Tag Archives: fondamentali

L’universo e’ stabile, instabile o meta-stabile?

25 Mar

Negli ultimi articoli, complici anche i tantissimi commenti e domande fatte, siamo tornati a parlare di ricerca e delle ultime misure scientifiche che tanto hanno fatto discutere. Come fatto notare pero’, molto spesso, queste discussioni che dovrebbero essere squisitamente scientifiche lasciano adito ad articoli su giornali, anche a diffusione nazionale, che male intendono o approfittano del clamore per sparare sentenze senza senso e, lasciatemelo dire, assolutamente fuori luogo.

In particole, nell’articolo precedente, abbiamo discusso l’ultima misura della massa del quark top ottenuta mediante la collaborazione dei fisici di LHC e del Tevetron. Questo risultato e’ il piu’ preciso mai ottenuto prima e ci consente, di volta in volta, di migliorare la nostra conoscenza, come spesso ripeto, sempre troppo risicata e assolutamente lontana dalla comprensione del tutto.

Per discutere la misura della massa del top, siamo partiti da una notizia apparsa sui giornali che parlava di un universo pronto a dissolversi da un istante all’altro. Premesso che, come fatto notare, questa notizia era completamente campata in aria, su suggerimento di una nostra cara lettrice, ci e’ stato chiesto di discutere con maggior dettaglio quello che molti chiamano il destino ultimo del nostro universo. Come forse avrete sentito, su alcune fonti si parla spesso di universo stabile, instabile o meta-stabile farfugliando, nel vero senso della parola, come questa particolarita’ sia legata alla massa di qualche particella.

Cerchiamo dunque di spiegare questo importante e non banale concetto cercando sempre di mantenere un approccio quanto possibile divulgativo.

Per prima cosa, dobbiamo tornare a parlare del bosone di Higgs. Come forse ricorderete, in un articolo specifico:

Bosone di Higgs, ma che sarebbe? 

abbiamo gia’ affrontato la sua scoperta, cercando in particolare di spiegare il perche’ l’evidenza di questa particella sarebbe cosi’ importnate nell’ambito del modello standard e della fisica delle alte energie. Come fatto notare pero’, anche in questo caso, parliamo ancora di “evidenza” e non di “scoperta”. Visto che me lo avete chiesto direttamente, ci tengo a sottolineare questa importante differenza.

Come sapete, la fisica e’ detta una “scienza esatta”. Il motivo di questa definizione e’ alquanto semplice: la fisica non e’ esatta perche’ basata su informazioni infinitamente esatte, ma perche’ ogni misura e’ accompagnata sempre da un’incertezza esattamente quantificata. Questa incertezza, e’ quella che comunemente viene chiamato “errore”, cioe’ il grado di confidenza statistico che si ha su un determinato valore. Per poter parlare di evidenza, e’ necessario che la probabilita’ di essersi sbagliati sia inferiore di un certo valore, ovviamente molto basso. Per poter invece gridare alla scoperta, la probabiita’ statistica che quanto misurato sia un errore deve essere ancora piu’ bassa. Questo grado di confidenza, ripeto prettamente statistico, e’ quello che spesso sentiamo valutare riferendosi alla “sigma” o “all’incertezza”.

Bene, tornando al bosone di Higgs, perche’ si dice che ancora non c’e’ la sicurezza che quanto osservato sia proprio quell’Higgs che cerchiamo? Semplice, il grado di confidenza, non ci consente ancora di poter affermare con sicurezza statistica che la particella osservata sia proprio il bosone di Higgs che cerchiamo e non “un” bosone di Higgs o un’altra particella. Come ormai sappiamo, il bosone di Higgs tanto cercato e’ proprio quello relativo al campo di Higgs che determina la massa delle particelle. Per poter essere quel bosone, la particella deve essere, in particolare, scalare e con spin zero. Che significa? Praticamente, queste sono le caratteristiche che definiscono l’identikit dell’Higgs che cerchiamo. Se per quanto riguarda il fatto di essere scalare siamo convinti, per lo spin della particella, dal momento che decade in due fotoni, potrebbe avere spin 0 o 2. Per poter essere sicuri che lo spin sia proprio zero, sara’ necessario raccogliere ancora piu’ dati per determinare con sicurezza questa proprieta’ anche se statisticamente possiamo escludere con una certa incetezza che lo spin sia 2.

