di batterie a lunghissima durata viene proprio da studi condotti dalle agenzie spaziali per le proprie missioni. Anche la tecnologia di trasmissione di dati a distanza, ha visto un salto senza precedenti proprio grazie a questo tipo di ricerca. Pensate semplicemente al fatto che Curiosity ogni istante invia dati sulla Terra per essere analizzati. Se ci ragionate capite bene come queste missioni comportino lo sviluppo di sistemi di trasferimento dei dati sempre piu’ affidabili e precise per lunghissime distanze. Ovviamente tutti questi sviluppi hanno ricadute molto rapide nella vita di tutti i giorni ed in settori completamente diversi da quelli della ricerca scientifica.

Concludendo, spero di aver dato un quadro, che non sara’ mai completo e totale, di alcune delle innovazioni portate nella vita di tutti i giorni dalla ricerca scientifica. Come abbiamo visto, affrontare e risolvere sfide tecnologiche nuove e sempre piu’ impegnativa consente di trovare soluzioni che poi troveranno applicazione in campi completamente diversi e da cui tutti noi potremmo trarre beneficio.

Ovviamente, ci tengo a sottolineare che la conoscenza apportata dai diversi ambiti di ricerca non e’ assolutamente un bene quantificabile. Se vogliamo, questo potrebbe essere il discorso piu’ criticabile in tempi di crisi, ma assolutamente e’ la miglioria della nostra consapevolezza che ci offre uno stimolo sempre nuovo e crea sempre piu’ domande che risposte.

Post successivo sul discorso economico: Perche’ la ricerca: economia

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Due parole sull’antimateria

24 Dic

A pochissime ore dal tanto atteso 21/12, ci siamo divertiti a passare in rassegna le ultimissime catastrofi annunciate, mostrando la completa assurdita’ dal punto di vista scientifico.

In particolare, in questo post:

Lotteria profetica 2012

abbiamo parlato del racconto del presunto Maya circa la possibilita’ che in un collisore di particelle venissero formate particelle in grado di innescare terremoti.

Questo racconto ci offre lo spunto per parlare di due aspetti della scienza molto importanti e spesso poco conosciuti dal grande pubblico: l’antimateria e gli acceleratori di particelle. In questo primo post, vorrei parlarvi appunto delle antiparticelle e dell’antimateria, argomenti che spesso offrono importanti spunti per scenari complottisti e per film di fantascienza, rimandando ad un successivo post la trattazione degli acceleratori di particelle.

Ovviamente cercheremo di dare un’infarinatura di base comprensibile a tutti, senza scendere in particolari troppo avanzati che rischierebbero di annoiarvi.

In questo post:

Piccolo approfondimento sulla materia strana

abbiamo gia’ parlato di Modello Standard, mostrando come le particelle fondamentali, che altro non sono che i costituenti di tutto quello che vediamo o anche i responsabili delle interazioni, sono in realta’ in numero molto ridotto. Abbiamo in particolare diviso queste particelle in famiglie, parlando di leptoni, quark, neutrini e bosoni messaggeri.

Ora, come entrano in questo discorso le antiparticelle?

Particelle e antiparticelle: quarks e leptoni

Particelle e antiparticelle: quarks e leptoni

Cerchiamo di prendere il discorso alla larga. Le particelle elementari, opportunamente combiate tra loro, formano la materia. Questo ci dovrebbe mettere sulla strada giusta. L’antimateria dunque sara’ ottenuta combinando in modo opportuno antiparticelle. Di nuovo, cosa sono le antiparticelle?

Nel modello standard, per ogni particella esiste una sua antiparticella. Quali sono le differenze tra una particella e la sua antiparticella?

Ciascuna particella e’ caratterizzata da quelli che vengono detti numeri quantici. Sicuramente tutti conoscono la carica elettrica. Bene, questo e’ il primo numero quantico, ma non il solo. Immaginate l’insieme dei numeri quantici come la carta d’identita’ delle particelle. Se volete descrivere una persona a qualcuno che non la conosce, cosa gli dite? E’ alto cosi’, ha i capelli di questo colore, carnagione cosi’, corporatura, ecc. Per descrivere una particella, si utilizzano i numeri quantici. Il set di numeri quantici utilizzato descrive completamente una particella.

Bene, senza scomodare tutti i numeri quantici, particella e corrispondente antiparticella hanno la stessa massa ma carica elettrica opposta. In alcuni casi, particella e antiparticella possono essere la stessa cosa, come nel caso del fotone in cui fotone e antifotone sono la stessa particella, molte volte invece si tratta di due entita’ distinte.

