Tag Archives: valore

Hawking e la fine del mondo

11 Set

Visto che me lo state chiedendo in tantissimi, vorrei aprire una parentesi sulle affermazioni fatte dal celebre astrofisico Stephen Hawking riguardanti il bosone di Higgs. Per chi non lo avesse seguito, abbiamo già discusso di questo tema nella apposita sezione:

Hai domande o dubbi?

Dove un nostro caro lettore, già qualche giorno fa, ci aveva chiesto lumi a riguardo.

Di cosa stiamo parlando?

Come tutti avrete letto, nell’introduzione del suo ultimo libro “Starmus, 50 years of man in space” il celebre astrofisico avrebbe scritto che il bosone di Higgs avrebbe le potenzialità per poter distruggere l’intero universo. In pratica, ad energie elevate, così si legge, la particella potrebbe divenire improvvisamente instabile e provocare il collasso dello stato di vuoto, con conseguente distruzione dell’universo.

Cosa? Collaso del vuoto? Distruzione dell’universo?

Ci risiamo, qualcuno ha ripreso qualche spezzone in giro per la rete e ne ha fatto un caso mondiale semplicemente mescolando le carte in tavola. In realtà, a differenza anche di quanto io stesso ho affermato nella discussione linkata, la cosa è leggermente più sottile.

E’ possibile che il bosone di Higgs diventi instabile e bla bla bla?

No! Il bosone di Higgs non diviene instabile ad alte energie o perchè ne ha voglia. Stiamo entrando in un settore della fisica molto particolare e su cui la ricerca è ancora in corso.

Facciamo un piccolo excursus. Del bosone di Higgs ne abbiamo parlato in questo articolo:

Bosone di Higgs … ma che sarebbe?

dove abbiamo cercato di spiegare il ruolo chiave di questa particelle nella fisica e, soprattutto, la sua scoperta.

Inoltre, in questo articolo:

L’universo è stabile, instabile o metastabile?

Abbiamo visto come la misura della massa di questa particella abbia implicazioni profonde che esulano dalla mera fisica delle particelle. In particolare, la massa di questa particella, combinata con quella del quark top, determinerebbe la condizione di stabilità del nostro universo.

Bene, come visto nell’ultimo articolo citato, i valori attuali dei parametri che conosciamo, ci pongono nella strettissima zona di metastabilità del nostro universo. Detto in parole semplici, non siamo completamente stabili e, ad un certo punto, il sistema potrebbe collassare in un valore stabile modificando le proprietà del vuoto quantomeccanico.

Riprendiamo il ragionamento fatto nell’articolo. Siamo in pericolo? Assolutamente no. Se anche fossimo in una condizione di metastabilità, il sistema non collasserebbe da un momento all’altro e, per dirla tutta, capire cosa significhi in realtà metastabilità del vuoto quantomeccanico non è assolutamente certo. Premesso questo, come già discusso, i valori delle masse delle due particelle in questione, vista la ristretta zona in esame, non sono sufficienti a determinare la reale zona in cui siamo. Cosa significa? Come detto, ogni misura in fisica viene sempre accompagnata da incertezze, cioè un valore non è univoco ma è contenuto in un intervallo. Più è stretto questo intervallo, minore è l’incertezza, meglio conosciamo il valore in esame. Ad oggi, ripeto, vista la stretta banda mostrata nel grafico, le nostre incertezze sono compatibili sia con la metastabilità che con l’instabilità.

Dunque, pericolo scampato. Resta però da capire il perchè delle affermazioni di Hawking.

Su questo, vi dirò la mia senza fronzoli. Hawking conosce benissimo l’attuale livello di cui abbiamo discusso. Molto probabilmente, non avendolo letto non ne posso essere sicuro, nel libro ne parla in modo dettagliato spiegando tutto per filo e per segno. Nell’introduzione invece, appunto in quanto tale, si lascia andare ad affermazioni quantomeno naive.

Perchè fa questo? Le ipotesi sono due e sono molto semplici. La prima è che è in buona fede e la colpa è solo dei giornali che hanno ripreso questa “introduzione al discorso” proprio per creare il caso mediatico sfruttando il nome dell’astrofisico. La seconda, più cattiva, è che d’accordo con l’editore, si sia deciso di creare questo caso appunto per dare una spinta notevole alle vendite del libro.

Personalmente, una o l’altra non conta, l’importante è capire che non c’è nessun collasso dell’universo alle porte.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

EMdrive: il motore che va contro i principi della fisica

11 Set

Dopo qualche giorno di pausa, purtroppo non per svago, eccoci di nuovo qui. Per iniziare alla grande, torniamo a parlare di scienza, o almeno di qualcosa che gli somiglia. Come ci ha segnalato un nostro lettore nella sezione:

Hai domande o dubbi?

in questi giorni si è molto parlato di un’invenzione davvero particolare. Di cosa si tratta? Detto “poco chiaramente”, stiamo parlando del “motore quantistico”.

Cosa sarebbe questo motore quantistico?

Cerchiamo di andare con ordine, capendo l’origine di questa storia. Partendo da parole più semplici , il motore quantistico è, appunto, un motore che produrrebbe una spinta senza propellente ma solo usando elettricità.

Una soluzione del genere, potrebbe essere utilizzata come thruster nello spazio, cioè come sistema per far muovere i satelliti o altri veivoli spaziali. Cosa c’è di strano in tutto questo? La risposta è semplice, sapete perchè ci vuole così tanto tempo per girovagare nello spazio? Perchè i velivoli che mandiamo si muovono per inerzia. Praticamente, vengono messi in moto tramite propulsori, poi questi vengono spenti e il mezzo continua a procedere lungo la sua direzione. Tutto questo è frutto di una delle leggi fondamentali della meccanica, cioè il principio di inerzia.

Perchè questo motore quantistico sarebbe così rivoluzionario? Detto semplicemente, per far andare qualcosa nello spazio, abbiamo bisogno di avere una spinta in senso contrario. Questo è noto come principio di conservazione della quantità di moto.

Facciamo un esempio per capire meglio.

Supponete di essere al centro di un lago ghiacciato. La superficie del lago è talmente liscia che, idealmente, non c’è nessun attrito tra voi e il ghiaccio. In questa condizione limite, non potete camminare. Sapete perchè? Il semplice camminare è possibile proprio grazie all’attrito tra i nostri piedi, o le nostre scarpe, e il terreno. Praticamente, camminando, il vostro piede è fermo grazie all’attrito statico tra voi e il terreno.

Se ora vi trovate al centro di questo lago, non potete quindi riuscire a camminare. Come fate a mettervi in salvo e raggiungere la riva?

Una buona soluzione potrebbe essere quella di togliervi un indumento e lanciarlo in una direzione. Come per magia, ma in realtà è fisica, voi vi muovete per reazione nella direzione opposta a quella del lancio.

Bene, nello spazio succede esattamente la stessa cosa. Questo è noto, appunto, come principio di conservazione della quantità di moto. Altra legge fondamentale della fisica. Dunque, se questo motore non spinge nulla, per la fisica non può andare avanti.

Come è possibile?

Per provare a rispondere a questa domanda, vediamo prima di tutto come è fatto questo motore. Ecco a voi una foto di quello che viene chiamato EMdrive:

EM drive

EM drive

Questo motore è stato inventato dallo scienziato inglese Roger Shawyer alcuni anni fa. Come funziona? Il principio di funzionamento, secondo il suo inventore, sarebbe il seguente: si tratta di una cavità asimettrica in cui la radiazione a microonde viene fatta rimbalzare sulle pareti producendo effetti di risonanza. A causa di effetti relativistici, si creerebbe una differenza di pressione tra i due estremi del motore con una conseguente spinta, appunto quella di cui parlavamo per far andare i razzi nello spazio.

A distanza di qualche anno, alcuni ricercatori cinesi decidono di costruire un loro proprio motore quantistico per verificare che quanto detto da Roger Shawyer fosse vero. Cosa riescono ad ottenere? Un motore che funziona secondo lo stesso principio e conferma quanto scoperto anni prima.

Di che spinte parliamo? Più o meno 720 milli Newton secondo i cinesi.

Cosa significa 720 milli Newton? Immaginate di prendere in mano un peso da 1 Kg e di tenerlo fermo. Come sapete questo oggetto è dotato di massa ed esercita una spinta sulla nostra mano, chiamata forza peso, risultato dell’attrazione della Terra verso l’oggetto (e mutuamente dell’oggetto verso la Terra). Con un peso da 1 Kg, la spinta è di circa 10 Newton. Dunque, qui abbiamo una spinta di 720 mN, cioè equivalente a quella che produrrebbe un oggetto da 72 grammi tenuto in mano.

Interessa a qualcuno il valore della spinta? L’importante è che questa ci sia e sia in grado di far andare i nostri satelliti.

In realtà, come vedremo, il valore della spinta non è trascurabile.

A questo punto, potremmo essere di fronte alla solita teoria rivoluzionaria che la scienza cerca di insabbiare perché mette in crisi le basi su cui abbiamo costruito tutti i nostri castelli di carte. Attenzione però, questa storia è leggermente diversa dalle solite. Sapete perché? Vista la possibile applicazione di questo motore, la NASA ha deciso di analizzarlo e di provare a verificare se i risultati sono corretti.

Cosa accade a questo punto?

La NASA fa le sue prove e ottiene un risultato in cui si ha una spinta che per la fisica non dovrebbe esserci! Dunque funziona tutto? Aspettiamo prima di dirlo.

Come visto, la spinta misurata era di 720 mN. I tecnici della NASA hanno ottenuto una spinta tra 30 e 50 micro Newton, dunque, circa un fattore 10000 in meno.

Come detto prima, ma chi se ne frega, l’importante è che la spinta ci sia!

Come potete immaginare, molti giornali internazionali hanno dato ampio risalto alla notizia, salvo però non dire tutto fino in fondo.

Cosa significa?

La NASA, dopo aver effettuato questi test, ha pubblicato un conference paper sulla questione. Ecco a voi il link dove leggere il lavoro:

NASA, EMdrive test

Come potete vedere, l’articolo sembra confermare quanto affermato. Attenzione però, leggete tutto fino in fondo. Verso la fine, gli autori scrivono una frase che tanti hanno fatto finta di non leggere. Questa:

Thrust was observed on both test articles, even though one of the test articles was designed with the expectation that it would not produce thrust. Specifically, one test article contained internal physical modifications that were designed to produce thrust, while the other did not (with the latter being referred to as the “null” test article).
Cosa significa? Nel test i tecnici hanno utilizzato anche un motore di controllo realizzato per non avere nessuna spinta. Durante il test però, quando hanno utilizzato questo motore, hanno osservato nuovamente questa spinta. Cioè? Dovete fare un test che porterà valori misurati molto piccoli. Come normale, costruite qualcosa che non dovrebbe invece funzionare. Poi ottenete che tutti e due misurano qualcosa paragonabile. Come concludere? E’ sbagliata la misura su quello buono o su quello che non dovrebbe funzionare?
Personalmente, come mia natura, voglio essere propositivo e, come si dice, “open mind”. Ad oggi, i risultati mostrano valori discordanti. Molto probabilmene, i valori della spinta che si vuole misurare sono troppo bassi per le incertezze derivanti dal metodo di misura stesso. Detto in modo statistico, il risultato ottenuto è compatibile con zero Newton di spinta ma anche con qualcosa diverso da zero.
Ovviamente, non voglio precludere nulla ma, allo stato attuale, questo motore non ha dato risultati che confermano quanto affermato. Visto l’interesse sulla cosa, sono sicuro che ci saranno ulteriori sviluppi nei prossimi mesi. Se così fosse, torneremo sull’argomento proprio per vedere se quanto affermato corrisponde al vero e, in tal caso, ragioneremo su effetti non considerati dalla fisica.

