Tag Archives: fisici

La bomba più potente mai creata!

20 Ott

Eccoci di nuovo qui. Scusate, come al solito, la mia latitanza ma, in questi giorni, sono un po’ lontano dall’Italia e con qualche problema di fuso orario, oltre ai sempre presenti impegni lavorativi.

Detto questo, dopo questi due post:

Il suono del vinile

Il suono più forte mai udito

c’è un’ultima domanda che mi è stata rivolta via mail e che vorrei condividere con tutti perchè, a mio avviso, potrebbe essere molto interessante. La domanda fatta è, se vogliamo, molto semplice: qual è la bomba atomica più potente mai creata dall’uomo?

Premetto subito che il mio post non vuole urtare il pensiero di nessuno. Non è questa la sede per discutere tra chi è a favore dell’energia atomica e chi no, chi pensa una cosa e chi un’altra, ecc.. Lo scopo di questo post vuole essere puramente scientifico o, lasciatemi dire, nonostante l’argomento, di curiosità.

Bene, la bomba atomica più potente, e vedremo cosa significa, mai realizzata dall’uomo è la Bomba Zar, nome in codice Big Ivan, sviluppata in unione sovietica. Premetto subito che non si è trattato di un ordigno di offesa ma solo di un test militare. Anzi, come molti storici sotengono, più che un test militare, la costruzione e il seguente utilizzo della bomba è stato più che altro un messaggio di propaganda dell’ex-URSS per dimostrare ai suoi cittadini, e al mondo intero, cosa la nazione fosse in grado di realizzare.

Dal punto di vista tecnico, la bomba Zar, nella sua concezione iniziale, era una bomba a 3 stadi. Nel nucleo più interno il processo di fissione veniva fatto partire per fornire energia al secondo stadio in cui si aveva un’amplificazione grazie alla fusione di atomi di idrogeno, energia che serviva a sua volta per innescare una seconda fusione nel terzo e più esterno strato della bomba.

A livello progettuale, la bomba Zar era in grado di sviluppare una potenza di 100 Mt, cioè 100 milioni di tonnellate di TNT equivalente. A quanto equivale questa energia? Per farvi un esempio noto a tutti, l’atomica sganciata dagli USA su Hiroshima, Little Boy, aveva una potenza 3125 volte inferiore. Se potessimo far esplodere simultaneamente tutti gli esplosivi convenzionali utilizzati nella seconda guerra mondiale, l’esplosione sarebbe ancora 10 volte inferiore a quella della Bomba Zar.

Questo potentissimo ordigno venne sviluppato dall’Unione Sovietica da un team di fisici capeggiati da Andrej Sacharov, una delle menti più brillanti del XX secolo. Dopo aver contribuito in modo fondamentale allo sviluppo della bomba a idrogeno, Sacharov iniziò una lunga battaglia a favore dei diritti civili e contro l’uso dell’energia nucleare negli armamenti. Proprio questa sua attività gli valse il premio nobel per la pace.

Tornando a parlare dell’ordigno, per motivi di sicurezza, nell’unico test condotto, venne realizzata una versione depotenziata della Bomba Zar. A differenza del progetto iniziale, il terzo stadio venne sostituito da piombo, materiale in grado di rallentare e schermare le radiazioni prodotte dalla bomba. Questa versione poteva però raggiungere la sempre impressionante energia di 50 Mt. Il test venne poi eseguito il 30 Ottobre 1961, sull’isola di Novaja Zemlja, una località sperduta a nord del Circolo Polare.

Nonostante l’enorme potenza, la sostituzione del terzo stadio con piombo diminuì notevolmente la radiazione emessa attraverso il fallout successivo alla detonazione. Proprio per questo motivo, considerando il rapporto potenza/radiazione, la bomba Zar è anche stata l’ordigno nucleare più “pulito”.

Quali sono gli effetti di una detonazione del genere? Prima di tutto, consideriamo che la bomba venne fatta esplodere a 4000 metri dal suolo. Nonostante questo, la successiva onda sismica provocata dalla deflagrazione fece 3 volte il giro del pianeta. Testimoni a 1000 Km di distanza dal punto, poterono vedere chiaramente il lampo anche se il cielo era notevolmente nuvoloso. Altri testimoni riportarono di aver percepito il calore dell’onda sulla pelle fino a 270 Km di distanza. Praticamente tutto quello che era presente fino a 35 Km dal centro venne completamente spazzato via. Se ancora non vi basta, a 900 Km di distanza, in Finlandia, alcune case riportarono danni a porte e finestre provocati dall’onda d’urto dell’esplosione.

Ripeto, questa era la versione depotenziata di un un fattore 2 rispetto al reale progetto.

Spero che quanto raccontato sia sufficiente a far capire le potenzialità di questi ordigni. Ripeto, non voglio discutere se è giusto o meno costruire, o saper realizzare, bombe di questo tipo. Permettetemi però di dire, senza offesa per nessuno, che dal punto di vista tecnico è straordinario pensare a quanta energia possa essere sviluppata da un sistema di questo tipo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Hawking e la fine del mondo

11 Set

Visto che me lo state chiedendo in tantissimi, vorrei aprire una parentesi sulle affermazioni fatte dal celebre astrofisico Stephen Hawking riguardanti il bosone di Higgs. Per chi non lo avesse seguito, abbiamo già discusso di questo tema nella apposita sezione:

Hai domande o dubbi?

Dove un nostro caro lettore, già qualche giorno fa, ci aveva chiesto lumi a riguardo.

Di cosa stiamo parlando?

Come tutti avrete letto, nell’introduzione del suo ultimo libro “Starmus, 50 years of man in space” il celebre astrofisico avrebbe scritto che il bosone di Higgs avrebbe le potenzialità per poter distruggere l’intero universo. In pratica, ad energie elevate, così si legge, la particella potrebbe divenire improvvisamente instabile e provocare il collasso dello stato di vuoto, con conseguente distruzione dell’universo.

Cosa? Collaso del vuoto? Distruzione dell’universo?

Ci risiamo, qualcuno ha ripreso qualche spezzone in giro per la rete e ne ha fatto un caso mondiale semplicemente mescolando le carte in tavola. In realtà, a differenza anche di quanto io stesso ho affermato nella discussione linkata, la cosa è leggermente più sottile.

E’ possibile che il bosone di Higgs diventi instabile e bla bla bla?

No! Il bosone di Higgs non diviene instabile ad alte energie o perchè ne ha voglia. Stiamo entrando in un settore della fisica molto particolare e su cui la ricerca è ancora in corso.

Facciamo un piccolo excursus. Del bosone di Higgs ne abbiamo parlato in questo articolo:

Bosone di Higgs … ma che sarebbe?

dove abbiamo cercato di spiegare il ruolo chiave di questa particelle nella fisica e, soprattutto, la sua scoperta.

Inoltre, in questo articolo:

L’universo è stabile, instabile o metastabile?

Abbiamo visto come la misura della massa di questa particella abbia implicazioni profonde che esulano dalla mera fisica delle particelle. In particolare, la massa di questa particella, combinata con quella del quark top, determinerebbe la condizione di stabilità del nostro universo.