Se siamo giunti fino a questo punto, ormai la strada e’ in discesa.

Esistono le antiparticelle? Sono pericolose? Sono mai state osservate?

La antiparticelle sono una realta’ fisica. La prima osservazione avvenne nel 1932 quando Anderson trovo’ nei raggi cosmici gli antielettroni, anche detti positroni. Da li in avanti, molte altre particelle vennero osservate. Pensate che al giorno d’oggi le antiparticelle vengono prodotte tranquillamente nei nostri laboratori. Molti degli acceleratori nel mondo, fanno scontrare fasci di particelle con le corrispondenti antiparticelle. In questo senso, potete trovare collisori elettrone-positrone, protone-antiprotone, ecc.

Capito il discorso antiparticelle, torniamo a parlare di antimateria. Come detto sopra, se la materia e’ composta da particelle, l’antimateria sara’ composta da antiparticelle.

Facciamo un esempio molto semplice. Immaginate di voler realizzare un atomo di elio. In questo caso, basta prendere due neutroni e due protoni per fare il nucleo e due elettroni da mettere in rotazione. Se ora volessimo realizzare un atomo di antielio? Dobbiamo prendere due antiprotoni, due antineutroni e due positroni (come detto, antielettroni). In questo caso, invece di un atomo di materia ne avreste uno di antimateria.

Esiste l’antimateria?

Le antiparticelle possono essere osservate in natura come prodotti di decadimento di particelle o anche essere prodotte in laboratorio. Sempre in laboratorio, negli acceleratori, e’ stato possibile produrre antiatomi molto leggeri. La domanda dunque e’: in natura dove si trova l’antimateria?

La risposta in questo caso non e’ semplice. Secondo la teoria scientificamente piu’ probabile, nel big bang, l’antimateria e’ scomparsa lasciando il posto solo alla materia. Quest’ultima poi, secondo vari meccanismi, durante l’espansione ha poi formato le stelle, le galassie, i pianeti, ecc. Esistono teorie secondo le quali tracce di antimateria sarebbero ancora presenti da qualche parte. Nella nostra galassia non si e’ osservata antimateria.

Il perche’ di questo punto e’ facilmente comprensibile. Entrando in contatto, materia e antimateria danno luogo alla cosiddetta “annichilazione”, processo in cui particella e antiparticelle scompaiono producendo fotoni ed energia.

Ora, questo ragionamento vi fa capire varie cose. Tornando al discorso “lotteria profetica”, capite subito l’impossibilita’ di avere un pianeta di antimateria in rotta di collisione con le Terra.

Inoltre, capite bene anche un’altra cosa, cioe’ l’assurdita’ scientifica proposta dal film “Angeli e Demoni” in cui al CERN di Ginevra si producevano provette con dentro “antimateria”.

Concludendo, abbiamo finalmente capito cosa si intende parlando di antiparticelle e antimateria. Non c’e’ assolutamente nulla di sconvolgente nel parlare di questi argomenti. Capite bene come le ipotesi complottiste e catastrofiste create intorno a questi argomenti sono soltanto frutto di fantasie dettate da scenari fantascientifici o da qualcuno dotato di troppa fantasia.

 

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Piccolo approfondimento sulla materia strana

23 Nov

Approfitto di questo post per aprire una piccola parentesi puramente scientifica.

Dopo l’articolo:

2012, fine del mondo e LHC

ho ricevuto alcune richieste di utenti che chiedevano maggiori informazioni sui cosiddetti “strangelet”. In particolare, alcuni di voi erano interessati a capire meglio di cosa si trattasse e perche’ sarebbero ipotizzati come potenziali cause di una fine del mondo.

Ovviamente anche in questo caso cerchero’ di mantenere un taglio estremamente divulgativo, cercando di farvi capire con parole semplici di cosa si tratta.

Prendiamo il discorso molto alla larga.

Tutti sapete che la materia e’ composta di atomi. All’interno degli atomi trovate un nucleo centrale e degli elettroni che girano intorno.  Ora, all’interno del nucleo ci sono protoni e neutroni. A loro volta, i protoni ed i neutroni non sono particelle elementari, ma sono formati da quark tenuti insieme dalla forza forte.

In parole povere, abbiamo una sorta di matrioska in cui il nostro gioco termina solo quando arriviamo ai costituenti fondamentali. Con questo si intendono quelle particelle che, ad oggi, non sono formate da “pezzi” piu’ piccoli. Se volete, siamo arrivati ai mattoncini fondamentali che formano la materia.