17 equazioni che hanno cambiato il mondo

26 Ago

Nel 2013 Ian Stewart, professore emerito di matematica presso l’università di Warwick, ha pubblicato un libro molto interessante e che consiglio a tutti di leggere, almeno per chi non ha problemi con l’inglese. Come da titolo di questo articolo, il libro si intitola “Alla ricerca dello sconosciuto: 17 equazioni che hanno cambiato il mondo”.

Perchè ho deciso di dedicare un articolo a questo libro?

In realtà, il mio articolo, anche se, ripeto, è un testo che consiglio, non vuole essere una vetrina pubblicitaria a questo testo, ma l’inizio di una riflessione molto importante. Queste famose 17 equazioni che, secondo l’autore, hanno contribuito a cambiare il mondo che oggi conosciamo, rappresentano un ottimo punto di inizio per discutere su alcune importanti relazioni scritte recentemente o, anche, molti secoli fa.

Come spesso ripetiamo, il ruolo della fisica è quello di descrivere il mondo, o meglio la natura, che ci circonda. Quando i fisici fanno questo, riescono a comprendere perchè avviene un determinato fenomeno e sono altresì in grado di “predirre” come un determinato sistema evolverà nel tempo. Come è possibile questo? Come è noto, la natura ci parla attraverso il linguaggio della matematica. Modellizare un sistema significa trovare una o più equazioni che  prendono in considerazione i parametri del sistema e trovano una relazione tra questi fattori per determinare, appunto, l’evoluzione temporale del sistema stesso.

Ora, credo che sia utile partire da queste 17 equzioni proprio per riflettere su alcuni importanti risultati di cui, purtroppo, molti ignorano anche l’esistenza. D’altro canto, come vedremo, ci sono altre equazioni estremanete importanti, se non altro per le loro conseguenze, che vengono studiate a scuola senza però comprendere la potenza o le implicazioni che tali risultati hanno sulla natura.

Senza ulteriori inutili giri di parole, vi presento le 17 equazioni, ripeto secondo Stewart, che hanno cambiato il mondo:

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Sicuramente, ognuno di noi, in base alla propria preparazione, ne avrà riconosciute alcune.

Passiamo attraverso questa lista per descrivere, anche solo brevemente, il significato e le implicazioni di questi importanti risultati.

Teorema di Pitagora

Tutti a scuola abbiamo appreso questa nozione: la somma dell’area dei quadrati costruiti sui cateti, è pari all’area del quadrato costruito sull’ipotenusa. Definizione semplicissima, il più delle volte insegnata come semplice regoletta da tenere a mente per risolvere esercizi. Questo risultato è invece estremamente importante e rappresenta uno dei maggiori assunti della geometria Euclidea, cioè quella che tutti conoscono e che è relativa al piano. Oltre alla tantissime implicazioni nello spazio piano, la validità del teorema di Pitagora rappresenta una prova indiscutibile della differenza tra spazi euclidei e non. Per fare un esempio, questo risultato non è più vero su uno spazio curvo. Analogamente, proprio sfruttando il teorema di Pitagora, si possono fare misurazioni sul nostro universo, parlando proprio di spazio euclideo o meno.

 

Logaritmo del prodotto

Anche qui, come riminescenza scolastica, tutti abbiamo studiato i logaritmi. Diciamoci la verità, per molti questo rappresentava un argomento abbastanza ostico e anche molto noioso. La proprietà inserita in questa tabella però non è affatto banale e ha avuto delle importanti applicazioni prima dello sviluppo del calcolo informatizzato. Perchè? Prima dei moderni calcolatori, la trasformazione tra logaritmo del prodotto e somma dei logaritmi, ha consentito, soprattutto in astronomia, di calcolare il prodotto tra numeri molto grandi ricorrendo a più semplici espedienti di calcolo. Senza questa proprietà, molti risultati che ancora oggi rappresentano basi scientifiche sarebbero arrivati con notevole ritardo.

 

Limite del rapporto incrementale

Matematicamente, la derivata di una funzione rappresenta il limite del rapporto incrementale. Interessante! Cosa ci facciamo? La derivata di una funzione rispetto a qualcosa, ci da un’indicazione di quanto quella funzione cambi rispetto a quel qualcosa. Un esempio pratico è la velocità, che altro non è che la derivata dello spazio rispetto al tempo. Tanto più velocemente cambia la nostra posizione, tanto maggiore sarà la nostra velocità. Questo è solo un semplice esempio ma l’operazione di derivata è uno dei pilastri del linguaggio matematico utilizzato dalla natura, appunto mai statica.

 

Legge di Gravitazione Universale

Quante volte su questo blog abbiamo citato questa legge. Come visto, questa importante relazione formulata da Newton ci dice che la forza agente tra due masse è direttamente proporzionale al prodotto delle masse stesse e inversamente proporzionale al quadrato della loro distanza. A cosa serve? Tutti i corpi del nostro universo si attraggono reciprocamente secondo questa legge. Se il nostro Sistema Solare si muove come lo vediamo noi, è proprio per il risultato delle mutue forze agenti sui corpi, tra le quali quella del Sole è la componente dominante. Senza ombra di dubbio, questo è uno dei capisaldi della fisica.

 

Radice quadrata di -1

Questo è uno di quei concetti che a scuola veniva solo accennato ma che poi, andando avanti negli studi, apriva un mondo del tutto nuovo. Dapprima, siamo stati abituati a pensare ai numeri naturali, agli interi, poi alle frazioni infine ai numeri irrazionali. A volte però comparivano nei nostri esercizi le radici quadrate di numeri negativi e semplicemente il tutto si concludeva con una soluzione che “non esiste nei reali”. Dove esiste allora? Quei numeri non esistono nei reali perchè vivono nei “complessi”, cioè in quei numeri che arrivano, appunto, da radici con indice pari di numeri negativi. Lo studio dei numeri complessi rappresenta un importante aspetto di diversi settori della conoscenza: la matematica, l’informatica, la fisica teorica e, soprattutto, nella scienza delle telecomunicazioni.

 

Formula di Eulero per i poliedri

Questa relazione determina una correlazione tra facce, spigoli e vertici di un poliedro cioè, in parole semplici, della versione in uno spazio tridimensionale dei poligoni. Questa apparentemente semplice relazione, ha rappresentato la base per lo sviluppo della “topologia” e degli invarianti topologici, concetti fondamentali nello studio della fisica moderna.

 

Distribuzione normale

Il ruolo della distribuzione normale, o gaussiana, è indiscutibile nello sviluppo e per la comprensione dell’intera statistica. Questo genere di curva ha la classica forma a campana centrata intorno al valore di maggior aspettazione e la cui larghezza fornisce ulteriori informazioni sul campione che stiamo analizzando. Nell’analisi statistica di qualsiasi fenomeno in cui il campione raccolto sia statisticamente significativo e indipendente, la distribuzione normale ci fornisce dati oggettivi per comprendere tutti i vari trend. Le applicazioni di questo concetto sono praticametne infinite e pari a tutte quelle situazioni in cui si chiama in causa la statistica per descrivere un qualsiasi fenomeno.

 

Equazione delle Onde

Questa è un’equazione differenziale che descrive l’andamento nel tempo e nello spazio di un qualsiasi sistema vibrante o, più in generale, di un’onda. Questa equazione può essere utilizzata per descrivere tantissimi fenomeni fisici, tra cui anche la stessa luce. Storicamente poi, vista la sua importanza, gli studi condotti per la risoluzione di questa equazione differenziale hanno rappresentato un ottimo punto di partenza che ha permesso la risoluzione di tante altre equazioni differenziali.

 

Trasformata di Fourier

Se nell’equazione precedente abbiamo parlato di qualcosa in grado di descrivere le variazioni spazio-temporali di un’onda, con la trasformata di Fourier entriamo invece nel vivo dell’analisi di un’onda stessa. Molte volte, queste onde sono prodotte dalla sovrapposizione di tantissime componenti che si sommano a loro modo dando poi un risultato finale che noi percepiamo. Bene, la trasformata di Fourier consente proprio di scomporre, passatemi il termine, un fenomeno fisico ondulatorio, come ad esempio la nostra voce, in tante componenti essenziali più semplici. La trasformata di Fourier è alla base della moderna teoria dei segnali e della compressione dei dati nei moderni cacolatori.

 

Equazioni di Navier-Stokes

Prendiamo un caso molto semplice: accendiamo una sigaretta, lo so, fumare fa male, ma qui lo facciamo per scienza. Vedete il fumo che esce e che lentamente sale verso l’alto. Come è noto, il fumo segue un percorso molto particolare dovuto ad una dinamica estremamente complessa prodotta dalla sovrapposizione di un numero quasi infinito di collissioni tra molecole. Bene, le equazioni differenziali di Navier-Stokes descrivono l’evoluzione nel tempo di un sistema fluidodinamico. Provate solo a pensare a quanti sistemi fisici includono il moto di un fluido. Bene, ad oggi abbiamo solo delle soluzioni approssimate delle equazioni di Navier-Stokes che ci consentono di simulare con una precisione più o meno accettabile, in base al caso specifico, l’evoluzione nel tempo. Approssimazioni ovviamente fondamentali per descrivere un sistema fluidodinamico attraverso simulazioni al calcolatore. Piccolo inciso, c’è un premio di 1 milione di dollari per chi riuscisse a risolvere esattamente le equazioni di Navier-Stokes.

 

Equazioni di Maxwell

Anche di queste abbiamo più volte parlato in diversi articoli. Come noto, le equazioni di Maxwell racchiudono al loro interno i più importanti risultati dell’elettromagnetismo. Queste quattro equazioni desrivono infatti completamente le fondamentali proprietà del campo elettrico e magnetico. Inoltre, come nel caso di campi variabili nel tempo, è proprio da queste equazioni che si evince l’esistenza di un campo elettromagnetico e della fondamentale relazione tra questi concetti. Molte volte, alcuni soggetti dimenticano di studiare queste equazioni e sparano cavolate enormi su campi elettrici e magnetici parlando di energia infinita e proprietà che fanno rabbrividire.

 

La seconda legge della Termodinamica

La versione riportata su questa tabella è, anche a mio avviso, la più affascinante in assoluto. In soldoni, la legge dice che in un sistema termodinamico chiuso, l’entropia può solo aumentare o rimanere costante. Spesso, questo che è noto come “principio di aumento dell’entropia dell’universo”, è soggetto a speculazioni filosofiche relative al concetto di caos. Niente di più sbagliato. L’entropia è una funzione di stato fondamentale nella termodinamica e il suo aumento nei sistemi chiusi impone, senza mezzi termini, un verso allo scorrere del tempo. Capite bene quali e quante implicazioni questa legge ha avuto non solo nella termodinamica ma nella fisica in generale, tra cui anche nella teoria della Relatività Generale di Einstein.