Bene, come visto nell’ultimo articolo citato, i valori attuali dei parametri che conosciamo, ci pongono nella strettissima zona di metastabilità del nostro universo. Detto in parole semplici, non siamo completamente stabili e, ad un certo punto, il sistema potrebbe collassare in un valore stabile modificando le proprietà del vuoto quantomeccanico.

Riprendiamo il ragionamento fatto nell’articolo. Siamo in pericolo? Assolutamente no. Se anche fossimo in una condizione di metastabilità, il sistema non collasserebbe da un momento all’altro e, per dirla tutta, capire cosa significhi in realtà metastabilità del vuoto quantomeccanico non è assolutamente certo. Premesso questo, come già discusso, i valori delle masse delle due particelle in questione, vista la ristretta zona in esame, non sono sufficienti a determinare la reale zona in cui siamo. Cosa significa? Come detto, ogni misura in fisica viene sempre accompagnata da incertezze, cioè un valore non è univoco ma è contenuto in un intervallo. Più è stretto questo intervallo, minore è l’incertezza, meglio conosciamo il valore in esame. Ad oggi, ripeto, vista la stretta banda mostrata nel grafico, le nostre incertezze sono compatibili sia con la metastabilità che con l’instabilità.

Dunque, pericolo scampato. Resta però da capire il perchè delle affermazioni di Hawking.

Su questo, vi dirò la mia senza fronzoli. Hawking conosce benissimo l’attuale livello di cui abbiamo discusso. Molto probabilmente, non avendolo letto non ne posso essere sicuro, nel libro ne parla in modo dettagliato spiegando tutto per filo e per segno. Nell’introduzione invece, appunto in quanto tale, si lascia andare ad affermazioni quantomeno naive.

Perchè fa questo? Le ipotesi sono due e sono molto semplici. La prima è che è in buona fede e la colpa è solo dei giornali che hanno ripreso questa “introduzione al discorso” proprio per creare il caso mediatico sfruttando il nome dell’astrofisico. La seconda, più cattiva, è che d’accordo con l’editore, si sia deciso di creare questo caso appunto per dare una spinta notevole alle vendite del libro.

Personalmente, una o l’altra non conta, l’importante è capire che non c’è nessun collasso dell’universo alle porte.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

EMdrive: il motore che va contro i principi della fisica

11 Set

Dopo qualche giorno di pausa, purtroppo non per svago, eccoci di nuovo qui. Per iniziare alla grande, torniamo a parlare di scienza, o almeno di qualcosa che gli somiglia. Come ci ha segnalato un nostro lettore nella sezione:

Hai domande o dubbi?

in questi giorni si è molto parlato di un’invenzione davvero particolare. Di cosa si tratta? Detto “poco chiaramente”, stiamo parlando del “motore quantistico”.

Cosa sarebbe questo motore quantistico?

Cerchiamo di andare con ordine, capendo l’origine di questa storia. Partendo da parole più semplici , il motore quantistico è, appunto, un motore che produrrebbe una spinta senza propellente ma solo usando elettricità.

Una soluzione del genere, potrebbe essere utilizzata come thruster nello spazio, cioè come sistema per far muovere i satelliti o altri veivoli spaziali. Cosa c’è di strano in tutto questo? La risposta è semplice, sapete perchè ci vuole così tanto tempo per girovagare nello spazio? Perchè i velivoli che mandiamo si muovono per inerzia. Praticamente, vengono messi in moto tramite propulsori, poi questi vengono spenti e il mezzo continua a procedere lungo la sua direzione. Tutto questo è frutto di una delle leggi fondamentali della meccanica, cioè il principio di inerzia.

Perchè questo motore quantistico sarebbe così rivoluzionario? Detto semplicemente, per far andare qualcosa nello spazio, abbiamo bisogno di avere una spinta in senso contrario. Questo è noto come principio di conservazione della quantità di moto.

Facciamo un esempio per capire meglio.

Supponete di essere al centro di un lago ghiacciato. La superficie del lago è talmente liscia che, idealmente, non c’è nessun attrito tra voi e il ghiaccio. In questa condizione limite, non potete camminare. Sapete perchè? Il semplice camminare è possibile proprio grazie all’attrito tra i nostri piedi, o le nostre scarpe, e il terreno. Praticamente, camminando, il vostro piede è fermo grazie all’attrito statico tra voi e il terreno.

Se ora vi trovate al centro di questo lago, non potete quindi riuscire a camminare. Come fate a mettervi in salvo e raggiungere la riva?

Una buona soluzione potrebbe essere quella di togliervi un indumento e lanciarlo in una direzione. Come per magia, ma in realtà è fisica, voi vi muovete per reazione nella direzione opposta a quella del lancio.

Bene, nello spazio succede esattamente la stessa cosa. Questo è noto, appunto, come principio di conservazione della quantità di moto. Altra legge fondamentale della fisica. Dunque, se questo motore non spinge nulla, per la fisica non può andare avanti.

Come è possibile?

Per provare a rispondere a questa domanda, vediamo prima di tutto come è fatto questo motore. Ecco a voi una foto di quello che viene chiamato EMdrive:

EM drive

EM drive

Questo motore è stato inventato dallo scienziato inglese Roger Shawyer alcuni anni fa. Come funziona? Il principio di funzionamento, secondo il suo inventore, sarebbe il seguente: si tratta di una cavità asimettrica in cui la radiazione a microonde viene fatta rimbalzare sulle pareti producendo effetti di risonanza. A causa di effetti relativistici, si creerebbe una differenza di pressione tra i due estremi del motore con una conseguente spinta, appunto quella di cui parlavamo per far andare i razzi nello spazio.

A distanza di qualche anno, alcuni ricercatori cinesi decidono di costruire un loro proprio motore quantistico per verificare che quanto detto da Roger Shawyer fosse vero. Cosa riescono ad ottenere? Un motore che funziona secondo lo stesso principio e conferma quanto scoperto anni prima.

Di che spinte parliamo? Più o meno 720 milli Newton secondo i cinesi.

Cosa significa 720 milli Newton? Immaginate di prendere in mano un peso da 1 Kg e di tenerlo fermo. Come sapete questo oggetto è dotato di massa ed esercita una spinta sulla nostra mano, chiamata forza peso, risultato dell’attrazione della Terra verso l’oggetto (e mutuamente dell’oggetto verso la Terra). Con un peso da 1 Kg, la spinta è di circa 10 Newton. Dunque, qui abbiamo una spinta di 720 mN, cioè equivalente a quella che produrrebbe un oggetto da 72 grammi tenuto in mano.

Interessa a qualcuno il valore della spinta? L’importante è che questa ci sia e sia in grado di far andare i nostri satelliti.

In realtà, come vedremo, il valore della spinta non è trascurabile.

A questo punto, potremmo essere di fronte alla solita teoria rivoluzionaria che la scienza cerca di insabbiare perché mette in crisi le basi su cui abbiamo costruito tutti i nostri castelli di carte. Attenzione però, questa storia è leggermente diversa dalle solite. Sapete perché? Vista la possibile applicazione di questo motore, la NASA ha deciso di analizzarlo e di provare a verificare se i risultati sono corretti.

Cosa accade a questo punto?