Detto questo, e supposto, con una buona confidenza statistica, che quanto trovato sia proprio il bosone di Higgs, sappiamo che la massa trovata per questa particella e’ 125.6 GeV con un un’incertezza totale di 0.4 GeV. Questo valore della massa ha pero’ aperto le porte per una discussione teorica molto accesa e di cui si inizia a parlare anche sui giornali non prettamente scientifici.

Perche’?

Come anticipato, la massa del bosone di Higgs determina la condizione di stabilita’ o instabilita’ del nostro universo. Perche’ proprio l’Higgs? Ovviamente, questo bosone e’ correlato con il campo scalare di Higgs, cioe’ quello che assegna la massa delle particelle. Ora pero’, nel modello standard, troviamo particelle che hanno masse anche molto diverse tra loro. Se osserviamo i quark, passiamo dall’up, il piu’ leggero, al top, il piu’ pesante, con una differenza di massa veramente enorme per particelle che appartengono alla stessa “famiglia”. Detto questo, per determinare la condizione di equilibrio, e tra poco spiegheremo cosa significa, del nostro universo, e’ possibile ragionare considerando proprio le masse dell’Higgs e del top.

In che modo?

Senza spendere troppe parole, vi mostro un grafico molto significativo:

 

Stabilita' dell'universo data dalla correlazione delle masse Top-Higgs

Stabilita’ dell’universo data dalla correlazione delle masse Top-Higgs

Cosa significa questo grafico? Come potete vedere, incrociando il valore della massa del top con quella dell’Higgs e’ possibile capire in quale zona ci troviamo, appunto: stabile, instabile o meta-stabile. Scientificamente, queste sono le condizioni in cui puo’ trovarsi quello che e’ definito vuoto quantomeccanico dell’universo. Se l’universo fosse instabile, allora sarebbe transitato in una successione di stati diversi senza poter formare strutture complesse dovute all’evoluzione. Come potete facilmente capire, in questo caso, noi oggi non saremo qui ad interrogarci su come e’ fatto l’universo dal momento che non avremmo avuto neanche la possibilita’ di fare la nostra comparsa. In caso di universo stabile invece, come il termine stesso suggerisce, tutto rimane in uno stato stazionario senza grosse modificazioni. Meta-stabile invece cosa significa? Questo e’ un termine ricavato direttamente dalla termodinamica. Detto molto semplicemente, un sistema meta-stabile si trova in una posizione di minimo di energia non assoluto. Cioe’? Detto in altri termini, il sistema e’ in uno stato di equilibrio, ma sotto particolari condizioni puo’ uscire da questo stato e scendere verso qualcosa di piu’ stabile ancora. Per capirlo meglio, immaginate di mettere una scodella sul pavimento con dentro una pallina. Se muovete di poco la pallina questa oscillera’ e ricadra’ sul fondo, posizione di equilibrio meta-stabile. Se date un colpo piu’ forte, la pallina uscira’ dalla scodella e andra’ sul pavimento. A questo punto pero’ il vostro sistema immaginario ha raggiunto la posizione piu’ stabile.

Ora, capite bene quanto sia importante e interessante capire che tipo di sistema e’ il nostro universo per determinare eventuali e future evoluzioni temporali che potrebbero avvenire. Come visto nel grafico precedente, per capire lo stato dell’universo possiamo valutare le masse del top e dell’Higgs.