 

Relatività

Quella riportata nella tabella, se vogliamo, è solo la punta di un iceberg scientifico rappresentato dalla teoria della Relatività, sia speciale che generale. La relazione E=mc^2 è nota a tutti ed, in particolare, mette in relazione due parametri fisici che, in linea di principio, potrebbero essere del tutto indipendenti tra loro: massa ed energia. Su questa legge si fonda la moderna fisica degli acceleratori. In questi sistemi, di cui abbiamo parlato diverse volte, quello che facciamo è proprio far scontrare ad energie sempre più alte le particelle per produrne di nuove e sconosciute. Esempio classico e sui cui trovate diversi articoli sul blog è appunto quello del Bosone di Higgs.

 

Equazione di Schrodinger

Senza mezzi termini, questa equazione rappresenta il maggior risultato della meccanica quantistica. Se la relatività di Einstein ci spiega come il nostro universo funziona su larga scala, questa equazione ci illustra invece quanto avviene a distanze molto molto piccole, in cui la meccanica quantistica diviene la teoria dominante. In particolare, tutta la nostra moderna scienza su atomi e particelle subatomiche si fonda su questa equazione e su quella che viene definita funzione d’onda. E nella vita di tutti i giorni? Su questa equazione si fondano, e funzionano, importanti applicazioni come i laser, i semiconduttori, la fisica nucleare e, in un futuro prossimo, quello che indichiamo come computer quantistico.

 

Teorema di Shannon o dell’informazione

Per fare un paragone, il teorema di Shannon sta ai segnali così come l’entropia è alla termodinamica. Se quest’ultima rappresenta, come visto, la capicità di un sistema di fornire lavoro, il teorema di Shannon ci dice quanta informazione è contenuta in un determinato segnale. Per una migliore comprensione del concetto, conviene utilizzare un esempio. Come noto, ci sono programmi in grado di comprimere i file del nostro pc, immaginiamo una immagine jpeg. Bene, se prima questa occupava X Kb, perchè ora ne occupa meno e io la vedo sempre uguale? Semplice, grazie a questo risultato, siamo in grado di sapere quanto possiamo comprimere un qualsiasi segnale senza perdere informazione. Anche per il teorema di Shannon, le applicazioni sono tantissime e vanno dall’informatica alla trasmissione dei segnali. Si tratta di un risultato che ha dato una spinta inimmaginabile ai moderni sistemi di comunicazione appunto per snellire i segnali senza perdere informazione.

 

Teoria del Caos o Mappa di May

Questo risultato descrive l’evoluzione temporale di un qualsiasi sistema nel tempo. Come vedete, questa evoluzione tra gli stati dipende da K. Bene, ci spossono essere degli stati di partenza che mplicano un’evoluzione ordinata per passi certi e altri, anche molto prossimi agli altri, per cui il sistema si evolve in modo del tutto caotico. A cosa serve? Pensate ad un sistema caotico in cui una minima variazione di un parametro può completamente modificare l’evoluzione nel tempo dell’intero sistema. Un esempio? Il meteo! Noto a tutti è il cosiddetto effetto farfalla: basta modificare di una quantità infinitesima un parametro per avere un’evoluzione completamente diversa. Bene, questi sistemi sono appunto descritti da questo risultato.

 

Equazione di Black-Scholes

Altra equazione differenziale, proprio ad indicarci di come tantissimi fenomeni naturali e non possono essere descritti. A cosa serve questa equazione? A differenza degli altri risultati, qui entriamo in un campo diverso e più orientato all’uomo. L’equazione di Black-Scholes serve a determinare il prezzo delle opzioni in borsa partendo dalla valutazione di parametri oggettivi. Si tratta di uno strumento molto potente e che, come avrete capito, determina fortemente l’andamento dei prezzi in borsa e dunque, in ultima analisi, dell’economia.

 

Bene, queste sono le 17 equazioni che secondo Stewart hanno cambiato il mondo. Ora, ognuno di noi, me compreso, può averne altre che avrebbe voluto in questa lista e che reputa di fondamentale importanza. Sicuramente questo è vero sempre ma, lasciatemi dire, questa lista ci ha permesso di passare attraverso alcuni dei più importanti risultati storici che, a loro volta, hanno spinto la conoscenza in diversi settori. Inoltre, come visto, questo articolo ci ha permesso di rivalutare alcuni concetti che troppo spesso vengono fatti passare come semplici regolette non mostrando la loro vera potenza e le implicazioni che hanno nella vita di tutti i giorni e per l’evoluzione stessa della scienza.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Tutti i movimenti della Terra

27 Giu

Proprio ieri, una nostra cara lettrice ci ha fatto una domanda molto interessante nella sezione:

Hai domande o dubbi?

Come potete leggere, si chiede se esiste una correlazione tra i moti della Terra e l’insorgere di ere di glaciazione sul nostro pianeta. Rispondendo a questa domanda, mi sono reso conto come, molto spesso, e non è certamente il caso della nostra lettrice, le persone conoscano solo i moti principali di rotazione e rivoluzione. A questo punto, credo sia interessante capire meglio tutti i movimenti che il nostro pianeta compie nel tempo anche per avere un quadro più completo del moto dei pianeti nel Sistema Solare. Questa risposta, ovviamente, ci permetterà di rispondere, anche in questa sede, alla domanda iniziale che è stata posta.

Dunque, andiamo con ordine, come è noto la Terra si muove intorno al Sole su un’orbita ellittica in cui il Sole occupa uno dei due fuochi. Questo non sono io a dirlo, bensì questa frase rappresenta quella che è nota come I legge di Keplero. Non starò qui ad annoiarvi con tutte le leggi, ma ci basta sapere che Keplero fu il primo a descrivere cinematicamente il moto dei pianeti intorno ad un corpo più massivo. Cosa significa “cinematicamente”? Semplice, si tratta di una descrizione completa del moto senza prendere in considerazione il perché il moto avviene. Come sapete, l’orbita è ellittica perché è la legge di Gravitazione Universale a spiegare la tipologia e l’intensità delle forze che avvengono. Bene, detto molto semplicemente, Keplero ci spiega l’orbita e come il moto si evolverà nel tempo, Newton attraverso la sua legge di gravitazione ci dice il perché il fenomeno avviene in questo modo (spiegazione dinamica).

Detto questo, se nel nostro Sistema Solare ci fossero soltanto il Sole e la Terra, quest’ultima si limiterebbe a percorrere la sua orbita ellittica intorno al Sole, moto di rivoluzione, mentre gira contemporaneamente intorno al suo asse, moto di rotazione. Come sappiamo bene, il primo moto è responsabile dell’alternanza delle stagioni, mentre la rotazione è responsabile del ciclo giorno-notte.

Purtroppo, ed è un eufemismo, la Terra non è l’unico pianeta a ruotare intorno al Sole ma ce ne sono altri, vicini, lontani e più o meno massivi, oltre ovviamente alla Luna, che per quanto piccola è molto vicina alla Terra, che “disturbano” questo moto molto ordinato.

Perche questo? Semplice, come anticipato, e come noto, due masse poste ad una certa distanza, esercitano mutamente una forza di attrazione, detta appunto gravitazionale, direttamente proporzionale al prodotto delle masse dei corpi e inversamente proporzionale al quadrato della loro distanza. In altri termini, più i corpi sono massivi, maggiore è la loro attrazione. Più i corpi sono distanti, minore sarà la forza che tende ad avvicinarli. Ora, questo è vero ovviamente per il sistema Terra-Sole ma è altresì vero per ogni coppia di corpi nel nostro Sistema Solare. Se Terra e Sole si attraggono, lo stesso fanno la Terra con la Luna, Marte con Giove, Giove con il Sole, e via dicendo. Come è facile capire, la componente principale delle forze è quella offerta dal Sole sul pianeta, ma tutte queste altre “spintarelle” danno dei contributi minori che influenzano “in qualche modo” il moto di qualsiasi corpo. Bene, questo “in qualche modo” è proprio l’argomento che stiamo affrontando ora, cioè i moti minori, ad esempio, della Terra nel tempo.

Dunque, abbiamo già parlato dei notissimi moti di rotazione e di rivoluzione. Uno dei moti che invece è divenuto famoso grazie, o forse purtroppo, al 2012 è quello di precessione degli equinozi, di cui abbiamo già parlato in questo articolo:

Nexus 2012: bomba a orologeria

Come sapete, l’asse della Terra, cioè la linea immaginaria che congiunge i poli geografici ed intorno al quale avviene il moto di rotazione, è inclinato rispetto al piano dell’orbita. Nel tempo, questo asse non rimane fisso, ma descrive un doppio cono come mostrato in questa figura:

Moto di precessione degli equinozi e di nutazione

Moto di precessione degli equinozi e di nutazione

Il moto dell’asse è appunto detto di “precessione degli equinozi”. Si tratta di un moto a più lungo periodo dal momento che per compiere un intero giro occorrono circa 25800 anni. A cosa è dovuto il moto di precessione? In realtà, si tratta del risultato di un duplice effetto: l’attrazione gravitazionale da parte della Luna e il fatto che il nostro pianeta non è perfettamente sferico. Perché si chiama moto di precessione degli equinozi? Se prendiamo la linea degli equinozi, cioè quella linea immaginaria che congiunge i punti dell’orbita in cui avvengono i due equinozi, a causa di questo moto questa linea si sposterà in senso orario appunto facendo “precedere” anno dopo anno gli equinozi. Sempre a causa di questo moto, cambia la costellazione visibile il giorno degli equinozi e questo effetto ha portato alla speculazione delle “ere new age” e al famoso “inizio dell’era dell’acquario” di cui, sempre in ambito 2012, abbiamo già sentito parlare.

Sempre prendendo come riferimento la figura precedente, notiamo che c’è un altro moto visibile. Percorrendo il cono infatti, l’asse della Terra oscilla su e giù come in un moto sinusoidale. Questo è noto come moto di “nutazione”. Perché avviene questo moto? Oltre all’interazione della Luna, molto vicina alla Terra, anche il Sole gioca un ruolo importante in questo moto che proprio grazie alla variazione di posizione relativa del sistema Terra-Luna-Sole determina un moto di precessione non regolare nel tempo. In questo caso, il periodo della nutazione, cioè il tempo impiegato per per compiere un periodo di sinusoide, è di circa 18,6 anni.

Andando avanti, come accennato in precedenza, la presenza degli altri pianeti nel Sistema Solare apporta dei disturbi alla Terra, così come per gli altri pianeti, durante la sua orbita. Un altro moto da prendere in considerazione è la cosiddetta “precessione anomalistica”. Di cosa si tratta? Abbiamo detto che la Terra compie un’orbita ellittica intorno al Sole che occupa uno dei fuochi. In astronomia, si chiama “apside” il punto di massima o minima distanza del corpo che ruota da quello intorno al quale sta ruotando, nel nostro caso il Sole. Se ora immaginiamo di metterci nello spazio e di osservare nel tempo il moto della Terra, vedremo che la linea che congiunge gli apsidi non rimane ferma nel tempo ma a sua volta ruota. La figura seguente ci può aiutare meglio a visualizzare questo effetto:

Moto di precessione anomalistica

Moto di precessione anomalistica

Nel caso specifico di pianeti che ruotano intorno al Sole, questo moto è anche chiamato di “precessione del perielio”. Poiché il perielio rappresenta il punto di massimo avvicinamento di un corpo dal Sole, il perché di questo nome è evidente. A cosa è dovuta la precessioni anomalistica? Come anticipato, questo moto è proprio causato dalle interazioni gravitazionali, sempre presenti anche se con minore intensità rispetto a quelle del Sole, dovute agli altri pianeti. Nel caso della Terra, ed in particolare del nostro Sistema Solare, la componente principale che da luogo alla precessione degli apsidi è l’attrazione gravitazionale provocata da Giove.