La NASA fa le sue prove e ottiene un risultato in cui si ha una spinta che per la fisica non dovrebbe esserci! Dunque funziona tutto? Aspettiamo prima di dirlo.

Come visto, la spinta misurata era di 720 mN. I tecnici della NASA hanno ottenuto una spinta tra 30 e 50 micro Newton, dunque, circa un fattore 10000 in meno.

Come detto prima, ma chi se ne frega, l’importante è che la spinta ci sia!

Come potete immaginare, molti giornali internazionali hanno dato ampio risalto alla notizia, salvo però non dire tutto fino in fondo.

Cosa significa?

La NASA, dopo aver effettuato questi test, ha pubblicato un conference paper sulla questione. Ecco a voi il link dove leggere il lavoro:

NASA, EMdrive test

Come potete vedere, l’articolo sembra confermare quanto affermato. Attenzione però, leggete tutto fino in fondo. Verso la fine, gli autori scrivono una frase che tanti hanno fatto finta di non leggere. Questa:

Thrust was observed on both test articles, even though one of the test articles was designed with the expectation that it would not produce thrust. Specifically, one test article contained internal physical modifications that were designed to produce thrust, while the other did not (with the latter being referred to as the “null” test article).
Cosa significa? Nel test i tecnici hanno utilizzato anche un motore di controllo realizzato per non avere nessuna spinta. Durante il test però, quando hanno utilizzato questo motore, hanno osservato nuovamente questa spinta. Cioè? Dovete fare un test che porterà valori misurati molto piccoli. Come normale, costruite qualcosa che non dovrebbe invece funzionare. Poi ottenete che tutti e due misurano qualcosa paragonabile. Come concludere? E’ sbagliata la misura su quello buono o su quello che non dovrebbe funzionare?
Personalmente, come mia natura, voglio essere propositivo e, come si dice, “open mind”. Ad oggi, i risultati mostrano valori discordanti. Molto probabilmene, i valori della spinta che si vuole misurare sono troppo bassi per le incertezze derivanti dal metodo di misura stesso. Detto in modo statistico, il risultato ottenuto è compatibile con zero Newton di spinta ma anche con qualcosa diverso da zero.
Ovviamente, non voglio precludere nulla ma, allo stato attuale, questo motore non ha dato risultati che confermano quanto affermato. Visto l’interesse sulla cosa, sono sicuro che ci saranno ulteriori sviluppi nei prossimi mesi. Se così fosse, torneremo sull’argomento proprio per vedere se quanto affermato corrisponde al vero e, in tal caso, ragioneremo su effetti non considerati dalla fisica.

L’universo e’ stabile, instabile o meta-stabile?

25 Mar

Negli ultimi articoli, complici anche i tantissimi commenti e domande fatte, siamo tornati a parlare di ricerca e delle ultime misure scientifiche che tanto hanno fatto discutere. Come fatto notare pero’, molto spesso, queste discussioni che dovrebbero essere squisitamente scientifiche lasciano adito ad articoli su giornali, anche a diffusione nazionale, che male intendono o approfittano del clamore per sparare sentenze senza senso e, lasciatemelo dire, assolutamente fuori luogo.

In particole, nell’articolo precedente, abbiamo discusso l’ultima misura della massa del quark top ottenuta mediante la collaborazione dei fisici di LHC e del Tevetron. Questo risultato e’ il piu’ preciso mai ottenuto prima e ci consente, di volta in volta, di migliorare la nostra conoscenza, come spesso ripeto, sempre troppo risicata e assolutamente lontana dalla comprensione del tutto.

Per discutere la misura della massa del top, siamo partiti da una notizia apparsa sui giornali che parlava di un universo pronto a dissolversi da un istante all’altro. Premesso che, come fatto notare, questa notizia era completamente campata in aria, su suggerimento di una nostra cara lettrice, ci e’ stato chiesto di discutere con maggior dettaglio quello che molti chiamano il destino ultimo del nostro universo. Come forse avrete sentito, su alcune fonti si parla spesso di universo stabile, instabile o meta-stabile farfugliando, nel vero senso della parola, come questa particolarita’ sia legata alla massa di qualche particella.

Cerchiamo dunque di spiegare questo importante e non banale concetto cercando sempre di mantenere un approccio quanto possibile divulgativo.

Per prima cosa, dobbiamo tornare a parlare del bosone di Higgs. Come forse ricorderete, in un articolo specifico:

Bosone di Higgs, ma che sarebbe? 

abbiamo gia’ affrontato la sua scoperta, cercando in particolare di spiegare il perche’ l’evidenza di questa particella sarebbe cosi’ importnate nell’ambito del modello standard e della fisica delle alte energie. Come fatto notare pero’, anche in questo caso, parliamo ancora di “evidenza” e non di “scoperta”. Visto che me lo avete chiesto direttamente, ci tengo a sottolineare questa importante differenza.

Come sapete, la fisica e’ detta una “scienza esatta”. Il motivo di questa definizione e’ alquanto semplice: la fisica non e’ esatta perche’ basata su informazioni infinitamente esatte, ma perche’ ogni misura e’ accompagnata sempre da un’incertezza esattamente quantificata. Questa incertezza, e’ quella che comunemente viene chiamato “errore”, cioe’ il grado di confidenza statistico che si ha su un determinato valore. Per poter parlare di evidenza, e’ necessario che la probabilita’ di essersi sbagliati sia inferiore di un certo valore, ovviamente molto basso. Per poter invece gridare alla scoperta, la probabiita’ statistica che quanto misurato sia un errore deve essere ancora piu’ bassa. Questo grado di confidenza, ripeto prettamente statistico, e’ quello che spesso sentiamo valutare riferendosi alla “sigma” o “all’incertezza”.

Bene, tornando al bosone di Higgs, perche’ si dice che ancora non c’e’ la sicurezza che quanto osservato sia proprio quell’Higgs che cerchiamo? Semplice, il grado di confidenza, non ci consente ancora di poter affermare con sicurezza statistica che la particella osservata sia proprio il bosone di Higgs che cerchiamo e non “un” bosone di Higgs o un’altra particella. Come ormai sappiamo, il bosone di Higgs tanto cercato e’ proprio quello relativo al campo di Higgs che determina la massa delle particelle. Per poter essere quel bosone, la particella deve essere, in particolare, scalare e con spin zero. Che significa? Praticamente, queste sono le caratteristiche che definiscono l’identikit dell’Higgs che cerchiamo. Se per quanto riguarda il fatto di essere scalare siamo convinti, per lo spin della particella, dal momento che decade in due fotoni, potrebbe avere spin 0 o 2. Per poter essere sicuri che lo spin sia proprio zero, sara’ necessario raccogliere ancora piu’ dati per determinare con sicurezza questa proprieta’ anche se statisticamente possiamo escludere con una certa incetezza che lo spin sia 2.

Detto questo, e supposto, con una buona confidenza statistica, che quanto trovato sia proprio il bosone di Higgs, sappiamo che la massa trovata per questa particella e’ 125.6 GeV con un un’incertezza totale di 0.4 GeV. Questo valore della massa ha pero’ aperto le porte per una discussione teorica molto accesa e di cui si inizia a parlare anche sui giornali non prettamente scientifici.

Perche’?