Il numero di mattoncini fondamentali non e’ elevatissimo, ma distinguiamo tra leptoni e quark.

Cercate di non perdere il filo del discorso. L’elettrone, di cui tutti conosciamo l’esistenza, appartiene alla famiglia dei leptoni. Oltre all’elettrone ci sono il muone, il tau e 3 neutrini, detti a loro volta elettronico, muonico e del tau.

Nella famiglia dei quark, ci sono invece 6 membri che hanno nomi alquanto fantasiosi: up, down, strange, charm, bottom, top. Tradotti in italiano: su, giu’, strano, affascinante, basso e alto.

Tabella riassuntiva dei costituenti fondamentali nel modello standard

Prima di far venire il mal di testa a chi legge, i mattoncini fondamentali che conosciamo sono solo i quark ed i leptoni. Per dirla tutta, a questi si dovrebbero aggiungere anche i mediatori delle forze fondamentali che sono: il fotone, il W, lo Z ed il gluone. Ma questi ultimi non ci servono nella nostra discussione.

La figura riportata ci puo’ aiutare a fissare in mente questi concetti.

Se siete riusciti a leggere fino a questo punto, ora avrete la strada in discesa.

Come detto prima, nel nucleo troviamo neutroni e protoni. Queste particelle, che come anticipato sono a loro volta composte di quark, sono in realta’ formati solo da combinazioni di quark up e down.

Facciamo ora questo ragionamento. Tutto cio’ che ci circonda, noi compresi, e’ formato da atomi. Rileggendo quanto detto, tutto cio’ che ci circonda e’ formato da elettroni e quark up e down (nei protoni e neutroni). La differenza tra i diversi atomi sta solo nel numero di protoni, neutroni e elettroni che abbiamo.

Cosa significa questo? Tutta la materia che ci circonda, e che vediamo intorno a noi, e’ formata solo da 3 particelle fondamentali. E tutte le altre che vediamo nell’immagine dei costituenti fondamentali che fine fanno?

Le altre particelle entrano nei processi di decadimento che osserviamo in natura e che, molto spesso, siamo in grado di riprodurre nei nostri laboratori. Molti di questi, chiamiamoli in modo improprio, “composti” sono instabili, cioe’ dopo un tempo molto breve decadono in altre particelle piu’ stabili.

In condizioni normali, sappiamo che il protone, il neutrone e l’elettrone, che stiamo ora discutendo, sono stabili nell’atomo. La prova di questo ce l’avete guardandovi intorno. Se, ad esempio, il protone decadesse in altre particelle, dovreste vedere la materia scomparire e lasciare il posto ad altro.

Bene, gli strangelets, di cui abbiamo parlato nell’articolo su LHC, altro non sono che stati legati contenenti quark strange. Proprio da questo, si parla di materia “strana”.

Nella teoria degli strangelet, queste particelle potrebbero essere stabili ed interagire con la materia ordinaria, trasformandola a sua volta in materia strana. Da qui la teoria vista per cui eventuali atomi di questo tipo potrebbero trasformare l’intera Terra in un blocco di materia strana.

La confutazione di questa teoria e’ stata gia’ fatta nel precedente articolo. Spero con questo post di essere riuscito a farvi capire meglio di cosa si parla quando si citano gli strangelet e la materia strana in generale.

Solo per completezza, si ipotizza che la materia strana possa essere contenuta all’interno delle stelle di neutroni. Per questi corpi, l’alta densita’ di materia nel nucleo e l’elevata pressione a cui questa materia e’ sottoposta, potrebbero generare stati legati stabili contenenti quark strani.

Parlare di 2012 e profezie per la fine del mondo ci consente di esplorare aree e argomenti della scienza moderna, molto spesso considerati ostici e poco divulgabili al grande pubblico. Per continuare ad analizzare le profezie sul 2012, ma soprattutto a parlare di scienza vera e sempre attuale, non perdete in libreria “Psicosi 2012. Le risposte della scienza”.

2012, fine del mondo e LHC

16 Nov

Dopo aver parlato di pianeti erranti, fenomeni atmosferici, asteroidi, rifugi sotterranei e chi piu’ ne ha, piu’ ne metta, in questo post vorrei tornare a qualcosa piu’ vicino alla Fisica in senso stretto.