Detto questo, per affrontare il prossimo moto millenario, torniamo a parlare di asse terrestre. Come visto studiando la precessione e la nutazione, l’asse terrestre descrive un cono nel tempo (precessione) oscillando (nutazione). A questo livello però, rispetto al piano dell’orbita, l’inclinazione dell’asse rimane costante nel tempo. Secondo voi, con tutte queste interazioni e questi effetti, l’inclinazione dell’asse potrebbe rimanere costante? Assolutamente no. Sempre a causa dell’interazione gravitazionale, Sole e Luna principalmente nel nostro caso, l’asse della Terra presenta una sorta di oscillazione variando da un massimo di 24.5 gradi ad un minimo di 22.1 gradi. Anche questo movimento avviene molto lentamente e ha un periodo di circa 41000 anni. Cosa comporta questo moto? Se ci pensiamo, proprio a causa dell’inclinazione dell’asse, durante il suo moto, uno degli emisferi della Terra sarà più vicino al Sole in un punto e più lontano nel punto opposto dell’orbita. Questo contribuisce notevolmente alle stagioni. L’emisfero più vicino avrà più ore di luce e meno di buio oltre ad avere un’inclinazione diversa per i raggi solari che lo colpiscono. Come è evidente, insieme alla distanza relativa della Terra dal Sole, la variazione dell’asse contribuisce in modo determinante all’alternanza estate-inverno. La variazione dell’angolo di inclinazione dell’asse può dunque, con periodi lunghi, influire sull’intensità delle stagioni.

Finito qui? Non ancora. Come detto e ridetto, la Terra si muove su un orbita ellittica intorno al Sole. Uno dei parametri matematici che si usa per descrivere un’ellisse è l’eccentricità, cioè una stima, detto molto semplicemente, dello schiacciamento dell’ellisse rispetto alla circonferenza. Che significa? Senza richiamare formule, e per non appesantire il discorso, immaginate di avere una circonferenza. Se adesso “stirate” la circonferenza prendendo due punti simmetrici ottenete un’ellisse. Bene, l’eccentricità rappresenta proprio una stima di quanto avete tirato la circonferenza. Ovviamente, eccentricità zero significa avere una circonferenza. Più è alta l’eccentricità, maggiore sarà l’allungamento dell’ellisse.

Tornando alla Terra, poiché l’orbita è un’ellisse, possiamo descrivere la sua forma utilizzando l’eccentricità. Questo valore però non è costante nel tempo, ma oscilla tra un massimo e un minimo che, per essere precisi, valgono 0,0018 e 0,06. Semplificando molto il discorso, nel tempo l’orbita della Terra oscilla tra qualcosa più o meno simile ad una circonferenza. Anche in questo caso, si tratta di moti millenari a lungo periodo ed infatti il moto di variazione dell’eccentricità (massimo-minimo-massimo) avviene in circa 92000 anni. Cosa comporta questo? Beh, se teniamo conto che il Sole occupa uno dei fuochi e questi coincidono nella circonferenza con il centro, ci rendiamo subito conto che a causa di questa variazione, la distanza Terra-Sole, e dunque l’irraggiamento, varia nel tempo seguendo questo movimento.

A questo punto, abbiamo analizzato tutti i movimenti principali che la Terra compie nel tempo. Per affrontare questo discorso, siamo partiti dalla domanda iniziale che riguardava l’ipotetica connessione tra periodi di glaciazione sulla Terra e i moti a lungo periodo. Come sappiamo, nel corso delle ere geologiche si sono susseguiti diversi periodi di glaciazione sul nostro pianeta, che hanno portato allo scioglimento dei ghiacci perenni e all’innalzamento del livello dei mari. Studiando i reperti e la quantità di CO2 negli strati di ghiaccio, si può notare una certa regolarità dei periodi di glaciazione, indicati anche nella pagina specifica di wikipedia:

Wiki, cronologia delle glaciazioni

Come è facile pensare, molto probabilmente ci sarà una correlazione tra i diversi movimenti della Terra e l’arrivo di periodi di glaciazione più o meno intensi, effetto noto come “Cicli di Milanković”. Perché dico “probabilmente”? Come visto nell’articolo, i movimenti in questione sono diversi e con periodi più o meno lunghi. In questo contesto, è difficile identificare con precisione il singolo contributo ma quello che si osserva è una sovrapposizione degli effetti che producono eventi più o meno intensi.

Se confrontiamo i moti appena studiati con l’alternanza delle glaciazioni, otteniamo un grafico di questo tipo:

Relazione tra i periodi dei movimenti della Terra e le glaciazioni conosciute

Relazione tra i periodi dei movimenti della Terra e le glaciazioni conosciute

Come si vede, è possibile identificare una certa regolarità negli eventi ma, quando sovrapponiamo effetti con periodi molto lunghi e diversi, otteniamo sistematicamente qualcosa con periodo ancora più lungo. Effetto dovuto proprio alle diverse configurazioni temporali che si possono ottenere. Ora, cercare di trovare un modello matematico che prenda nell’insieme tutti i moti e li correli con le variazioni climatiche non è cosa banale e, anche se sembra strano da pensare, gli eventi che abbiamo non rappresentano un campione significativo sul quale ragionare statisticamente. Detto questo, e per rispondere alla domanda iniziale, c’è una relazione tra i movimenti della Terra e le variazioni climatiche ma un modello preciso che tenga conto di ogni causa e la pesi in modo adeguato in relazione alle altre, non è ancora stato definito. Questo ovviamente non esclude in futuro di poter avere una teoria formalizzata basata anche su future osservazioni e sull’incremento della precisione di quello che già conosciamo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’esperimento di Ferlini e la barriera magnetica

4 Mag

Solo qualche giorno fa abbiamo pubblicato un articolo specifico sul cosiddetto “effetto Hutchinson”:

Effetto Hutchinson: realta’ o bufala?

Come visto, i fenomeni descritti in questa esperienza, che spaziano dalla levitazione alla fusione di oggetti con rilascio di energia, sarebbero provocati dalla sovrapposizione di onde elettromagnetiche in zone precise dello spazio. Nel descrivere queste esperienze, abbiamo mostrato un notevole scetticismo dettato dalla particolarita’ dei fenomeni descritti ma, soprattutto, dal fatto che l’autore stesso di questi esperimenti abbia piu’ volte dichiarato di non essere piu’ in grado di ripetere tali effetti. Ci tengo a sottolineare che la mia posizione di scettico non e’ affatto per partito preso. Come sapete, e come detto molte volte, tutti dobbiamo essere aperti a fenomeni sconosciuti e anche apparentemente assurdi purche’, come la scienza insegna, questi possano essere ripetuti da chiunque, in qualsiasi parte sotto le condizioni descritte. Solo se questo avviene possiamo considerare il metodo scientifico soddisfatto e vedere a tali nuovi fenomeni con gli occhi della scienza.

Riprendo quanto detto in questo articolo, perche’ ora vorrei raccontarvi un altro presunto esperimento che solo qualche giorno fa e’ stato richiamato da alcuni siti complottisti, sempre con il solito scopo di denigrare la scienza ufficiale e tacciarla di non voler approfondire cio’ che e’ fuori dai suoi dettami. Parlaimo questa volta del cosiddetto esperimento di Ferlini sulla barriera magnetica.

Chi e’ costui? In cosa consiste l’esperimento?

Se provate ad informarvi in rete, troverete solo una moltitudine di articoli che riprendono pari pari quanto descritto da Ferlini in un libro da lui stesso pubblicato e intitolato appunto “La barriera Magnetica”. In questo libro Ferlini descrive una serie di esperimenti che avrebbe condotto, dapprima in solitudine e poi con un gruppo di collaboratori, studiando i campi magnetici.

Prima di raccontarvi gli esperimenti, e’ importante, come vedremo dopo, dire che Ferlini inizio’ la sua carriera studiando l’antico Egitto e la costruzione delle Piramidi. In particolare, cio’ che interessava Ferlini era la possibilita’ che strani fenomeni fisici potessero accadere dentro o in prossimita’ delle piramidi a causa di soluzioni appositamente inserite durante la costruzione di questi imponenti monumenti.

Premesso questo, Ferlini racconta che un giorno giocherellando con due calamite si accorse che avvicinando i poli opposti, poco prima che questi entrassero in contatto, la zona di spazio appariva leggermente offuscata come se qualcosa di particolare accadesse al volume d’aria tra i poli stessi. Incuriosito da questo fenomeno che non riusciva a spiegare, Ferlini decise di costruire un esperimento piu’ in grande in modo da accentuare l’effetto. L’esperienza da lui realizzata, e sempre raccontata nel suo libro, prevedeva la disposizione di 4 grandi magneti di diverse tonnellate disposti con i poli opposti vicini. Ecco uno schema dell’apparato:

Disposizione dei 4 magneti nell'esperimento di Ferlini

Disposizione dei 4 magneti nell’esperimento di Ferlini

Come vedete ci sono 4 magneti a ferro di cavallo disposti con i poli Nord-Sud alternati tra loro. Dalle prime osservazioni con i piccoli magneti, Ferlini racconta di aver osservato questa deformazione dello spazio solo poco prima che i poli entrassero in contatto a causa dell’attrazione magnetica. Per poter osservare questo effetto nell’esperimento piu’ grande, Ferlini monto’ le calamite su appositi sostegni che permettevano un movimento a passi molto sottili. In questo modo era possibile avvicinare molto lentamente i poli grazie a dei fermi studiati per opporsi all’attrazione.

Bene, cosa accadde con questo esperimento?

Leggendo sempre dal libro di Ferlini, quando i magneti arrivarono nel punto preciso in cui si innescava il fenomeno, accadde qualcosa di incredibile. Nella stanza si diffuse una nebbiolina azzurra con un odore acre. Da queste proprieta’ organolettiche, i presenti capirono che si trattava di ozono. Ma non accade solo questo, la zona di spazio compresa tra i magneti, che questa volta al contrario del primo caso era molto estesa, venne deformata da questo effetto sconosciuto mai osservato prima. Ferlini, che indossava una maschera antigas per non respirare l’ozono, incuriosito da questo fenomeno, si avvicino’ al contrario dei suoi collaboratori che rimasero a distanza di sicurezza. Quando si trovo’ in prossimita’ del punto, i collaboratori videro Ferlini scomparire dalla stanza. La nebbiolina presente inizio’ lentamente a diradarsi assumendo diversi colori e solo dopo che scomparve le persone presenti videro Ferlini riapparire sprovvisto della maschera che portava prima di avvicinarsi.

Dove era finito Ferlini?

Come raccontato nel suo libro, Ferlini si ritrovo’ in Egitto, ma non nel momento dell’esperimento bensi’ al tempo in cui le piramidi erano in costruzione. Vide gli schiavi che alzavano i grandi blocchi e le piramidi cosi’ come erano quando vennero realizzate. Perche’ proprio in quel preciso punto ed in quell’epoca? Ferlini penso’ che questo strano effetto, da subito ribattezzato “barriera magnetica”, fosse un portale creato dalla forza magnetica in grado di interagire con le onde cerebrali. Come anticipato, la carriera di Ferlini inizio’ con lo studio delle piramidi e quindi la barriera magnetica era in grado di interagire con gli impulsi creati dal cervello umano realizzando viaggi nel tempo in zone ed epoche dove il soggetto voleva, anche solo inconsciamente, viaggiare.