Come anticipato, la massa del bosone di Higgs determina la condizione di stabilita’ o instabilita’ del nostro universo. Perche’ proprio l’Higgs? Ovviamente, questo bosone e’ correlato con il campo scalare di Higgs, cioe’ quello che assegna la massa delle particelle. Ora pero’, nel modello standard, troviamo particelle che hanno masse anche molto diverse tra loro. Se osserviamo i quark, passiamo dall’up, il piu’ leggero, al top, il piu’ pesante, con una differenza di massa veramente enorme per particelle che appartengono alla stessa “famiglia”. Detto questo, per determinare la condizione di equilibrio, e tra poco spiegheremo cosa significa, del nostro universo, e’ possibile ragionare considerando proprio le masse dell’Higgs e del top.

In che modo?

Senza spendere troppe parole, vi mostro un grafico molto significativo:

 

Stabilita' dell'universo data dalla correlazione delle masse Top-Higgs

Stabilita’ dell’universo data dalla correlazione delle masse Top-Higgs

Cosa significa questo grafico? Come potete vedere, incrociando il valore della massa del top con quella dell’Higgs e’ possibile capire in quale zona ci troviamo, appunto: stabile, instabile o meta-stabile. Scientificamente, queste sono le condizioni in cui puo’ trovarsi quello che e’ definito vuoto quantomeccanico dell’universo. Se l’universo fosse instabile, allora sarebbe transitato in una successione di stati diversi senza poter formare strutture complesse dovute all’evoluzione. Come potete facilmente capire, in questo caso, noi oggi non saremo qui ad interrogarci su come e’ fatto l’universo dal momento che non avremmo avuto neanche la possibilita’ di fare la nostra comparsa. In caso di universo stabile invece, come il termine stesso suggerisce, tutto rimane in uno stato stazionario senza grosse modificazioni. Meta-stabile invece cosa significa? Questo e’ un termine ricavato direttamente dalla termodinamica. Detto molto semplicemente, un sistema meta-stabile si trova in una posizione di minimo di energia non assoluto. Cioe’? Detto in altri termini, il sistema e’ in uno stato di equilibrio, ma sotto particolari condizioni puo’ uscire da questo stato e scendere verso qualcosa di piu’ stabile ancora. Per capirlo meglio, immaginate di mettere una scodella sul pavimento con dentro una pallina. Se muovete di poco la pallina questa oscillera’ e ricadra’ sul fondo, posizione di equilibrio meta-stabile. Se date un colpo piu’ forte, la pallina uscira’ dalla scodella e andra’ sul pavimento. A questo punto pero’ il vostro sistema immaginario ha raggiunto la posizione piu’ stabile.

Ora, capite bene quanto sia importante e interessante capire che tipo di sistema e’ il nostro universo per determinare eventuali e future evoluzioni temporali che potrebbero avvenire. Come visto nel grafico precedente, per capire lo stato dell’universo possiamo valutare le masse del top e dell’Higgs.

Cosa otteniamo con i valori delle masse oggi conosciuti? Come potete vedere, come per un simpatico scherzo, la massa dell’Higgs ci posizione proprio nella strettissima zona di meta-stabilita’ del nostro universo. Come anticipato, il fatto di non essere nella zona di instabilita’ e’ assolutamente comprensibile pensando al fatto che noi oggi siamo qui. Certo, una massa superiore a 126 GeV ci avrebbe piazzato nella zona stabile dove, come si dice nelle favole, “vissero felici e contenti”. Cosa comporta il fatto di essere nella regione di meta-stabilita’? Come qualcuno, incurante della scienza, cerca di farvi credere, siamo in bilico su una corda. Il nostro universo da un momento all’altro potrebbe transitare verso uno stato piu’ stabile modificando radicalmente le proprieta’ del vuoto quantomeccanico. In questo caso, il nostro universo collasserebbe e segnebbe la nostra fine.

E’ vero questo?

Assolutamente no. Prima di tutto, cerchiamo di ragionare. Come detto, la massa attuale del bosone di Higgs e’ 125.6+/-0.4 GeV. Questo significa che entro una certa probabilita’, piu’ del 15%, la massa del bosone potrebbe essere maggiore di 126 GeV. In questo caso la misura sarebbe pienamente della regione “stabile” dell’universo. Ovviamente, per poter determinare con precisione questo valore e’ necessario ridurre l’incertezza che accompagna la misura in modo da “stringere” l’intervallo entro cui potrebbe essere compresa questa massa.

Se anche l’universo fosse in uno stato meta-stabile, non possiamo certo pensare che da un momento all’altro questo potrebbe uscire dallo stato di equilibrio e transitare verso altro se non in particolari condizioni. Vi ripeto nuovamente come in questo caso ci stiamo muovendo all’interno di ragionamenti prettamente teorici in cui gli stessi principi della fisica che oggi conosciamo potrebbero non essere validi. Secondo alcuni infatti, la stessa evoluzione dell’universo che ha portato oggi fino a noi potrebbe essere stata possibile proprio grazie alla natura meta-stabile del vuoto quantomeccanico.

Come ricorderete, in questi articoli:

Universo: foto da piccolo

Ascoltate finalmente le onde gravitazionali?

cosi’ come in tutti quelli richiamati a loro volta, abbiamo parlato dell’inflazione, cioe’ di quel particolare periodo nell’evoluzione dell’universo che ha portato ad una notevole espansione in tempi brevissimi. Conseguenza dell’inflazione e’ l’avere un universo omogeneo ed isotropo ed in cui le fluttuazione della radiazione di fondo sono molto ridotte. Bene, il bosone di Higgs potrebbe avere avuto un ruolo decisivo per l’innesco del periodo inflazionario. Secondo alcune teorie, infatti, le condizioni fisiche per poter accendere l’inflazione potrebbero essere state date da una particella scalare e l’Higgs potrebbe appunto essere questa particella. Se proprio devo aprire una parentesi, per poter affermare con sicurezza questa cosa, dobbiamo essere sicuri che la fisica che conosciamo oggi possa essere applicata anche in quella particolare fase dell’universo, cioe’ che i modelli attualmente conosciuti possano essere estrapolati a quella che viene comunemente definita massa di Planck dove tutte le forze fondamentali si riunificano. Ovviamente, per poter affermare con sicurezza queste teorie sono necessarie ancora molte ricerche per determinare tutti i tasselli che ancora mancano a questo puzzle.

Seguendo questa chiave di lettura, il fatto di essere in un universo meta-stabile, piu’ che un rischio potrebbe essere stata proprio la caratteristica che ha permesso l’evoluzione che poi ha portato fino ai giorni nostri, con la razza umana presente sulla Terra.

Altro aspetto curioso e importante della meta-stabilita’ dell’universo e’ la possibilita’ di includere i cosiddetti multiversi. Detto molto semplicemente, il fatto che l’universo sia meta-stabile apre gli scenari ad una serie di universi paralleli tutti uno di seguito all’altro caratterizzati da valori continui di alcuni parametri fisici. Non si tratta di racconti fantascientifici o di fantasia ma di vere e proprie teorie fisiche riguardanti il nostro universo.