Cosa otteniamo con i valori delle masse oggi conosciuti? Come potete vedere, come per un simpatico scherzo, la massa dell’Higgs ci posizione proprio nella strettissima zona di meta-stabilita’ del nostro universo. Come anticipato, il fatto di non essere nella zona di instabilita’ e’ assolutamente comprensibile pensando al fatto che noi oggi siamo qui. Certo, una massa superiore a 126 GeV ci avrebbe piazzato nella zona stabile dove, come si dice nelle favole, “vissero felici e contenti”. Cosa comporta il fatto di essere nella regione di meta-stabilita’? Come qualcuno, incurante della scienza, cerca di farvi credere, siamo in bilico su una corda. Il nostro universo da un momento all’altro potrebbe transitare verso uno stato piu’ stabile modificando radicalmente le proprieta’ del vuoto quantomeccanico. In questo caso, il nostro universo collasserebbe e segnebbe la nostra fine.

E’ vero questo?

Assolutamente no. Prima di tutto, cerchiamo di ragionare. Come detto, la massa attuale del bosone di Higgs e’ 125.6+/-0.4 GeV. Questo significa che entro una certa probabilita’, piu’ del 15%, la massa del bosone potrebbe essere maggiore di 126 GeV. In questo caso la misura sarebbe pienamente della regione “stabile” dell’universo. Ovviamente, per poter determinare con precisione questo valore e’ necessario ridurre l’incertezza che accompagna la misura in modo da “stringere” l’intervallo entro cui potrebbe essere compresa questa massa.

Se anche l’universo fosse in uno stato meta-stabile, non possiamo certo pensare che da un momento all’altro questo potrebbe uscire dallo stato di equilibrio e transitare verso altro se non in particolari condizioni. Vi ripeto nuovamente come in questo caso ci stiamo muovendo all’interno di ragionamenti prettamente teorici in cui gli stessi principi della fisica che oggi conosciamo potrebbero non essere validi. Secondo alcuni infatti, la stessa evoluzione dell’universo che ha portato oggi fino a noi potrebbe essere stata possibile proprio grazie alla natura meta-stabile del vuoto quantomeccanico.

Come ricorderete, in questi articoli:

Universo: foto da piccolo

Ascoltate finalmente le onde gravitazionali?

cosi’ come in tutti quelli richiamati a loro volta, abbiamo parlato dell’inflazione, cioe’ di quel particolare periodo nell’evoluzione dell’universo che ha portato ad una notevole espansione in tempi brevissimi. Conseguenza dell’inflazione e’ l’avere un universo omogeneo ed isotropo ed in cui le fluttuazione della radiazione di fondo sono molto ridotte. Bene, il bosone di Higgs potrebbe avere avuto un ruolo decisivo per l’innesco del periodo inflazionario. Secondo alcune teorie, infatti, le condizioni fisiche per poter accendere l’inflazione potrebbero essere state date da una particella scalare e l’Higgs potrebbe appunto essere questa particella. Se proprio devo aprire una parentesi, per poter affermare con sicurezza questa cosa, dobbiamo essere sicuri che la fisica che conosciamo oggi possa essere applicata anche in quella particolare fase dell’universo, cioe’ che i modelli attualmente conosciuti possano essere estrapolati a quella che viene comunemente definita massa di Planck dove tutte le forze fondamentali si riunificano. Ovviamente, per poter affermare con sicurezza queste teorie sono necessarie ancora molte ricerche per determinare tutti i tasselli che ancora mancano a questo puzzle.

Seguendo questa chiave di lettura, il fatto di essere in un universo meta-stabile, piu’ che un rischio potrebbe essere stata proprio la caratteristica che ha permesso l’evoluzione che poi ha portato fino ai giorni nostri, con la razza umana presente sulla Terra.

Altro aspetto curioso e importante della meta-stabilita’ dell’universo e’ la possibilita’ di includere i cosiddetti multiversi. Detto molto semplicemente, il fatto che l’universo sia meta-stabile apre gli scenari ad una serie di universi paralleli tutti uno di seguito all’altro caratterizzati da valori continui di alcuni parametri fisici. Non si tratta di racconti fantascientifici o di fantasia ma di vere e proprie teorie fisiche riguardanti il nostro universo.