Bene, questo e’ l’esperimento di Ferlini e questa sarebbe la barriera magnetica che lui descrive nel suo libro.

Ora posso dire la mia? Premetto, come anticipato all’inizio dell’articolo, che non voglio essere scettico di principio ma analizzando quanto viene raccontato capite bene come una verifica di queste affermazioni sarebbe, ed e’, facilmente attuabille ma, soprattutto, facilmente smentibile. Ovviamente, sui soliti siti complottisti trovate scritto che mai nessuno ha mai voluto realizzare l’esperimento di Ferlini o anche che in realta’ e’ utilizzato normalmente in alcuni grandi centri di ricerca anche se alle persone comuni non ne viene data notizia.

Prima di tutto, vi ricordo che non stiamo parlando di esperimenti impossibili da realizzare ne che richiedono strumentazione particolare. Come detto, nella prima esperienza, Ferlini si sarebbe accorto di questo fenomeno semplicmente osservando due calamite che si attraevano. Avete mai visto due calamite? Ci avete mai giocherellato? Avete mai notato una distorsione dello spazio prima che queste si attacchino a causa della forza di attrazione? Ovviamente credo che la risposta a queste domande sia quanto meno scontata.

Vi faccio notare anche un altro particolare. Prendiamo un sito qualsiasi:

Sito vendita magneti

15 euro al pezzo, ne servono 4, quattro viti senza fine per realizzare un movimento a piccoli passi, qualche bullone di supporto, con meno di 100 euro avete realizzato l’esperimento di Ferlini. Non avrete magneti da tonnellate per poter fare un viaggio nel tempo, ma sicuramente dovreste essere in grado di osservare una bella distorsione dello spazio e, se siete fortunati, anche una bella nebbiolina di ozono nella stanza. Cercando informazioni sulla rete, ho trovato diversi forum in cui gruppi di persone, anche se sconsigliate da altre, si sono dichiarate pronte a mettere in piedi l’esperimento per dimostrarne la corretteza. La cosa simpatica e’ che dopo una lunga discussione “lo faccio”, “non lo fare perdi tempo”, “no lo faccio, chi mi aiuta?”, ecc., nessuno, e dico nessuno, ha il coraggio di tornare e dire che il suo esperimento e’ stato un flop. Nonostante questo, di tanto in tanto, qualche simpatico sito ritira fuori questa storia come se fosse una novita’ assoluta. Che ci volete fare, in tempo di magra di catastrofi e complotti, ogni cosa e’ buona per cercare di accaparrarsi qualche visita sul sito.

Giusto per concludere, e per togliere ogni dubbio, il magnetismo e’ noto da tantissimo tempo. Gia’ ai tempi del greco Talete, che descrive il fenomeno, era noto che un materiale, la magnetite, era in grado di attirare limatura di ferro. Oggi, possiamo disporre di campi magnetici molto elevati per applicazioni di ricerca. Per farvi qualche esempio, il campo magnetico all’interno dell’esperimento ATLAS del CERN, si proprio quello della scoperta dell’Higgs insieme a CMS, e che viene utilizzato per curvare le particelle cariche, ha un’intensita’ di 2 Tesla, cioe’ circa 100000 volte il campo magnetico terrestre. Pensate sia tanto? Ci sono laboratori al mondo che si occupano proprio di studiare i campi magnetici cercando, per ricerca e applicazioni, di trovare materiali nuovi da poter essere utilizzati per creare campi magnetici sempre piu’ intensi. Un esempio? Nel “High Field Magnet Laboratory” in Olanda, si e’ raggiunto il valore di 38 Tesla con un sistema “economico” da soli 1.5 milioni di dollari. Questo pero’ non e’ ancora il record assoluto, anche se il laboratorio detiene il record come rapporto intensita’/prezzo, dal momento che il guiness dei primati per il campo magnetico piu’ intenso e’ del Magnet Lab della California:

Magnet Lab

dove si e’ raggiunto il valore di 45 Tesla con un sistema molto complesso da ben 15 milioni di dollari.

Ora, ragioniamo insieme, secondo voi se esistesse questo effetto “barriera magnetica” dovuto all’attrazione dei poli, nessun altro se ne sarebbe accorto, magari con un sistema in grado di generare un campo ben piu’ intenso rispetto a quello di una semplice calamita a ferro di cavallo?

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

La bufala della Lyubov Orlova e altre navi fantasma

28 Mar

Proprio qualche giorno fa, ho letto una notizia sulla rete che mi ha fatto riflettere su una delle tante storie che spesso si leggono e che, altrettanto spesso, non vengono approfondite con ricerche specifiche. Il tema in questione e’ quello delle cosiddette “navi fantasma” cioe’ imbarcazioni che per un motivo o per un altro restano alla deriva nelle acque senza piu’ passeggeri, completamente abbandonate al proprio destino. Per non deludervi, e’ meglio spiegare subito un dettaglio: non mi sto necessariamente riferendo a navi il cui equipaggio scompare improvvisamente o si trasforma in un gruppo di fantasmi, semplicemente vorrei approfondire, se esistono, e vedremo che la storia e’ piena di casi del genere, navi il cui destino e’ quello di vagare per lungo tempo negli oceani prima di finire arenate da qualche parte o affondate da cause naturali o indotte.

Da dove e’ venuta fuori questa idea?

Molto semplice, anche se in Italia la notizia e’ stata data da pochi siti e giornali, in Inghilterra gia’ da qualche tempo e’ esploso il caso della nava MV Lyubov Orlova, appunto una nave fantasma, che potrebbe finire nell’arco di qualche giorno sulle coste del Regno Unito. Ad alimentare ulteriormente il caso in questione, molte fonti parlano di una nave popolate da una comunita’ di ratti killer giganti che, per sopravvivere, sono diventati cannibali mangiandosi uno con l’altro.

Prima di analizzare la notizia in se cerchiamo, come ormai nostra abitudine, di andare con ordine e raccontare la vera storia di questa nave.

La Lyubov Orlova e’ una nave da crociera rompighiaccio costruita nel 1976 nella ex-Yugoslavia ed entrata in servizio il 19 luglio 1976 come nave da esplorazione scientifica. Nel 1999 la nave e’ stata rivenduta ad una compagnia di crociere, che l’ha ribattezzata MV Lyubov Orlova, per l’organizzazione di crociere verso la penisola Antartica. Durante il suo operato, la nave e’ stata anche partecipe di un salvataggio in mare nel 1981, mentre nel 2006 si e’ arenata in Antartide ed e’ stata a sua volta soccorsa e trainata. La storia di questa nave termina pero’ nel settembre 2010 quando venne posta sotto sequestro dalle autorita’ canadesi nel porto di San Giovanni di Terranova. Il motivo del sequestro era, come facilmente immaginabile, un debito accumulato dalla compagnia di circa 250000 dollari a seguito di una crociera annullata per problemi al motore.

La MV Lyubov Orlova rimane per circa due anni nel porto di San Giovanni di Terranova fino a quando, nel febbraio 2012, non viene acquistata da una nuova compagnia con l’intenzione di smantellarla a recuperare i materiali di cui e’ composta. Considerando che la nave ha una stazza di 4250 tonnellate questa operazione avrebbe fruttato quasi un milione di euro. Il cantiere designato allo smontaggio si trovava in Repubblica Dominicana e per questo la nave, trainata da un rimorchiatore, parte alla volta del cantiere il 23 Gennaio 2013.

Cosa succede durante il viaggio?

Il 24 gennaio, cioe’ il giorno dopo la partenza, il rimorchiatore con la nave al seguito finisce in mezzo ad una tempesta a seguito della quale il cavo di traino si spezza. Dopo innumerevoli tentativi di riaggancio, la MV Lyubov Orlova, per non mettere in pericolo lo stesso rimorchiatore ed il suo equipaggio, viene lasciata alla deriva nel bel mezzo dell’Atlantico facendo perdere le sue tracce.

Che fine ha fatto la nave?

Il 28 gennaio 2013 la MV Lyubov Orlova viene avvistata mentre va alla deriva verso le coste Canadesi, ma viene poi ripersa. Successivamente, il 4 febbraio e il 20 febbraio, la nave viene nuovamente avvistata nell’Atlantico, ancora perfettamente galleggiante, ma di lei se ne perdono nuovamente le tracce.

Qualcosa di diverso accade il 23 Febbraio 2013 quando alle 00.49 le autorita’ costiere canadesi captano un segnale di emergenza proveniente dal sistema EPIRB della MV Lyubov Orlova. Il segnale viene localizzato a circa 700 miglia dalla costa in acque internazionali. A seguito di questo segnale, e non avendo avuto avvistamento visivo della nave, le autorita’ pensano che quella che ormai e’ divenuta una nave fantasma alla deriva sia affondata. Perche’? Il sistema EPIRB e’ un dispositivo di allarme che entra in funzione a contatto con l’acqua salata. In particolare, il sistema in uso sulla nave era di classe II, cioe’ automaticamente attivato a contatto con l’acqua salata e in presenza di una pressione corrispondente a circa 1 metro di acqua. Il lancio del segnale poteva dunque indicare, con buona probabilita’, che la nave era in corso di affondamento.

Finita la storia della nave?

Assolutamente no. Come detto, il segnale EPIRB “poteva” significare affondamento in corso o comunque pericolo. Il 12 marzo 2013, con buona probabilita’, la nave viene nuovamente avvistata nel Nord Atlantico attraverso le immagini satellitari raccolte dalla National Geospatial Intelligence Agency degli Stati Uniti. Da qui in poi, della MV Lyubov Orlova si sono perse definitivamente le tracce.

Perche’ proprio ora la storia di questa nave fantasma e’ tornata di moda?

Verso la fine di Gennaio di quest’anno, il giornale inglese The Sun ha pubblicato un lungo memoriale sulla storia di questa nave parlando anche di un nuovo avvistamento e di fonti, non citate, che parlerebbero di probabile arrivo sulle coste del Regno Unito. Sempre al Sun si dve l’inizio della storia dei ratti killer che ormai popolerebbero la MV Lyubov Orlova.

E’ credibile questa storia?

Anzi, cambio domanda, “conoscete bene il Sun?”. Perche’ dico questo? Anche se vende circa 3 milioni di copie al giorno, il Sun e’ famoso, e deve anche gran parte del suo successo, alle numerose critiche che lo riguardano e che puntano il dito contro il sensazionalismo di molti suoi articoli privi ovviamente di qualsiasi fonte certa e verificabile. Secondo molti critici inglesi ed internazionali, il Sun ha il suo bacino di lettori in persone poco scolarizzate e di basso livello culturale, facilmente plagiabili con notizie non veritiere.

Capito bene di quale fonte stiamo parlando? Purtroppo, a seguito del diffondersi di questa storia, le stesse autorita’ inglesi sono state costrette a smentire ufficialmente la storia dell’avvistamento della MV Lyubov Orlova ma soprattutto della comunita’ di ratti cannibali al suo interno.

Apriamo e chiudiamo anche noi una parentesi specifica. Premesso che, molto probabilmente, ad oggi la nave si trova sul fondale da qualche parte in mezzo all’Atlantico, se anche fosse ancora galleggiante, dopo quasi 2 anni alla deriva e senza cibo a bordo, come potrebbero ancora essere vivi i topi? Inoltre, se anche fosse stata avvistata da qualche parte in acque internazionali, visto il valore dei materiali del rottame e il fatto che in acque internazionali il primo che arriva la prende, secondo voi sarebbe ancora li o sarebbe scattata la corsa al recupero?