Concludendo, la scoperta, o l’evidenza, del bosone di Higgs e’ stata sicuramente un ottimo risultato raggiunto dalla fisica delle alte energie, ma certamente non un punto di arrivo. La misura, ancora solo preliminare, della massa della particella apre le porte a scenari di nuova fisica o di considerazioni molto importanti circa la natura del nostro stesso universo. Come visto in questo articolo, quelli che apparentemente potrebbero sembrare campi del sapere completamente diversi e lontani, l’infinitamente piccolo e l’infinitamente grande, sono in realta’ correlati tra loro proprio da singole misure, come quella della massa dell’Higgs. A questo punto, capite bene come lo scneario si fa sempre piu’ interessante e sara’ necessario fare ancora nuove ricerche prima di arrivare a qualcosa di certo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Scie chimiche, la prova storica!

13 Gen

Un nostro caro lettore mi ha segnalato tramite mail una nuova importante “prova” a sostegno dell’esistenza delle scie chimiche. Negli ultimi giorni, questo presunto documento sta riaccendendo notevolmente la discussione su questa tematica, anche sotto la spinta dei soliti siti che non possono che trarre benefici dal far credere che ci sia un complotto mondiale per spargere veleni mediante aerosol atmosferico.

Di scie chimiche, mostrando di volta in volta l’assurdita’ di queste affermazioni, abbiamo parlato in diversi articoli. Ecco una serie degli ultimi post:

Alcune considerazione sulle scie chimiche

Scie Chimiche: il prelievo in quota

Scie chimiche e cloud seeding

Come difendersi dalle scie chimiche

Il Dibromoetano e le scie chimiche

A-380 modificato per spargere scie chimiche

Scie chimiche, ora abbiamo la prova

L’accordo Italia-USA per spargere scie chimiche

Tornando alla nuova notizia, senza girarci troppo intorno, vi mostro la prima pagina di questo documento:

Documento NASA-1971

Documento NASA-1971

Leggete molto bene il titolo: “Barium Cloud Launch”, cioe’ lancio o dispersione di nuvole di Bario. Si tratta di un documento storico timbrato NASA. Questa potrebbe essere la definitiva e schiacciante prova per l’esistenza di un complotto mondiale per spargere veleni.

Vuoi vedere che alla fine i complottisti avevano ragione e anche gli scienziati sono coinvolti in questo progetto?

Direi di no, ma cerchiamo di ragionare su questo documento, prima di trarre azzardate conclusioni.

Per prima cosa, vedere solo la prima pagina del report potrebbe portare fuori strada. Prima di iniziare a discutere, scarichiamo dunque l’intero documento a questo indirizzo:

NASA, 1971

Come vedete, quella riportata e’ veramente la prima pagina di questo documento.

Ora, leggendo i siti complottisti, si possono vedere davvero delle perle di ragionamento e disinformazione. Come potete leggere da soli, si tratta di un’operazione prevista tra la NASA e un istituto di ricerca tedesco. Bene, questo piccolo particolare viene interpretato dai complottisti come un’immensa operazione bellica pensata dal governo americano insieme ai nazisti, vengono definiti cosi’, tedeschi per continuare esperimenti sulla popolazione inerme.

Leggete attentamente quanto contenuto nel documento e, soprattutto, cosa che forse qualcuno non ha fatto o ha fatto finta di non fare, capiamo quello che il documento dice. Come potete leggere, si tratta di un esperimento “scientifico” per studiare i campi elettrici e magnetici ad alta quota. Per alta quota, non sparo numeri ma leggo dal documento, si parla di 20000 miglia di altitudine.

In cosa consiste l’esperimento?

Si prevede il lancio di un vettore per andare ad alta quota e spargere una miscela di ossido di bario e rame per formare una nuvola di questi composti ad alta quota. Ora, queste sostanza sono sensibili al campo magnetico e il loro sucessivo moto potrebbe essere utilizzato proprio per studiare intensita’, direzione e verso dei vettori di campo a queste altezze.

Per farvi un esempio, che poi e’ lo stesso che trovate nel documento, se prendete della limatura di ferro e la spargete intorno ad un magnete, vedrete come la limatura si orienta esattamente nella direzione delle linee del campo magnetico, cioe’ quelle linee invisibili che vanno dal polo nord al polo sud della calamita. Secondo le stesso principio, gli ossidi in atmosfera si orietano e seguono le linee di campo. Osservando da terra, con speciali stazioni appositamente pensate, potete dunque ottenere informazioni su questi parametri fisici.

Detto questo, quello riportato nel report non e’ assolutamente un esperimento di geoingegneria, o come vogliono chiamarla i complottisti, ma un esperimento scientifico volto ad evidenziare importanti caratteristiche del nostro pianeta e del vento solare che incide sugli strati alti dell’atmosfera.

Ora pero’, prima di chiudere facciamo un’altra importante considerazione. Secondo voi, se si trattasse di un segretissimo esperimento condotto dalla NASA con i nazisti su ordine di qualche potente organizzazione misteriosa, il documento sarebbe sul web facilmente scaricabile da chiunque? Personalmente, credo proprio di no.

Nello stesso sito dove abbiamo scaricato questo pdf, ci sono tantissimi articoli visto che si tratta della pagina in cui la NASA deposita i suoi Technical Reports. Mi permetto di dare un bel suggerimento ai compottisti per cercare nuove perle da spacciare come prove. Se andate sul sito generale a questo indirizzo:

NASA, TRS

Trovate anche un motore di ricerca per cercare tra i documenti. Se provate ad immetere come parole chiave “barium cloud”, trovate tantissimi articoli e proposte di misura che sono state fatte nel corso degli anni. I complottisti potrebbero creare un nuovo “scandalo” utilizzando uno per uno questi articoli, almeno avrebbero materiale per andare avanti altro tempo e cercare di convincere sempre piu’ persone dell’esistenza delle scie chimiche.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Rapido aggiornamento sulla ISON

20 Ott

Uno degli argomenti che maggiormente fa discutere sul web, sia sotto il profilo scientifico che catastrofista, e’ senza dubbio la cometa Ison. Come sappiamo bene, gia’ da mesi circolano leggende riguardo a questa cometa, racconti di fantasia che vorrebbero la cometa essere in realta’ questo o quest’altro, essere in rotta di collisione con la Terra o tante altre storielle non documentate che fanno sorridere piu’ che riflettere.

Dal canto nostro, diverse volte abbiamo parlato della ISON:

2013 o ancora piu’ oltre?

E se ci salvassimo?

Che la ISON abbia pieta’ di noi!

– Se la Ison non e’ cometa, allora e’ …

Come sappiamo bene, questa cometa era stata annunciata come la cometa del secolo. Onde evitare fraintendimenti, vi ricordo che un calcolo simulato della reale traiettoria di qusto tipo di oggetti non e’ banalmente eseguibile. Con questo non intendo dire che la cometa potrebbe essere in rotta di collisione con la Terra, bensi’ che determinare a priori, e a distanza di mesi, se la Ison sia in grado di sopravvivere al massimo avvicinamento con il sole non e’ affatto facile.

Detto questo, credo sia interessante dare un rapido aggiornamento sulla Ison per capire quali sono i risultati delle ultime osservazioni.

Ad oggi, la Ison si trova ancora dalle parti di Marte ed ha superato la cosiddetta linea di gelo di cui avevamo parlato negli articoli precedenti.