Tutti avranno sentito parlare di LHC, cioe’ l’acceleratore di particelle lungo 27 Km costruito sottoterra tra Francia e Svizzera. Stiamo parlando del pu’ grande e potente acceleratore di particelle mai costruito e dove solo pochi mesi fa e’ stata annunciata la scoperta del bosone di Higgs.

In questo post, non voglio entrare nel merito dei parametri dell’acceleratore, ne tantomeno parlare di fisica. Voglio parlare di LHC solo in relazione al 2012 e a tutte le voci che vorrebbero questo acceleratore come una potentissima arma in grado di mettere in pericolo l’intera razza umana.

Gia’ prima dell’accensione di LHC, numerose critiche erano state mosse a questo acceleratore e molte di queste sono anche arrivate in tribunale. Proprio di questi giorni e’ l’ultimo rigetto da parte della corte europea per una richiesta di spegnimento proposta da una cittadina tedesca.

In questo post, vorrei cercare di ragionare sulle critiche mosse nei confronti di LHC e capire quali sono i concetti sui quali si basano queste richieste di spegnimento.

Una delle piu’ seguite teorie catastrofiste su LHC e’ stata proposta da Steve Alten nel suo libro: “2012. La fine del mondo”. Secondo Alten, l’aumento di terremoti a livello mondiale, che stiamo viviendo in questi ultimi mesi, sarebbe proprio connessa con LHC.

Prima di tutto, facciamo una premessa importante. In numerosi articoli abbiamo gia’ parlato di terremoti dal momento che questi fenomeni vengono anche messi in relazione con l’influenza gravitazionale del decimo pianeta. Consultando i vari database sparsi in rete, e’ stato possibile analizzare statisticamente il numero dei terremoti, smentendo assolutamente un aumento sia nel numero che nell’intensita’ delle scosse:

Riassunto sui terremoti

Analisi statistica dei terremoti

Dati falsi sui terremoti

Terremoti, basta chiacchiere. Parliamo di numeri.

Terremoti: nuove analisi statistiche

Fatta questa premessa, e’ comunque interessante capire perche’ LHC verrebbe imputato come una causa dell’insorgenza di terremoti.

Sempre secondo Alten, all’interno di LHC verrebbero prodotte delle particolari strutture potenzialmente pericolose: mini buchi neri e perticelle “strangelet”. Vediamo singolarmente di cosa si tratta capendo anche se la loro esistenza e’ veramente possibile.

Una tratto dell’acceleratore LHC

Per quanto riguarda i mini buchi neri, l’ipotesi di produzione non e’ formalmente corretta. In molti siti, anche a carattere scientifico, si parla di produzione di mini buchi neri, ma assolutamente non pericolosi. Per capire l’affermazione fatta, cerchiamo di ragionare insieme. Come si forma un buco nero? Affinche’ questo venga prodotto, e’ necessario che la natura concentri una quantita’ molto elevata di massa in uno spazio ristretto. In questo modo si ottiene una regione ad altissima densita’ di energia, da cui potrebbe formarsi un buco nero. Ora, per quanto potente sia LHC, l’energia dei fasci utilizzati non e’ neanche lontanamente vicina a quelle che troviamo in natura nei raggi cosmici. Esiste pero’ una teoria scientifica, secondo la quale all’interno di acceleratori di particelle si potrebbero formare precursori di mini buchi neri, cioe’ particelle potenzialmente in grado di accrescere un buco nero risucchiando la materia circostante. Ad oggi, queste particelle non sono mai state osservate.

Dunque, siamo nel campo delle ipotesi, la formazione di questi che possiamo chiamare pre-buchi-neri non e’ neanche certa. Nonostante questo, per analizzare e scongiurare ogni possibile scenario, possiamo studiare l’evoluzione nel tempo nel caso in cui queste particelle venissero formate.

Come anticipato, per far accrescere un buco nero e’ necessario che questo assorba materia dall’ambiete circostante. Proprio questo meccanismo ha contribuito all’ipotesi secondo la quale i buchi neri all’interno di LHC avrebbero risucchiato, nel giro di pochi minuti, l’intera Terra. Premettiamo subito che questo effetto non e’ possibile! Prima di tutto, i tubi in cui vengono fatti circolare i fasci sono tenuti ad un vuoto molto spinto. Questo riduce da subito la quantita’ di materia in prossimita’ dell’eventuale buco nero e che dunque potrebbe essere utilizzata per l’accrescimento.