Detto questo, prima di concludere, vorrei tornare per un momento all’inizio dell’articolo e al ragionamento circa le cosiddette navi fantasma. Di storie di questo tipo se ne sentono diverse e, anche se poco note, quella della MV Lyubov Orlova non e’ assolutamente un caso isolato.

Il caso piu’ famoso di nave fantasma e’ senza dubbio quello del brigantino canadese Mary Celeste. A contribuire alla diffusione di questa storia ci ha pensato ovviamente anche il racconto di Arthur Conan Doyle ispirato alla storia di questa nave. La Mary Celeste, il cui nome originario era’ Amazon, venne trovata abbandonata nel dicembre 1872 tra Portogallo e Isole Azzorre. A bordo non vi era nessuna traccia del suo equipaggio anche se il diario di bordo presentava annotazioni fino al giorno precedente. Sul destino degli uomini di questa nave ancora oggi vengono fatte congetture dal momento che non si e’ mai giunti ad una spiegazione accettata di quanto accaduto. Durante l’ultimo viaggio, la nave trasportava barili di alcol e quando venne ritrovata aveva una sola pompa in funzione, alcune vele strappate, una scialuppa mancante, la stiva con un metro di acqua anche se, tranne 4, tutti gli altri 1700 barili del prezioso carico erano al loro posto. Da questi particolari sono state create decine di storie con lo scopo di spiegare quanto accaduto. Si va dalla tromba d’aria, alla pirateria, dal guasto all’ammutinamento, fino ad arrivare a storie fantasiose prive di logica e speculanti sui famosi 4 barili di alcol vuoti. Come detto pero’, la storia della Mary Celeste non ha ancora oggi una spiegazione chiara ed accettata ed e’ divenuta, suo malgrado, l’esempio piu’ eclatante di nave fantasma.

Un’altra storia di questo tipo e’ quella del mercantile americano MV Joyita di cui nel 1955 si persero completamente le tracce mentre era in navigazione nel Pacifico. L’imbarcazione venne ritrovata 5 settimane dopo a circa 1000 km di distanza dalla rotta prestabilita. Delle 25 persone a bordo non si hanno notizie certe a parte il fatto che sono scomparsi misteriosamente.

Come anticipato, a questi fatti storici si affiancano poi moltissimi racconti di fantasia, alcuni dei quali anche tramandati nei secoli. Il caso piu’ famoso e piu’ citato e’ sicuramente quello dell’Olandese Volante, una misteriosa nave destinata a solcare i mari in eterno senza una precisa destinazione. Secondo la leggenda, l’Olandese Volante avrebbe un equipaggio di fantasmi i quali, per un altrettanto discusso e non chiaro motivo, non potrebbero tornare nella loro terra di origine ed essere sepolti. In questo caso pero’, siamo di fronte ad un vero e proprio racconto di fantasia che presenta diverse versioni, piu’ o meno romanzate, in base alla cultura che lo racconta.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

La calamita piu’ potente e’ nella Via Lattea

16 Ago

In questi giorni di calura estiva, in cui la pletora di informazioni politiche ed economiche e’ ridotta all’osso, molti giornali si dedicano con lunghi articoli all’informazione scientifica. Questo non puo’ che essere un bene, anche se, molto spesso, la quantita’ di informazioni date viene allungata mettendo in mezzo un po’ di tutto e finendo per sparare qualche castroneria.

Fatto questo necessario preambolo, vi vorrei parlare di una notizia molto importante proprio di questi giorni. Come sicuramente avrete letto, un gruppo di scienziati, in larga parte composto da italiani e del nostro paese e’ anche il coordinatore, e’ riuscito per la prima volta a misurare il campo magnetico di una magnetar.

Di questa tipologia di stelle avevamo parlato in questo post:

Lampi radio dall’universo lontano

Come visto, il nome deriva dalla crasi delle parole magnetic star. Si tratta di uno stadio dell’evoluzione delle stelle, riservato a corpi con masse tra 10 e 25 volte quella del Sole, che possono trasformarsi in stelle di neutroni dotate di un notevole campo magnetico.

Quale scoperta sarebbe stata fatta?

Su alcuni giornali leggete che sono state scoperte per la prima volta le magnetar, oppure che si conoscevano in teoria ma non erano mai state viste, oppure che l’osservazione sarebbe un importante conferma piu’ precisa di qualcosa che si conosceva, ecc. Insomma, hanno scoperto o no qualcosa? Di cosa si tratterebbe?

Cerchiamo di fare un po’ di chiarezza.

Come visto nell’articolo gia’ citato, le magnetar sono state ossevate gia’ da diverso tempo nel nostro sistema solare. L’introduzione di questo particolare stadio di evoluzione stellare, risale addirittura al 1992. Fino ad oggi pero’, della caratteristica principale di queste stelle, cioe’ l’intenso campo magnetico, si avevano prove indirette osservando effetti intorno alle stelle. Attraverso la ricerca di cui stiamo parlando, e’ stato invece possibile misurare per la prima volta il campo magnetico generato, fino ad oggi solo ipotizzato. Come potete capire, si tratta di uno studio molto importante, tanto da essere pubblicato proprio in questi giorni sulla prestigiosa rivista Nature. Unica nota per i giornalisti, evitate di ridicolizzare con interventi inutili, non veri e fuorvianti una misura gia’ di per se estremamente importante nell’ambito dell’astrofisica.

Quanto e’ intenso il campo magnetico di una magnetar?

Come sicuramente avrete letto, si tratta del piu’ potente campo magnetico mai osservato prima, dell’ordine del milione di miliardi di Gauss. Ve bene, ma quanti sono un milione di miliardi di Gauss? Per capire questi numeri, e’ necessario avere un termine di confronto.

Pensate che il campo magnetico della nostra Terra e’ inferiore al Gauss. Il campo magnetico presente all’interno dell’esperimento ATLAS, il piu’ potente tra gli esperimenti del CERN, ha un’intensita’ di 20000 Gauss. Dati questi numeri, capite bene quanto immensamente piu’ alto sia il campo magnetico prodotto dalla magnetar.

Parlando invece di situzioni reali e conosciute da tutti, un campo magnetico di soli 10 Gauss a breve distanza e’ in grado di smagnetizzare qualsiasi supporto di archiviazione dei dati. Se andiamo a valori piu’ alti, il campo magnetico di una magnetar potrebbe essere letale a migliaia di kilometri di distanza. Un’intensita’ cosi’ alta, sarebbe infatti in grado di strappare letteralmente i tessuti del corpo umano, a causa delle proprieta’ magnetiche dell’acqua che li compone.

Come e’ stato misurato un campo cosi’ intenso?

Per prima cosa, la magnetar presa in esame e’ nota come SGR 0418+5729, distante da noi 6500 anni luce. Si tratta di una delle circa 20 magnetar identificate nella nostra Via Lattea. Per poter misurare il campo magnetico dela stella, ci si e’ basati sui dati raccolti durante il 2009 dal telescopio XMM-Newton dell’agenzia spaziale europea. I dati riguardavano l’emissione di raggi X dalla stella. La frequenza di queste particelle e’ infatti direttamente proporzionale all’intensita’ del campo magnetico che attraversano. In questo modo, si e’ potuti risalire ad una misura diretta del campo cercato.

Altra caratteristica importante che si e’ osservata e’ che l’intensita’ del campo sulla superficie della stella non e’ uniforme. Si sono infatti identificate zone con campi magnetici piu’ o meno intensi. Questa caratteristica era attesa e non fa che confermare i dati analizzati. Differenze superficiali sulla magnetar, potrebbero essere le cause delle emissioni cosmiche osservata in passato e del tutto simili a quelle del nostro Sole.

Concludendo, la ricerca pubblicata in questi giorni, riguarda la prima misura diretta del campo magnetico delle magnetar. lo studio di questi corpi celesti, ci potrebbe consentire di capire meglio l’origine e l’evoluzione del nostro universo. Si suppone infatti che possano esistere o siano esistite nell’universo magnetar con campo ancora piu’ intensi. Inoltre, si sospetta che proprio queste stelle siano responsabili delle violente esplosioni cosmiche, simili a quelle del nostro sole, che ogni tanto investono anche la Terra e possono, in taluni casi, portare disturbi alle telecomunicazioni.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Elettrodomestici e bolletta

11 Giu

In un commento apparso nella sezione:

Hai domande o dubbi?

e’ stato chiesto di analizzare i consumi medi dei nostri elettrodomestici. Come giustamente detto nel commento stesso, questo genere di tematiche non sono semplici, vista in primis la vastita’ degli argomenti, ma soprattutto le fluttuazioni di questi valori che possono modificare sensibilmente stime grossolane di consumi elettrici.

Nonostante questo, cerchiamo di fare un po’ di chiarezza su questi argomenti, visto che, molto spesso, tanti ignorano come vengono calcolati i consumi elettrici della propria abitazione o anche ignorano quali elettrodomestici incidono maggiormente sulla nostra bolletta.

A tal senso, qualche tempo fa, avevamo gia’ parlato di consumi elettrici analizzando il discorso dello stand-by, cioe’ di quella lucina rossa che molto spesso teniamo accesa e indica che il nostro apparecchio e’ pronto a funzionare:

Il led rosso dello stadby …

Come potete immaginare, questi argomenti sono molto importanti dal punto di vista ambientale, ma soprattutto dal punto di vista della nostra economia domestica che, in momenti di crisi come questo, non e’ assolutamente un discorso trascurabile.

Prima di tutto, quando compriamo un elettrodomestico, troviamo sempre indicata la potenza richiesta al massimo da questo oggetto. Come sapete, si tratta di un valore espresso in Watt, unita’ di misura indicante appunto la potenza.

Ora pero’, quando arriva la bolletta a casa, vediamo che il pagamento avviene conteggiando non i Watt, bensi’ i Wattora, Wh. Che significa? Mentre il Watt rappresenta una potenza in termini fisici, il Wh e’ un unita’ di misura dell’energia. Come e’ intuibile, il Wattora e’ semplicemente ottenuto moltiplicando la potenza richiesta da un oggetto per il tempo in cui questo e’ acceso.

Per capire meglio questo importante concetto, facciamo un esempio pratico. Immaginate di avere un sistema che richieda una potenza di 1000W per funzionare. Se ora tenete acceso questo oggetto per 1 ora, il consumo energetico sara’ di:

1000W x 1ora = 1000Wh = 1KWh

cioe’ esattamente 1 KiloWattora. Pensandoci bene, questo e’ del tutto normale. La potenza richiesta dall’elettrodomestico interessa solo marginalmente, quello che conta per conteggiare il consumo e’ l’effettivo tempo in cui questo sistema e’ acceso e dunque richiede energia per funzionare.

Bene, a questo punto abbiamo capito come vengono conteggiati i consumi in bolletta. Ora, cerchiamo di capire quanto cosumano i nostri elettrodomestici. Per fare esempi pratici, prendiamo una casa tipo in cui si sara’ un frigorifero, una lavatrice, un asciugacapelli e un forno elettrico. Ovviamente, il calcolo fatto potra’ essere applicato direttamente a qualsiasi elettrodomestico avete in casa, semplicemente modificando i valori.

Prima di avventurarci nel calcolo, dobbiamo pero’ stimare il costo dell’energia dal nostro fornitore. Come saprete molto bene, anche questo valore puo’ presentare fluttuazioni molto elevate, grazie a speciali sconti che vengono offerti in bolletta, ad esempio, sfruttando specifiche fasce orarie o cambiando gestore. Per non fare un torto a nessuno, prendiamo un valore medio pari a 0,20 euro per KWh. Questo valore non dovrebbe discostarsi molto dal prezzo che paghiamo in bolletta in media.