In rete si trovano alcune foto molto interessanti scattate alla cometa. Per prima cosa vi voglio mostrare questa immagine:

Immagine della Ison al 1 Ottobre scattata dal MRO.

Immagine della Ison al 1 Ottobre scattata dal MRO.

Queste immagini sono state scattate il 1 Ottobre, quando la ISON e’ passata a circa 6.5 milioni di kilometri dalla superficie del pianeta rosso, distanza estremamente minore di quella di minimo avvicinamento alla Terra. Le foto sono state fatte dalla sonda MRO che sta esplorando la superficie di Marte. Se pensate che la risoluzione delle immagini sia troppo bassa, vi dico subito che le foto sono state fatte utilizzando la camera HiRISE della sonda, normalmente utilizzata per osservare ad alta risoluzione la superificie del pianeta. Questo spiega il perche’ della bassa risoluzione ma soprattutto vi fa capire quanto versatile sia questa camera montata sul MRO.

Oltre a questa prima foto, in queste ultime ore e’ stata pubblicata un’altra immagine spettacolare della cometa:

Immagine della Ison del 9 Ottobre, scattata dal telescopio Hubble.

Immagine della Ison del 9 Ottobre, scattata dal telescopio Hubble.

Inutile dire che questa immagine e’ davvero sensazionale. La foto e’ stata scattata il 9 ottobre dal telescopio Hubble. In questo caso, lo strumento utilizzato era ovviamente ottimizzato per questo genere di riprese e l’immagine e’ stata ottenuta sovrapponendo le informazioni di due diversi filtri.

Fate attenzione ad una cosa, notate come la parte centrale della cometa appaia molto compatta ed uniforme. Cosa significa questo? Semplicemente, che il nucleo della cometa non si e’ frammentato ma e’ ancora del tutto compatto. Questa informazione e’ molto importante per poter valutare il destino della Ison nel passaggio al perielio.

Dunque? Se il nucleo e’ compatto, siamo pronti allo spettacolo tanto atteso?

Purtroppo, questa sarebbe una conclusione affrettata. Da una stima preliminare, e al contrario di quanto affermato nelle settimane scorse dai tanti siti catastrofisti, il nucleo della Ison ha una dimensione molto minore di quella aspettata. In questo caso, parliamo di un nucleo con un diametro tra 0.5 e 2 km appena, molto minore di quello, ad esempio, della Hale Bopp di cui tutti abbiamo uno splendido ricordo.

Ovviamente, il fatto di avere un nucleo compatto da qualche speranza in piu’ per il passaggio al perielio, anche se, viste le dimensioni, e almeno in questa fase preliminare, ridimensiona molto lo spettacolo che ci attende qualora la cometa sopravviva al passaggio radente intorno al Sole. Sicuramente, anche in queste condizioni, la Ison sara’ in grado di offire un buon spettacolo, ma, molto probabilmente, non ai livelli che molti attendevano.

Nonostante questo, non dimentichiamo che ogni passaggio di questi oggetti ci consente di capire meglio molte importanti caratteristiche delle comete. Allo stato attuale, la Ison potrebbe essere molto ben visibile a Dicembre, dopo il passaggio al perielio il 28 novembre. Purtroppo, molto probabilmente, non avremo un qualcosa piu’ luminoso della luna ne tantomeno visibile in pieno giorno.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Scoperta nuova luna di Nettuno

17 Lug

Osservando le immagini catturate dalle tante sonde in orbita, e’ possibile fare delle scoperte la cui evidenza magari prima non era stata palese. E’ proprio questo il caso della scoperta di cui vi vorrei parlare in questo articolo e che e’ stata pubblicata solo pochi giorni fa sulle riviste scientifiche.

Analizzando le immagini catturate dalla sonda Hubble tra il 2004 ed il 2009, l’astronomo Mark Showalter el SETI Institute della California, si e’ accorto di un piccolo puntino bianco vicino al pianeta Nettuno. Come anticipato dal titolo dell’articolo, quel piccolo puntino che fino ad oggi era passato inosservato e’ in realta’ una nuova luna orbitante intorno al pianeta.

Come e’ stata fatta la scoperta?

Anche Nettuno ha degli anelli di materia intorno, anche se molto meno compatti e visibili di quelli di Saturno. La presenza degli anelli, rende l’osservazione delle lune molto complicata. Come detto in precedenza, la presenza di un piccolo puntino intorno al pianeta ha fatto scattare la scintilla. Riprendendo circa 150 foto scattate da Hubble, si e’ potuta evidenziare la presenza della piccola Luna e ricavarne ovviamente i parametri orbitali.

La nuova luna, la quattordicesima di Nettuno, e’ stata chiamata S/2004 N 1. Dalle misure indiretta fatte, il corpo avrebbe un diametro non superiore ai 20 Km e ruoterebbe intorno al pianeta con un periodo di 23 ore, ad una distanza di circa 100000 kilometri. Questo periodo di rotazione e’ simile a quello degli altri satelliti che infatti ruotano, cosi’ come i dischi di cui accennavamo prima, con velocita’ molto elevata intorno al piu’ esterno tra i pianeti del Sistema Solare.

Dal punto di vista della posizione, la nuova Luna si trova tra Larissa e Prometeo, come indicato dalla ricostruzione pubblicata dalla NASA:

L'orbita della nuova luna nel sistema intorno a Nettuno

L’orbita della nuova luna nel sistema intorno a Nettuno

Come anticipato, Nettuno ha ben 14 satelliti che gli ruotano intorno di cui soltanto uno, Tritone, ha un diametro elevato, paragonabile infatti a quello della nostra Terra. Secondo la teoria astronomica maggiormente accettata, Tritone sarebbe in realta’ un pianeta nano staccato dalla fascia di Kuiper a causa dell’attrazione gravitazionale di Nettuno e che dunque sarebbe poi stato catturato su un’orbita stabile. Sempre secondo questa teoria, la cattura o la formazione, avvenuta per opera di impatti con altri corpi, delle altre lune sarebbe dunque successiva alla cattura di Tritone.

L’evidenza della nuova luna era sfuggita addirittura alla sonda Voyager 2 che nel 1989 aveva ripreso da molto vicino sia il pianeta che il sistema di anelli e lune orbitanti intorno ad esso. Il satellite appena scoperto, oltre al piccolo diametro che abbiamo riportato, ha una luminosita’ molto debole. In termini di confronto, se osserviamo il cielo stellato, la luminosita’ della nuova luna e’ ben 100 milioni di volte più debole della più debole stella visibile a occhio nudo.

Ultima curiosita’: perche’ a questa luna e’ stato dato un nome cosi’ tecnico come S/2004 N 1?

Questo in realta’ e’ un nome provvisorio. Nel prossimo incontro della Unione Astronomica Internazionale, si dovra’ decidere il nome da dare anche a questo nuovo satellite. Seguendo la tradizione, il nome sara’ sicuramente scelto tra le antiche divinita’ legate al mare, cosi’ come il nome stesso del pianeta.