Se ancora non foste convinti della non pericolosita’ dell’ipotesi fatta, possiamo ragionare anche sull’eventuale esistenza del buco nero. Una delle maggiori teorie formulate dal fisico Stephen Hawking e’ la cosidetta teoria dell’evaporazione dei buchi neri. Secondo questa ipotesi, il buco nero emette radiazione, nota come di Hawking, e l’effetto di questa emissione e’ la perdita di particelle dal buco nero verso l’esterno. La continua emissione di radiazione di Hawking e’ artefice, in un tempo piu’ o meno lungo, della completa evaporazione di un buco nero. Per un buco nero di media massa, il tempo necessario all’evaporazione e’ di qualche miliardo di anni.

Per media dimensione intendiamo qualcosa con una massa dell’ordine di 10^12 Kg. Se ora pensiamo ad un buco nero formato al limite di una sola leggerissima particella, capite bene che l’evaporazione del pre-buco nero sarebbe istantanea, scongiurando definitivamente ogni possibilita’ di accrescimento.

Risolto il problema dei buchi neri, resta da chiarire il discorso strangelet. Uno strangelet e’ una particella, del tutto ipotetica, pensata come uno stato legato di quark strange. Per completezza di informazioni, mentre i protoni ed i neutroni sono stati legati formati da quark “up” e “down”, gli strangelet sarebbero composti da quark “strange”, cioe’ un’altra tipologia di quark, e proprio per questo parliamo di materia “strana”. In questo contesto, la cosa importante da capire e’ il perche’ queste particelle, ripeto per il momento solo teorizzate, potrebbe essere pericolose.

Date le proprieta’ di uno strangelet, se un acceleratore riuscisse a produrre una di queste particelle a carica negativa, questa potrebbe interagire immediatamente con le particelle ordinarie,e trasformare anche queste in materia strana. Il risultato sarebbe un effetto a catena di conversioni che, nel giro di pochissimo tempo, trasformerebbero l’intera Terra in un blocco di materia strana.

Cme abbiamo anticipato, la probabilita’ di formazione di materia strana e’ abbastanza remota anche alle potenze di LHC. Teniamo sempre conto del fatto che, se anche venisse formata, dato il vuoto all’interno del’acceleratore, la probabilita’ di interazione tra materia strana e ordinaria sarebbe del tutto impossibile.

Come vi anticipavo, gia’ prima dell’accensione di LHC molti avevano puntato il dito contro l’acceleratore e il CERN. Proprio per l’insistenza di queste voci, il laboratorio svizzero ha anche messo online una pagina molto completa con le risposte scientifiche a tutte queste ipotesi catastrofiche:

CERN LHC Safety

Il concetto della sicurezza di LHC in relazione al 2012 e alla fine del mondo e’ stato anche ribadito dal Dott. Sergio Bertolucci, direttore di divisione ricerca e calcolo del CERN di Ginevra, nella sua prefazione scritta proprio per il libro “Psicosi 2012. Le risposte della scienza”.

Vi riporto qui un brevissimo estratto interessante per capire la posizione del CERN nei confronti delle tante richieste di chiarimento che ogni giorno riceve:

(Di annunci sulla fine del mondo) Ne sono stato testimone privilegiato alla partenza di LHC, il grande collisionatore di protoni entrato in funzione alla fine del 2008 nel laboratorio del CERN di Ginevra: uno sparuto gruppo di «colleghi», ogniqualvolta un nuovo acceleratore di particelle entra in operazione, si affretta a rispolverare un vecchio e indifendibile modello teorico, prevedendo che la nuova macchina produrrà dei piccoli buchi neri, che incominceranno a risucchiare le cose attorno a loro, divorandosi il laboratorio, Ginevra, la Svizzera, la Terra e così via…

LHC è in funzione dal 2009 e ovviamente non ha causato nessuna fine del mondo. Malgrado ciò, riceviamo almeno una lettera al mese dai quattro angoli del globo, che presenta la prossima teoria sulla fine del mondo: rispondiamo a tutte.

Come potete leggere, e come abbiamo visto in precedenza, si tratta di teorie vecchie e rispolverate alla partenza di ogni nuovo acceleratore di particelle.

Concludendo, non c’e’ assolutamente nessun pericolo che macchine di questo tipo possano causare la fine del mondo.

Per analizzare scientificamente ogni possibile profezia sul 2012, sfruttando queste teorie per parlare di scienza e divulgare concetti molto spesso poco compresi e sempre attuali, non perdete in libreria “Psicosi 2012. Le risposte della scienza”