Concludendo, la scoperta, o l’evidenza, del bosone di Higgs e’ stata sicuramente un ottimo risultato raggiunto dalla fisica delle alte energie, ma certamente non un punto di arrivo. La misura, ancora solo preliminare, della massa della particella apre le porte a scenari di nuova fisica o di considerazioni molto importanti circa la natura del nostro stesso universo. Come visto in questo articolo, quelli che apparentemente potrebbero sembrare campi del sapere completamente diversi e lontani, l’infinitamente piccolo e l’infinitamente grande, sono in realta’ correlati tra loro proprio da singole misure, come quella della massa dell’Higgs. A questo punto, capite bene come lo scneario si fa sempre piu’ interessante e sara’ necessario fare ancora nuove ricerche prima di arrivare a qualcosa di certo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

L’universo che si dissolve “improvvisamente”

21 Mar

Nella sezione:

Hai domande o dubbi?

una nostra cara lettrice ci ha chiesto lumi su una notizia apparsa in questi giorni sui giornali che l’ha lasciata, giustamente dico io, un po’ perplessa. La notizia in questione riguarda l’annuncio fatto solo pochi giorni fa della nuova misura della massa del quark top.

Perche’ questa notizia avrebbe suscitato tanto clamore?

Senza dirvi nulla, vi riporto un estratto preso non da un giornale qualsiasi, che comunque a loro volta hanno copiato da qui, ma dalla principale agenzia di stampa italiana:

Il più pesante dei mattoni della materia, il quark top, ha una misura più precisa e la sua massa, con quella del bosone di Higgs, potrebbe essere la chiave per capire se viviamo in un universo instabile, al punto di dissolversi improvvisamente.

Universo che si dissolve “improvvisamente”?

Vi giuro che vorrei mettermi a piangere. Solo pochi giorni fa abbiamo parlato di tutte quelle cavolate sparate dopo l’annuncio della misura di Bicep-2:

Ascoltate finalmente le onde gravitazionali?

Due notizie cosi’ importanti dal punto di vista scientifico accompagnate da sensazionalismo catastrofista nella stessa settimana sono davvero un duro colpo al cuore.

Al solito, e come nostra abitudine, proviamo a spiegare meglio l’importanza della misura ma, soprattutto, cerchiamo di capire cosa dice la scienza contrapposto a quello che hanno capito i giornali.

In diversi articoli abbiamo parlato di modello standard discutendo la struttura della materia che ci circonda e, soprattutto, presentando quelle che per noi, ad oggi, sono le particelle fondamentali, cioe’ i mattoni piu’ piccoli che conosciamo:

Due parole sull’antimateria

Piccolo approfondimento sulla materia strana

Bosone di Higgs …. ma che sarebbe?

Se ci concentriamo sui quark, vediamo che ci sono 6 componenti che, come noto, sono: up, down, strange, charm, bottom e top. Come gia’ discusso, i primi due, up e down, sono quelli che formano a loro volta protoni e neutroni, cioe’ le particelle che poi formano i nuclei atomici, dunque la materia che ci circonda.

Bene, il quark top e’ il piu’ pesante di questi oltre ad essere l’ultimo ad essere stato scoperto. Il primo annuncio di decadimenti con formazione di quark top e’ stato fatto nel 1995 grazie alla combinazione dei risultati di due importanti esperimenti del Fermi National Accelerator Laboratory di Batavia, nei pressi di Chicago. A questi esperimenti, oggi in dismissione, ma la cui analisi dei dati raccolti e’ ancora in corso, partecipavano e partecipano tuttora moltissimi fisici italiani dell’Istituto Nazionale di Fisica Nucleare.

La cosa piu’ sorprendente del quark top e’ la sua enorme massa, circa 170 GeV, che lo rende la particella elementare piu’ pesante mai trovata. Per darvi un’idea, il top e’ circa 180 volte piu’ pesante di un protone con una massa paragonabile a quella di un atomo di oro nel suo complesso. Il perche’ di una massa cosi’ elevata e’ una delle chiavi per capire i meccanismi che avvengono a livello microscopico e che, come e’ normale pensare, determinano il comportamento stesso del nostro universo.

Bene, cosa e’ successo in questi giorni?