Concludendo, l’osservazione di immagini raccolte da Hubble tra il 2004 e il 2009 ha permesso di identificare una nuova luna per Nettuno. Come visto, si tratta di un corpo molto piccolo, con un diametro che non supera i 20 Km. La storia di questa scoperta ci fa capire come incredibili sorprese possano venire fuori anche guadando immagini di repertorio. Questo per mostrare quanto ancora interessante e’ lo studio del nostro stesso Sistema Solare.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Se arrivasse il “Big One”?

7 Giu

In quella che ormai e’ divenuta un laboratorio di creativita’, a mio avviso molto ben riuscito, cioe’ la sezione:

Hai domande o dubbi?

e’ stato lasciato un commento molto interessante e che ben si sposa anche con le tematiche trattate in questi giorni, sia negli articoli che nei commenti. La richiesta riguarda direttamente il cosiddetto Big One, cioe’ il grande terremoto che dovrebbe avvenire in California e che, secondo molte fonti, sarebbe atteso nel giro di poco tempo.

Di terremoti ne abbiamo parlato in tantissimi articoli e, come visto, questi fenomeni sono da sempre molto seguiti dai tanti catastrofisti che popolano la rete, soprattutto in relazione alle cause che determinerebbero un aumento del loro numero. Come ormai sapete bene, l’idea di fondo, nata a partire dal 21 Dicembre 2012, vorrebbe l’aumento dei terremoti dovuto all’avvicinamento di Nibiru al pianeta Terra. Secondo queste ipotesi, la variazione dell’equilibrio gravitazionale apportato da questo nuovo corpo, provocherebbe il fenomeno delle “maree solide”, cioe’ sarebbe in grado di modificare gli equilibri delle faglie e generare dunque terremoti di notevole intensita’. Cercando sul blog, potete trovare molti articoli che parlano, ma soprattutto rigettano, queste ipotesi, semplicemente mostrando l’impossibiita’ in termini fisici di variazioni di questo tipo:

Allineamento con le Pleiadi

Allineamenti, Terrremoti e … Bendandi

Allineamenti e Terremoti

3 Gennaio 2013 …

Ora, nonostante questo, la zona della California e’ da sempre molto attiva dal punto di vista sismico, e da diversi anni si parla di quello che gli americani definiscono il Big One, cioe’ “quello grosso”, intendendo il terremoto piu’ internso mai registrato, in grado praticamente di demolire tuto lo stato.

Faglia di Sant'Andrea in California

Faglia di Sant’Andrea in California

Come noto, le cause della notevole attivita’ della California possono essere ricercate nella Faglia di Sant’Andrea, che si trova tra la placca Nord Americana e quella Pacifica, attraversando per circa 1300 Km la regione. Questa faglia ha dato luogo a diversi fenomeni sismici nel corso dei secoli, grazie anche alle ottime proprieta’ di accumulare energia elastica. Come noto, quando questa energia supera, ad esempio, la fratturazione degli strati rocciosi, si generano i terremoti.

Dal punto di vista morfologico, l’arrivo del Big One, con un sisma superiore a M8 della scala Richter, e’ atteso nella zona meridionale della California, dal momento che questa e’ quella in cui da maggior tempo non si verificano eventi sismici di notevole intensita’.

Quando dovrebbe avvenire questo Big One?

Sulla rete trovate tantissime ipotesi. Vi invito pero’ a fare una riflessione: come detto innumerevoli volte, allo stato attuale della nostra conoscenza, non siamo in grado di prevedere i terremoti. Di questi argomenti abbiamo parlato tante volte e, come visto, la ricerca dei precursori sismici, cioe’ di quegli eventi che potrebbero precedere l’avvento di un sisma, e’ un filone molto attivo e sicuramente rilevante per la nostra societa’. Purtroppo, al giorno d’oggi, non siamo ancora stati in grado di definire un precursore certo, cioe’ la cui manifestazione indichi certamente un sisma in arrivo.

Premesso questo, si possono leggere tante previsioni sul Big One, alcune piu’ precise, altre un po’ meno. In generale, la piu’ quotata e’ che il terremoto dovrebbe avvenire nei prossimi 20 anni. Si parlava di 30 anni nel 2005.

Come vengono fatte queste previsioni?

Ovviamente, una buona parte delle informazioni viene dalle osservazioni scientifiche della Faglia di Sant’Andrea. Misure interessanti vengono fatte misurando i movimenti della crosta terrestre mediante osservazioni satellitari. Come anticipato, queste osservazioni possono fornire una stima della quantita’ di energia accumulata nella Faglia e dunque far intendere l’inizio di una fase piu’ critica. Oltre a questa osservazione, c’e’ ovviamente un intenso sistema di monitoraggio delal zona che serve per raccogliere moltissimi dati in continuo, utili per determinare variazioni repentine di parametri fisici e geologici, anche questi utili per capire modificazioni intense del sottosuolo.

Altre previsioni vengono invece fatte utilizzando la statistica. Di questo ambito, abbiamo parlato in diverse occasioni. Anche se parlo da appassionato di statistica, si deve capire che queste previsioni lasciano il tempo che trovano, essendo basate solo sulla storicita’ degli eventi. Come visto in questi articoli:

Prossimi terremoti secondo la statistica

Analisi statistica dei terremoti

Terremoti, basta chiacchiere. Parliamo di numeri.

Terremoti: nuove analisi statistiche

utilizzando i dati raccolti, e’ possibile studiare una ciclicita’ degli eventi e determinare una certa probabilita’ di avere un terremoto in un periodo futuro. Purtroppo, molto spesso, queste informazioni vengono interpretate in malo modo da chi la statistica non la conosce affatto. Esempio di questo tipo e’ l’articolo:

Non ne bastava uno ….

Anche per il Big One, trovate fonti che parlano di probabilita’ praticamente del 100% che il terremoto avvenga, ad esempio, tra il 2015 e il 2020. Come deve essere interpretato il dato? La chiave giusta per leggere queste informazioni e’ quella di trattarle un po’ come i numeri ritardatari del lotto. Mi spiego meglio. Se entrate in una ricevitoria, trovate molti cartelli con i “numeri ritardatari”, cioe’ quei numeri che da molte estrazioni non vengono pescati in un determinata ruota. Se un numero manca da tanto tempo, deve uscire necessariamente? Assolutamente no, pero’, se ci fidiamo che i numeri abbiano tutti la stessa probabilita’ di venire pescati, allora statisticamente devono uscire tutti. Dunque, un numero ritardatario prima o poi deve uscire. Questo prima o poi, e’ la chiave dell’interpretazione. Prima o poi, non significa domani, cosi’ come non significa che un “terremoto ritardatario” rispetto alla norma debba necessariamente avvenire. Se volete, il discorso sismi e’ molto piu’ complesso del gioco del lotto, anche perche’ non parliamo di eventi casuali, ma determinati da movimenti del nostro pianeta.

Detto questo, capite dunque come vanno interpretati questi numeri, utilissimi per fare studi e, ad esempio, dimostrare che non c’e’ nessun aumento di terremoti negli ultimi anni, ma assolutamente da prendere con le pinze quando parliamo di previsioni future.