Etichetta di classe energetica per gli elettrodomestici

Etichetta di classe energetica per gli elettrodomestici

Partiamo dunque dal frigorifero. Questo elettrodomestico ha una potenza diversa in base al volume interno, alla presenza o meno del vano congelatore ma anche alla tipologia stessa di elettrodomestico. In particolare, quest’ultimo punto ci permette di parlare di un altro aspetto molto importante e che spesso ci viene mostrato quando andiamo a comprare un nuovo elettrodomestico: la classe energetica. Nell’ottica di un risparmio e di una maggiore salvaguardia dell’ambiente, sono state definite delle classi energetiche in base al consumo di un determinato elettrodomestico. Inizialmente, le classi dovevano essere 7, e chiamate con lettere da A a G. Successivamente, grazie anche al risparmio apportato da nuove soluzioni, la classe piu’ energeticamente vantaggiosa, cioe’ la  A, e’ stata a sua volta divisa da A+ ad A+++, dove un numero crescente di segni “+” indica un maggior risparmio energetico.

Detto questo, quanto consuma un frigorifero? Seguendo la legislazione sulle classi energetiche di questo elettrodomestico, troviamo:

Classe Consumo annuo
A+++ <188 kWh
A++ 188 – 263 kWh
A+ 263 – 344 kWh
Classe Consumo annuo
A < 300 kWh
B 300 – 400 kWh
C 400 – 560 kWh
D 563 – 625 kWh
E 625 – 688 kWh
F 688 – 781 kWh
G > 781 kWh

Dove questi valori sono calcolati prendendo un sistema con potenza compresa tra 100 e 300W, operante in continuo ma non sempre a potenza massima e, naturalmente, sono stimati in condizioni standard di laboratorio con un frigorifero tenuto sempre a porte chiuse.

Dal valore riportato prima di 0,20 Euro/KWh, vediamo come un frigo di classe A da 300KWh/anno ci costera’ in bolletta 60 euro. Al contrario di quanto si pensa, il frigorfero non e’  l’elettrodomestico piu’ impegnativo che abbiamo.

Passiamo ora al discorso lavatrice. Anche qui, sono state definite delle classi energetiche, i cui valori sono:

A < 247 kWh
B 247 – 299 kWh
C 299 – 351 kWh
D 351 – 403 kWh
E 403 – 455 kWh
F 455 – 507 kWh
G > 507 kWh

Come sono stimati questi consumi? A livello legislativo, si e’ supposto di utilizzare la lavatrice per 2 lavaggi settimanali con programmi da 45 minuti a 60 gradi.  Se volete calcolare il vostro caso specifico, basta utilizzare le considerazioni viste prima. Supponendo di avere una lavatrice da 3000W, che teniamo accesa per 4 lavaggi a settimana da 60 minuti, cioe’ 4 ore a settimana, la quantita’ di energia richiesta sara’:

3000W x 4ore x 52sett/anno = 624KWh/anno

Vedete come cambiando leggermente i dati, in fondo chi fa solo 2 lavatrici a settimana, il valore cambia profondamente rispetto alla tabella dichiarata. Fate attenzione, questo non significa che i valori dati per legge siano sbagliati, semplicemente che sono applicati a condizioni tipo che possono essere molto diverse dalla realta’ di ciascuno di noi. Queste tabelle sono molto utili per fare un raffronto tra le diverse classi. In tal senso, e’ sempre possibile dire la classe X consuma P% in meno della classe Y, ma non e’ detto che i valori assoluti siano confrontabili con i nostri. Nel caso del calcolo visto, con 624KWh, il costo dell’energia richiesto sarebbe di 125 euro/anno.

Discorso analogo vale per il forno elettrico. Prendendo un forno standard da 50 litri, le classi energetiche vengono cosi’ definite:

Classe Consumo annuo
A < 80 kWh
B 80 – 100 kWh
C 100 – 120 kWh
D 120 – 140 kWh
E 140 – 160 kWh
F 160 – 180 kWh
G > 180 kWh

Come nel caso della lavatrice, volendo fare un calcolo specifico dei nostri consumi, questi valori lasciano un po’ il tempo che trovano. Se prendiamo un forno da 2000W utilizzato per 100 cicli di cottura da 30 minuti in un anno, l’energia richiesta sara’ di:

2000W x 100cicli x 0.5ore = 100KWh/anno

cioe’ 20 euro/anno che se ne vanno in bolletta.

Sempre nell’ambito degli elettrodomestici utilizzati non in continuo, stesso discorso puo’ essere fatto per l’asciugacapelli. Qui non sono state definite classi energetiche perche’ il consumo e’ strettamente personale e diverso da caso a caso. Se prendiamo un phon da 1000W che utilizziamo per 15 minuti al giorno, 0,25ore, tutti i giorni, allora il consumo energetico sara’:

1000W x 0,25ore x 365giorni = 91KWh/anno

cioe’ altri 18 euro da sommare in bolletta.

Ora, qual e’ lo scopo di questo post? Prima di tutto, spiegare come e’ possibile calcolare su carta i consumi energetici di ciascun apparecchio elettrico che abbiamo in casa. In tal senso, potete ripetere l’esercizio con tutto quello che volete, dal pc alla singola lampadina, passando per sistemi piu’ complessi come condizionatori, lavastoviglie, ecc. Il discorso classi energetiche e’ molto importante perche’, come mostrato, ci fa vedere molto bene quanto sarebbe il risparmio energetico passando da un apparecchio ormai datato ad un uno piu’ recente. Spesso, l’investimento iniziale per il passaggio viene ripagato dopo poco tempo dall’utilizzo dell’elettrodomestico. I valori specifici che pero’ troviamo sulle tabelle, non corrispondono esattamente al reale consumo che poi avremo in casa. Come detto, questi valori devono intendersi come relativi ad una classe rispetto ad un’altra. Per poter determinare il nostro consumo specifico, conviene ricorrere ad esercizi di calcolo come quelli fatti nell’articolo. Meglio ancora sarebbe quello di ricorrere a dei misuratori di consumi che, inseriti in serie tra la presa e l’elettrodomestico, misurano l’effettivo consumo richiesto dall’apparecchio. Inoltre, i nuovi contatori gia’ presenti in molte case, permettono di leggere dati importanti anche sul consumo medio ed istantaneo che e’ stato registrato.

Dal punto di vista ambientale, un risparmio energetico corrisponde ad una maggiore salvaguardia dell’ambiente visto che, ancora oggi, molta dell’energia che consumiamo dalla rete viene prodotta da combustibili fossili e fonti non rinnovabili. Inoltre, e assolutamente meno importante, risparmiare energia significa risparmiare tanti bei soldini che spesso regaliamo al nostro gestore e che potrebbero diminuire applicando un consumo piu’ accorto delle risorse.

Ovviamente, quando poi andate a leggere la vostra bolletta di fornitura elettrica, non dimenticate di inserire le tantissime tasse e spese fisse che vengono applicate e che, molto spesso, incidono piu’ dello stesso consumo elettrico.

 

”Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Cosa c’e’ sotto i nostri piedi?

28 Apr

In questi giorni, molti giornali e siti internet hanno pubblicato la notizia di una nuova misura rigurdante la temperatura al centro della Terra. Come avrete letto, il nuovo risultato stabilisce una temperatura del centro della Terra a 6000 gradi centigradi, ben 1000 gradi maggiore rispetto al valore precedentemente conosciuto e misurato circa 20 anni fa. Tra l’altro, moltissime fonti enfatizzano il fatto che questi 6000 gradi, misurati al centro del nostro pianeta, sono paragonabili alla temperatura esterna del Sole.

Temperature della Terra dalla superficie al centro

Temperature della Terra dalla superficie al centro

E dunque? Purtroppo, come spesso accade, molti siti sono sempre pronti a pubblicare notizie di carattere scientifico, ma un po’ meno a dare spiegazioni. In realta’, questa misura e’ estremamente complessa ed e’ stata possibile solo grazie alla collaborazione di diversi centri di ricerca. Inoltre, la nuova determinazione della temperatura interna del pianeta, consente di verificare molti modelli riguardanti diversi settori della scienza.

Da quanto detto, credo che questa notizia meriti un piccolo approfondimento, anche solo per capire meglio questi concetti, che sempre affascinano le persone.

Per prima cosa: come e’ stata fatta questa misura?

Ad oggi, sappiamo che, scendendo verso il centro della Terra, ci sono zone ad alta pressione occupate da ferro e zolfo liquidi. Pian piano che ci avvicianiamo al centro pero’, e le pressioni continuano ad aumentare, si trova un blocco di ferro solido, che occupa la parte piu’ interna del nostro pianeta. Come sappiamo questo? L’evidenza di questa composizione, ma anche il volume occupato dalla parte solida e da quella liquida, vengono determinati studiando le onde sismiche dei terremoti di intensita’ maggiore. Cosa significa? Le onde emesse durante un forte sisma, si propagano all’interno della Terra e interagiscono in modo diverso incontrando un volume solido o liquido. Bene, misurando queste interferenze, se volete ascoltando il loro eco, e’ possibile determinare lo spessore del nucleo solido del nostro pianeta. Purtroppo, questi studi non ci danno nessuna informazione sulla temperatura interna della Terra. Per ricavare questi valori e’ necessario procedere in modo diverso.

Arriviamo dunque alla misura in questione. Come potete immaginare, sapendo che nel nucleo e’ presente sia ferro solido che liquido, basta determinare i punti di fusione di questo metallo per arrivare all’informazione cercata. Purtroppo, il discorso non e’ cosi’ semplice. In questo caso, oltre alla temperatura, gioca un ruolo essenziale anche la pressione a cui il ferro e’ sottoposto. Pressione e temepratura sono due variabili indipendenti di cui tenere conto per determinare il punto di fusione del ferro.

Per capire questo importante concetto, vi faccio un esempio noto a tutti. Quando si dice che la temperatura di ebollizione dell’acqua e’ 100 gradi, ci si riferisce alla pressione atmosferica. Come sicuramente avrete sentito dire, esistono delle differenze per questo valore a seconda che vi troviate al mare o in montagna. Questo e’ comprensibile proprio considerando i diversi valori di pressione. In questo caso, possiamo vedere la pressione come il peso della colonna d’aria sopra le nostre teste. Variando il valore della pressione, cambia dunque la temperatura di ebollizione dell’acqua. La stessa cosa avviene per il ferro al centro della terra, ma per valori di temperatura e pressioni molto diversi da quelli a cui siamo abituati.

Quando parliamo di pressioni al centro della Terra, stiamo pensando a valori che si aggirano intorno a qualche milione di atmosfere. Per poter studiare le traformazioni di fase del ferro con questi valori di pressione e temperatura, i ricercatori francesi hanno costruito uno strumento ad hoc, di cui vi mostro uno schema:

Schema dello strumento utilizzato per simulare le pressioni al centro della Terra

Schema dello strumento utilizzato per simulare le pressioni al centro della Terra

Come vedete, una lamina di ferro viene messa tra due diamanti, in modo tale che la punta tocchi la superficie. Spingendo i due diamanti su un punto molto piccolo, si riescono a creare le pressioni richieste per la misura. Per scaldare invece il ferro alle temperature richieste, vengono utilizzati potenti fasci laser in grado di far salire la temperatura fino a diverse migliaia di gradi.