Come avete letto, nel corso della conferenza:

Rencontres de Moriond

che si svolge annualmente a La Thuille in Val d’Aosta, e’ stata presentata una nuova misura della massa del quark top. Prima cosa importante da dire e’ che la misura in questione viene da una stretta collaborazione tra i fisici di LHC e quelli che analizzano i dati del Tevatron, cioe’ il collissore dove nel 1995 fu scoperto proprio il top. Queste due macchine sono le uniche al mondo, grazie alla grande energia con cui vengono fatti scontrare i fasci, in grado di produrre particelle pesanti come il quark top.

Dalla misurazione congiunta di LHC e Tevatron e’ stato possibile migliorare notevolmente l’incertezza sulla massa del top, arrivando ad un valore molto piu’ preciso rispetto a quello conosciuto fino a qualche anno fa.

Cosa comporta avere un valore piu’ preciso?

Come potete immaginare, conoscere meglio il valore di questo parametro ci consente di capire meglio i meccanismi che avvengono a livello microscopico tra le particelle. Come discusso parlando del bosone di Higgs, il ruolo di questa particella, e soprattutto del campo scalare ad essa associato, e’ proprio quello di giustificare il conferimento della massa. Se il  top ha una massa cosi’ elevata rispetto agli altri quark, il suo meccanismo di interazione con il campo di Higgs deve essere molto piu’ intenso. Inoltre, il quark top viene prodotto da interazioni forti, ma decade con canali deboli soprattutto producendo bosoni W. Non sto assolutamente cercando di confondervi. Come visto negli articoli precedenti, il W e’ uno dei bosoni messaggeri che trasportano l’interazione debole e che e’ stato scoperto da Carlo Rubbia al CERN. Detto questo, capite come conoscere con precisione la massa del top, significhi capire meglio i meccanismi che avvengono tra top, W e campo di Higgs. In ultima analisi, la conoscenza di questi modelli e’ fondamentale per capire perche’, durante l’evoluzione dell’universo, si sono formate particelle cosi’ pesanti ma anche per capire se esistono meccanismi di decadimento non ancora considerati o anche effetti, come vengono definiti, di nuova fisica che possono mettere in discussione o integrare il modello standard delle particelle.

Concludendo, la spiegazione della frase “universo che si dissolve improvvisamente” non significa nulla. Una misura piu’ precisa della massa del top implica una migliore conoscenza dei modelli ora utilizzati e soprattutto apre le porte per capire meglio cosa e’ avvenuto durante durante i primi istanti di vita dell’universo. Al solito pero’, anche sulla scia del tanto citato annuncio di Bicep-2, si e’ ben pensato di sfruttare l’occasione e trasformare anche questa importante notizia in un teatrino catastrofista. Per chi interessato ad approfondire, vi riporto anche il link di ArXiv in cui leggere l’articolo della misura in questione:

ArXiv, quark top

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Bosone di Higgs … ma che sarebbe?

25 Mar

In tanti mi avete chiesto informazioni circa la scoperta del bosone di Higgs. Come sapete bene, negli ultimi mesi, molto si e’ parlato di questa probabile scoperta, dando ampio spazio su giornali e telegiornali al CERN, all’acceleratore LHC e agli esperimenti principali, Atlas e CMS, che hanno lavorato alla ricerca di questa particella.

La scoperta, ripeto probabile come vedremo in seguito, del bosone di Higgs e’ stata fondamentale per la fisica e per la nostra conoscenza della materia e, lasciatemelo dire, mi ha riempito di gioia avendo lavorato per circa quattro anni alla costruzione proprio dell’esperimento Atlas.

Quello che pero’ molti mi chiedono e’: si parla tanto di questo bosone di Higgs, tutti ne parlano dicendo che e’ “quello che spiega la massa delle particelle”, ma, in soldoni, di cosa si tratta? Perche’ spiegherebbe la massa delle particelle?

Purtroppo le domande sono ben poste, dal momento che spesso, girando per la rete, non si trovano risposte semplicissime a questi quesiti. Cerchiamo dunque, per quanto possibile, di rispondere a queste domande, mantenendo sempre un profilo divulgativo e accessibile a tutti.

Detto nel linguaggio della fisica, la spiegazione sarebbe piu’ o meno questa:

L’universo e’ permeato da un campo a spin zero, detto campo di Higgs, doppietto in SU(2) e con ipercarica U(1), ma privo di colore. I bosoni di gauge e i fermioni interagiscono con questo campo acquisendo massa.

Chiaro? Ovviamente no.

Cerchiamo di capirci qualcosa di piu’.

In questi post:

Piccolo approfondimento sulla materia strana

Due parole sull’antimateria

Abbiamo parlato del “Modello Standard” delle particelle. Come visto, la materia ordinaria, anche se apparentemente sembrerebbe molto variegata, e’ in realta’ composta di pochi ingredienti fondamentali: i quark, i leptoni e i bosoni messaggeri. Niente di difficile, andiamo con ordine.

Le particelle del Modello Standard

Le particelle del Modello Standard

Protoni e neutroni, ad esempio, non sono particelle fondamentali, ma sono composti da 3 quark. Tra i leptoni, sicuramente il piu’ conosciuto e’ l’elettrone, quello che orbita intorno ai nuclei per formare gli atomi. E i bosoni messaggeri? In fisica esistono delle interazioni, chiamiamole anche forze, che sono: la forza gravitazionale, la forza elettromagnetica, la forza forte e la forza debole. La forza forte, ad esempio, che viene scambiata mediante gluoni, e’ quella che tiene insieme i quark nelle particelle. Il fotone invece e’ quello che trasporta la forza elettromagnetica, responsabile, in ultima analisi, delle interazioni chimiche e delle forze meccaniche che osserviamo tutti i giorni.

Bene, fin qui sembra tutto semplice. L’insieme di queste particelle forma il Modello Standard. Ci sono gli ingredienti per formare tutte le particelle ordinarie e ci sono i bosoni messaggeri che ci permettono di capire le forze che avvengono. Dunque? Con il Modello Standard abbiamo capito tutto? Assolutamente no.

Il Modello Standard funziona molto bene, ma presenta un problema molto importante. Nella trattazione vista, non e’ possibile inserire la massa delle particelle. Se non c’e’ la massa, non c’e’ peso. Se un pezzo di ferro e’ composto di atomi di ferro e se gli atomi di ferro sono fatti di elettroni, protoni e neutroni, le particelle “devono” avere massa.

Dunque? Basta inserire la massa nel modello standard. Facile a dirsi ma non a farsi. Se aggiungiamo a mano la massa nelle equazioni del modello standard, le equazioni non funzionano piu’. I fisici amano dire che l’invarianza di Gauge non e’ rispettata, ma e’ solo un modo complicato per spiegare che le equazioni non funzionano piu’.

Se non possiamo inserire la massa, e noi sappiamo che la massa c’e’ perche’ la testiamo tutti i giorni, il modello standard non puo’ essere utilizzato.

A risolvere il problema ci ha pensato Peter Higgs negli anni ’60. Ora la spiegazione di Higgs e’ quella che ho riportato sopra, ma cerchiamo di capirla in modo semplice. Supponiamo che effettivamente le particelle non abbiano massa. Hanno carica elettrica, spin, momento angolare, ma non hanno massa intrinseca. L’universo e’ pero’ permeato da un campo, vedetelo come una sorta di gelatina, che e’ ovunque. Quando le particelle passano attraverso questa gelatina, vengono frenate, ognuna in modo diverso. Proprio questo frenamento sarebbe responsabile della massa che le particelle acquisiscono.

Tradotto in equazioni, questo ragionamento, noto come “meccanismo di Higgs”, funzionerebbe benissimo e il modello standard sarebbe salvo. Perche’ dico funzionerebbe? Come facciamo a dimostrare che esiste il campo di Higgs?

Il campo di Higgs, se esiste, deve possedere un quanto, cioe’ un nuovo bosone la cui esistenza non era predetta nel modello standard, detto appunto “bosone di Higgs”. Detto proprio in termini semplici, riprendendo l’esempio del campo di Higgs come la gelatina di frenamento, questa gelatina ogni tanto si dovrebbe aggrumare formando una nuova particella, appunto il bosone di Higgs.