A questo punto, appare evidente che tutto il sistema debba essere isolato termicamente e chimicamente dall’ambiente esterno per impedire perdite di calore ma anche che il ferro reagisca con l’ambiente viziando il risultato. In questo caso, per poter determinare lo stato solido o liquido del campione, si sono utilizzate le emissioni a raggi X del materiale, in modo da poter determinare lo stato fisico, senza perturbare in nessun modo la misura.

Dai modelli sismici utilizzati, nello strato in cui il ferro e’ liquido, si ha una temperatura di 4800 gradi con una pressione di 2.2 milioni di atmosfere, risultato confermato dalla misura. Se pero’ aumentiamo ancora la pressione, analogamente a quanto accade mentre scendiamo vicino la centro della Terra, e la portiamo ad un valore di 3.3 milioni di atmosfere, ci si accorge che per far solidificare il ferro, come osservato dallo studio delle onde sismiche, e’ necessaria una temperatura di 6000 gradi.

Cosa significa questo? Riassumendo, sappiamo dai modelli sismici che il centro della terra e’ di ferro solido circondato da ferro liquido. Con il dispositivo visto, e’ stato possibile determinare che alle pressioni del centro della Terra, affinche’ il ferro sia solido, e’ necessaria una temperatura di 6000 gradi. Bene, questo e’ proprio il valore della temperatura al centro del nostro pianeta e che e’ stato possibile misurare con precisione, solo 500 gradi di incertezza sperimentale, con questa importantissima ricerca.

Come vi avevo anticipato, queto nuovo valore e’ circa 1000 gradi superiore a quello precedente ottenuto 20 anni fa. Perche’ questa differenza? Il sistema usato in precedenza per ottenere le alte pressioni richieste era molto simile a quello odierno. La caratteristica che ha permesso di misurare con precisione la temperatura, e’ lo studio delle transizioni del ferro osservando il tutto ai raggi X. Nella precedente misura, venivano utilizzate onde visibili. Come evidenziato in questa nuova misura, arrivati a circa 5000 gradi, si presentano fenomeni di cristallizzazione superficiale del ferro, che molto probabilemnte sono stati interpretati in passato come l’inizio della transizione nella fase solida, mentre, come visto in questa misura, per arrivare in questo stato, e’ necessario aumentare ancora di 1000 gradi la temperatura.

Ultima importante considerazione: come visto, la temperatura del mantello intorno al nucleo e’ di circa 4800 gradi, cioe’ 1200 gradi inferiore a quella del blocco di ferro solido. Bene, questa differenza di temperatura e’ fondamentale per capire un altro importante parametro del nostro pianeta e di cui spesso abbiamo parlato, il campo magnetico. Come sapete, spesso abbiamo parlato di geomagnetismo per sfatare tutte quelle voci catastrofische che vorrebbero un’inversione dei poli in corso:

Inversione dei poli terrestri

L’anomalia del Sud Atlantico

Il battito naturale …. della Terra

Bene, la differenza di temperatura tra gli strati interni, insieme anche alla rotazione della terra intorno al suo asse, sono proprio i responsabili della generazione del nostro campo magnetico. Per dirlo in parole semplici, l’interno della Terra si comporta come una dinamo in cui le correnti sono correnti termiche spinte dalla differenza di temperatura.

Come vedete, alla luce di quanto detto, e’ abbastanza riduttivo quanto si puo’ leggere sui giornali. Questa misura e’ estremamente interessante dal punto di vista tecnico, ma soprattutto i risultati ottenuti sono di prim’ordine. Come anticipato, i nuovi valori trovati consentiranno di migliorare notevolmente i modelli anche dal punto di vista geologico, utili anche per studiare la propagazione dei terremoti sul nostro pianeta. Detto questo, la misura apre il campo anche a possibili studi per cercare di riprodurre in laboratorio le condizioni di pressione e temperatura presenti in ogni strato del nostro pianeta. Avere una mappa di questo tipo, potrebbe fornire dati estremamente importanti per capire al meglio anche l’origine e l’evoluzione della nostra Terra.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Il futuro dell’eolico?

22 Apr

In questo articolo, vorrei tornare nuovamente a parlare di energie rinnovabili. Come sappiamo bene, il continuo aumento della richiesta di energia unita ovviamente al mantenimento e alla conservazione del nostro pianeta, impongono l’utilizzo anche di sorgenti rinnovabili. Quello che pero’ non dobbiamo mai dimenticare e’ che il nostro attuale stato dell’arte non rappresenta assolutamente un punto di arrivo. Le soluzioni disponibili oggi per lo sfruttamento delle sorgenti verdi, non sono ancora sufficienti e non consentono l’autosostentamento che sarebbe richiesto.

Di energie rinnovabili abbiamo parlato, ad esempio, in questi post:

Elezioni, promesse verdi e protocollo di Kyoto

Il futuro verde comincia da Masdar

Energia solare nel deserto

Pannelli, pannelli e pannelli

Mentre negli articoli precedenti ci siamo occupati principalmente di energia solare, in questo post vorrei parlare della seconda fonte per disponibilita’ che siamo in grado di sfruttare, l’energia eolica.

Come tutti sanno, lo sfruttamento dell’energia eolica avviene mediante delle enormi pale che vengono messe in moto dal vento e questa energia meccanica viene poi convertita in energia elettrica. Anche in Italia, abbiamo diverse installazioni di pale eoliche, soprattutto in quelle regioni dove la forza del vento e’ maggiore.

Quali sono i problemi principali delle pale eoliche?

Prima di tutto, come detto, si tratta di turbine molto grandi e che vengono installate su piloni molto alti. Come sostenuto anche da molti esperti, l’impatto ambientale di queste soluzioni e’ molto elevato. Detto in altri termini, le pale eoliche, secondo molti, “sono brutte”. Se ci pensate bene, molto spesso, infatti, queste pale rovinano il paesaggio, soprattutto perche’ vengono installate in vallate o comunque in zone isolate dove la natura e’ ancora dominante. Sapete perche’ vengono installate in questi punti e non all’interno dei centri abitati? Perche’ le pale, durante il normale funzionamento, hanno dei livelli di rumorosita’ molto elevati. Qualsiasi mezzo meccanico messo in movimento, produce necessariamente un rumore di fondo che, nel caso delle pale, e’ anche molto elevato. Proprio questo problema, rende inutilizzabili le pale all’interno dei centri abitati.

Dunque? Esiste una soluzione alternativa?

In questi ultimi tempi, e’ in fase di studio una soluzione alternativa che prevede lo sfruttamento dell’energia eolica senza apparentemente nessuna parte meccanica in movimento. Questa soluzione, chiamata Ewicon, sfrutta infatti una variazione del campo elettrico indotto dal vento per creare energia elettrica. Se volete, invece di convertire energia meccanica in elettrica, il nuovo sistema e’ direttamente basato su una vairazione di energia in forma elettrica per produrre corrente.

Come funziona Ewicon?

Anche se il discorso non e’ semplicissimo, cerchero’ di essere divulgativo mostrando il concetto di base sfruttato in questa soluzione.

Immaginate di avere due conduttori elettrici posti ad una certa distanza e caricati con segno opposto. In altre parole, potete vedere il sistema come le armature di un condensatore. Ora, nella regione di spazio tra i due conduttori si crea un campo elettrico. Se adesso mettete una carica singola all’interno del volume, dove si spostera’ questa? Se la carica e’ positiva, questa ovviamente si muovera’ verso l’elettrodo negativo, spinta dal campo elettrico. Bene, fin qui tutto normale. Se adesso pero’, la forza del vento spinge la carica in verso opposto, cioe’ porta la carica verso l’elettrodo dello stesso segno. L’accumulo di cariche sull’elettrodo provochera’ dunque una variazione della tensione che puo’ essere convertita in energia elettrica.

Questo e’ proprio il principio sfruttato da Ewicon.

Il sistema eolico, prevede due file di elettrodi di segno opposto distanti circa 40 cm tra loro. Nel sistema sono presenti una serie di ugelli che vaporizzano goccioline d’acqua caricate positivamente. Il vento spinge le goccioline di carica positiva verso l’elettrodo dello stesso segno, creando la variazione di campo elettrico. Questa tecnica e’ anche nota come Electrospraying ed in realta’ e’ stata proposta gia’ nel 1975. Ewicon, che sta per Electrostatic Wind Energy Converter, sfrutta proprio questo principio fisico per creare energia dal vento, ma senza mezzi meccanici in movimento.

Per meglio comprendere il principio di base, vi riporto anche un video del sistema:

come vedete, il tutto si basa sulla forza del vento in grado di spingere le gocce d’acqua  in verso opposto a quello determinato dal campo elettrico degli elettrodi.

Il primo prototipo di Ewicon e’ stato realizzato e posto di fronte alla facolta di ingegneria della Delft University:

Prototipo del sistema eolico davanti alla Delft University of Technology

Prototipo del sistema eolico davanti alla Delft University of Technology

Quali sono i vantaggi di questa soluzione? Prima di tutto, come visto, eliminando le parti in movimento, il sistema non soffre piu’ della rumorosita’ delle pale eoliche. In questo modo, il sistema Ewicon puo’ anche essere installato, come nel caso del prototipo, all’interno dei centri abitati. Inoltre, le diverse forme realizzabili consentono di integrare il sistema anche nelle architetture dei piu’ moderni centri urbani. Ad oggi, gia’ diverse soluzioni di design sono state proposte e pensate per adattarsi a molte capitali europee.

Quali sono gli svantaggi? Come potete capire, si tratta ancora di un sistema in forma di prototipo. Prima di tutto, per elettrizzare le goccioline d’acqua e’ necessaria un’energia di partenza. Al momento, questo problema e’ risolto integrando delle batteria all’interno di Ewicon. Se pero’ vogliamo pensare questi sistemi utilizzabili anche “off shore”, cioe’ in mare aperto, e’ impensabile andare di volta in volta a cambiare le batterie dei generatori.

Inoltre, l’acqua necessaria per il funzionamento, viene prelevata dall’umidita’ dell’aria. Questo rende il sistema non utilizzabile in luoghi dove l’umidita’ e’ troppo bassa. Come visto in uno degli articoli precedentemente riportati, uno degli sviluppi futuri, non solo per il solare ma anche per l’eolico, e’ la costruzione di impianti di grandi dimensioni in zone desertiche. In questo caso, il sistema non sarebbe utilizzabile a meno di collegare Ewicon ad una fonte idrica, cosa ugualmente non realizzabile in zone desertiche.

Altro problema non da poco e’ la miscela utilizzata. Nel prototipo visto, non viene utilizzata soltanto acqua, ma una miscela al 70% di acqua demineralizzata e 30% di etanolo.

Ovviamente, si tratta di problemi normali in un sistema in fase di prototipo. Per poter risolvere questi punti, sara’ ovviamente necessario lavorare ancora molto sul progetto e altresi’ investire capitali in questo genere di studi. Come detto all’inizio, ad oggi gia’ disponiamo di metodi per lo sfruttamento delle sorgenti rinnovabili, e proprio per questo dobbiamo utilizzarli. Questo pero’ non preclude lo studio di soluzioni alternative, come Ewicon o come il solare termodinamico, che in un futuro non troppo lontano potranno migliorare notevolmente l’efficienza di produzione energetica e risolvere anche gli altri problemi che ancora affliggono le attuali soluzioni.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.