Dunque, se esiste il bosone di Higgs, allora esite il campo di Higgs e dunque possiamo spiegare la massa delle particelle.

Capite dunque l’importanza della ricerca di questa particella. La sua scoperta significherebbe un notevole passo avanti nella comprensione dell’infinitamente piccolo, cioe’ dei meccanismi che regolano l’esistenza e la combinazione di quei mattoncini fondamentali che formano la materia che conosciamo.

Oltre a questi punti, il bosone di Higgs e’ stato messo in relazione anche con la materia oscura di cui abbiamo parlato in questo post:

La materia oscura

In questo caso, la scoperta e lo studio di questa particella potrebbe portare notevoli passi avanti ad esempio nello studio delle WIMP, come visto uno dei candidati della materia oscura.

Dunque? Cosa e’ successo al CERN? E’ stato trovato o no questo bosone di Higgs?

In realta’ si e no. Nella prima conferenza stampa del CERN si parlava di evidenza di una particella che poteva essere il bosone di Higgs. In questo caso, le affermazioni non sono dovute al voler essere cauti dei fisici, semplicemente, l’evidenza statistica della particella non era ancora sufficiente per parlare di scoperta.

L’ultimo annuncio, solo di pochi giorni fa, ha invece confermato che si trattava proprio di “un” bosone di Higgs. Perche’ dico “un” bosone? In realta’, potrebbero esistere diverse tipologie di bosoni di Higgs. Ad oggi, quello trovato e’ sicuramente uno di questi, ma non sappiamo ancora se e’ proprio quello di cui stiamo parlando per il modello standard.

Anche se tutte le indicazioni fanno pensare di aver fatto centro, ci vorranno ancora diversi anni di presa dati per avere tutte le conferme e magari anche per evidenziare l’esistenza di altri bosoni di Higgs. Sicuramente, la scoperta di questa particella apre nuovi orizzonti nel campo della fisica delle particelle e prepara il campo per una nuova ricchissima stagione di misure e di scoperte.

Onde evitare commenti del tipo: “serviva spendere tutti questi soldi per una particella?”, vi segnalo due post molto interessanti proprio per rispondere a queste, lasciatemi dire lecite, domande:

Perche’ la ricerca: scienza e tecnologia

Perche’ la ricerca: economia

In realta’, LHC ed i suoi esperimenti, oltre a portare tantissime innovazioni tecnologiche che non possiamo ancora immaginare, sono state un importante volano per l’economia dei paesi europei. Investendo nel CERN, l’Italia, e soprattutto le nostre aziende, hanno avuto un ritorno economico molto elevato e sicuramente superiore a quanto investito.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Piccolo approfondimento sulla materia strana

23 Nov

Approfitto di questo post per aprire una piccola parentesi puramente scientifica.

Dopo l’articolo:

2012, fine del mondo e LHC

ho ricevuto alcune richieste di utenti che chiedevano maggiori informazioni sui cosiddetti “strangelet”. In particolare, alcuni di voi erano interessati a capire meglio di cosa si trattasse e perche’ sarebbero ipotizzati come potenziali cause di una fine del mondo.

Ovviamente anche in questo caso cerchero’ di mantenere un taglio estremamente divulgativo, cercando di farvi capire con parole semplici di cosa si tratta.

Prendiamo il discorso molto alla larga.

Tutti sapete che la materia e’ composta di atomi. All’interno degli atomi trovate un nucleo centrale e degli elettroni che girano intorno.  Ora, all’interno del nucleo ci sono protoni e neutroni. A loro volta, i protoni ed i neutroni non sono particelle elementari, ma sono formati da quark tenuti insieme dalla forza forte.

In parole povere, abbiamo una sorta di matrioska in cui il nostro gioco termina solo quando arriviamo ai costituenti fondamentali. Con questo si intendono quelle particelle che, ad oggi, non sono formate da “pezzi” piu’ piccoli. Se volete, siamo arrivati ai mattoncini fondamentali che formano la materia.

Il numero di mattoncini fondamentali non e’ elevatissimo, ma distinguiamo tra leptoni e quark.

Cercate di non perdere il filo del discorso. L’elettrone, di cui tutti conosciamo l’esistenza, appartiene alla famiglia dei leptoni. Oltre all’elettrone ci sono il muone, il tau e 3 neutrini, detti a loro volta elettronico, muonico e del tau.

Nella famiglia dei quark, ci sono invece 6 membri che hanno nomi alquanto fantasiosi: up, down, strange, charm, bottom, top. Tradotti in italiano: su, giu’, strano, affascinante, basso e alto.

Tabella riassuntiva dei costituenti fondamentali nel modello standard

Prima di far venire il mal di testa a chi legge, i mattoncini fondamentali che conosciamo sono solo i quark ed i leptoni. Per dirla tutta, a questi si dovrebbero aggiungere anche i mediatori delle forze fondamentali che sono: il fotone, il W, lo Z ed il gluone. Ma questi ultimi non ci servono nella nostra discussione.

La figura riportata ci puo’ aiutare a fissare in mente questi concetti.

Se siete riusciti a leggere fino a questo punto, ora avrete la strada in discesa.

Come detto prima, nel nucleo troviamo neutroni e protoni. Queste particelle, che come anticipato sono a loro volta composte di quark, sono in realta’ formati solo da combinazioni di quark up e down.

Facciamo ora questo ragionamento. Tutto cio’ che ci circonda, noi compresi, e’ formato da atomi. Rileggendo quanto detto, tutto cio’ che ci circonda e’ formato da elettroni e quark up e down (nei protoni e neutroni). La differenza tra i diversi atomi sta solo nel numero di protoni, neutroni e elettroni che abbiamo.

Cosa significa questo? Tutta la materia che ci circonda, e che vediamo intorno a noi, e’ formata solo da 3 particelle fondamentali. E tutte le altre che vediamo nell’immagine dei costituenti fondamentali che fine fanno?

Le altre particelle entrano nei processi di decadimento che osserviamo in natura e che, molto spesso, siamo in grado di riprodurre nei nostri laboratori. Molti di questi, chiamiamoli in modo improprio, “composti” sono instabili, cioe’ dopo un tempo molto breve decadono in altre particelle piu’ stabili.

In condizioni normali, sappiamo che il protone, il neutrone e l’elettrone, che stiamo ora discutendo, sono stabili nell’atomo. La prova di questo ce l’avete guardandovi intorno. Se, ad esempio, il protone decadesse in altre particelle, dovreste vedere la materia scomparire e lasciare il posto ad altro.

Bene, gli strangelets, di cui abbiamo parlato nell’articolo su LHC, altro non sono che stati legati contenenti quark strange. Proprio da questo, si parla di materia “strana”.

Nella teoria degli strangelet, queste particelle potrebbero essere stabili ed interagire con la materia ordinaria, trasformandola a sua volta in materia strana. Da qui la teoria vista per cui eventuali atomi di questo tipo potrebbero trasformare l’intera Terra in un blocco di materia strana.

La confutazione di questa teoria e’ stata gia’ fatta nel precedente articolo. Spero con questo post di essere riuscito a farvi capire meglio di cosa si parla quando si citano gli strangelet e la materia strana in generale.

Solo per completezza, si ipotizza che la materia strana possa essere contenuta all’interno delle stelle di neutroni. Per questi corpi, l’alta densita’ di materia nel nucleo e l’elevata pressione a cui questa materia e’ sottoposta, potrebbero generare stati legati stabili contenenti quark strani.

Parlare di 2012 e profezie per la fine del mondo ci consente di esplorare aree e argomenti della scienza moderna, molto spesso considerati ostici e poco divulgabili al grande pubblico. Per continuare ad analizzare le profezie sul 2012, ma soprattutto a parlare di scienza vera e sempre attuale, non perdete in libreria “Psicosi 2012. Le risposte della scienza”.