In ambito prevenzione, ci sono anche molte osservazioni interessanti che vengono fatte per capire se e’ possibile arginare i movimenti della Faglia e dunque limitare i danni dei futuri terremoti. In tale ambito, sono stati riportati dati molto interessanti ottenuti direttamente dall’osservazione in profondita’ della faglia. Come osservato, lunga la frattura si trova la citta’ di Parkfield in cui pero’, storicamente, non avvengono terremoti di forte intensita’, anche se questa si trova lungo la stessa “linea di fuoco” di citta’ bersagliate dai sismi. Le osservazioni fatte hanno permesso di individuare una zona della frattura in cui sono presenti materiali diversi ed in grado di limitare l’attrito tra le placche in scorrimento. Cosa significa? Se, per qualche motivo, diminuisce l’attrito tra le due zone che scorrono tra loro, ovviamente si limita l’accumulo di energia elastica e, dunque, detto in parole semplici, il caricamento del terremoto. Le osservazione fatte hanno mostrato la presenza, tra le altre cose, di silicati gelatinosi e acqua, in grado di ridurre gli attriti. Molti studi sono in corso proprio per cercare di capire la possibilita’ di limitare la potenza dei terremoti andando ad agire direttamente nella zona dove questi si generano. Ovviamente si tratta di studi scientifici, ma che vanno sicuramente sostenuti vista l’utilita’ che potrebbero avere. Magari, un giorno, potremo risolvere il problema terremoti “oliando” i cigolii della Terra.

Concludendo, la zona della California e’ da sempre una delle piu’ attive dal punto di vista dei sismi. Per Big One si intende il piu’ grande terremoto atteso, in grado di distruggere l’intera regione. Purtroppo, questo terremoto potrebbe avvenire e c’e’ la possibilita’, come evidenziato da molti studi, che questo possa avvenire da un momento all’altro nei prossimi 20 anni. La ricerca e’ sempre al lavoro per cercare di trovare precursori sismici e, come visto, anche possibili soluzioni in grado di limitare la potenza dei terremoti agendo direttamente sulla faglia. Speriamo solo che soluzioni percorribili arrivino magari prima dell’atteso Big One.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

1998 QE2 e la sua luna, considerazioni scientifiche

1 Giu

Solo ieri, e’ passato l’asteroide 1998 QE2, di cui avevamo parlato in questo post:

Grappoli di asteroidi in arrivo!

Come visto, questo era l’ultimo di una serie, precisamente quattro, di corpi celesti che sono passati in prossimita’ della Terra. Come spiegato nel’articolo, quando parliamo di “prossimita’”, non intendiamo assolutamente che ci sia il rischio che questi corpi possano impattare sulla Terra. Tra l’altro, 1998 QE2 che era il piu’ grande tra questi, e’ anche quello che e’ passato piu lontano, ben 5,8 milioni di Km, da noi. Solo per rispondere ad alcuni commenti fatti, ma soprattutto per rispondere alle tante teorie assurde che si leggono in rete, non vi era nessuna probabilita’ di collisione tra la Terra e 1998 QE2. In questi giorni sono comparsi su web, su siti davvero discutibili, molti articoli che parlavano di una probabilita’ elevata di collissione, dal momento che l’asteroide avrebbe potuto improvvisamente variare la sua orbita e puntare verso di noi. Premesso che il moto degli asteroidi, cosi’ come di tutti i corpi nell’universo, e’ regolato dalla forza gravitazionale, e’ assurdo pensare che cosi’ d’improvviso un corpo di questo tipo possa variare la sua direzione. Per fare questo, servirebbe una forza grande a piacere, ma soprattutto istantanea che compaia dal nulla vicino al corpo. Ora, se vogliamo credere che nell’universo possano spuntare pianeti, stelle e buchi neri da un secondo all’altro, allora dovremmo riscrivere i libri di fisica e di astronomia.

Premesso questo, la notizia piu’ interessante su 1998 QE2 e’ stata che in realta’ questo era un asteroide binario, cioe’ dotato anche di una sua Luna, cioe’ di un piccolo corpo orbitante intorno all’asteroide. Dal punto di vista scientifico, la notizia non ci deve assolutamente sorprendere. Secondo la teoria, molti di questi corpi potrebbero essere binari e addirittura arrivare ad avere anche fino a 2 lune. La spiegazione scientifica e’ molto semplice, durante il loro moto, questi corpi possono attirare, sempre mediante la loro attrazione gravitazionale, corpi minori che quindi vengono catturati ed entrano in orbita intorno a loro.

Per spiegare questo meccanismo di cattura in parole povere, cerchiamo di trovare qualche esempio di facile comprensione. Come sappiamo ciascun corpo dotato di massa, attira gli altri corpi mediante la forza gravitazionale. Questo e’ uno dei principi cardine della fisica, la teoria della gravitazione universale, formulata da Newton. Perche’ si chiama universale? Semplicemente perche’ questa e’ l’interazione che subisono tutti i corpi massivi, dalla mela che cade sulla Terra, ai pianeti che orbitano intorno al Sole o alle galassie che ruotano intorno al centro dell’universo. Tutto e’ regolato da questa legge.

Perche parlo di questo?

Nella sezione:

Hai domande o dubbi?

C’e’ stato un commento molto interessante proprio sulla luna di 1998 QE2. La domanda e’ molto semplice: come e’ possibile che la luna venga catturata e resti attaccata all’asteroide quando questo passa attraverso il sistema solare? In questo passaggio, ci sono i pianeti che sicuramente hanno una massa maggiore dell’asteroide e dunque dovrebbero strappare questa luna mediante la loro attrazione gravitazionale.

Questo commento, mi ha spinto a scrivere questo articolo piu’ scientifico, ma sempre cercando di mantenere un profilo divulgativo.

Detto questo, torniamo alla cattura della luna da parte dell’asteroide. Come anticipato, ciascun corpo dotato di massa attira altri corpi massivi, e dunque, a sua volta, viene attrato. Perche’ la mela cade sulla terra? Perche’ la terra la attrae con la sua forza gravitazionale. Da quanto detto, anche la mela attrae la terra, ma l’interazione e’ talmente debole che quella osservabile e’ solo quella del corpo piu’ grande verso quello piu’ piccolo.

Ora, per poter rispondere al commento, e’ necessario tirare fuori qualche formula e qualche numero, ma non vi spaventate.

La forza di attrazione gravitazionale esercitata tra due corpi dotati di massa puo’ essere scritta come:

F=G x m1 x m2/(r^2)

Dove F e’ la forza, ripeto solo attrattiva, m1 e m2 sono le masse dei corpi in questione, r e’ la distanza tra i corpi e G e’ la cosiddetta costante di gravitazione universale. Ora, come vedete, la forza e’ direttamente proporzionale alle masse e inversamente proporzionale al quadrato della distanza. Cosa significa? Se raddoppiate la massa, raddoppia la forza, ma se raddoppiate la distanza, la forza diventera’ 1/4 di quella precedente.

Ora, abbiamo tutti i dati per poter rispondere alla domanda iniziale. Per fare questo, non serve fare tutto il calcolo, basta vedere quale delle due forze e’ maggiore, cioe’ se l’attrazione dell’asteroide sulla sua luna e’ maggiore, ad esempio, di quella che esercita la Terra. Perche’ facciamo questo esempio? Come vedete dall’immagine:

L'orbita vicino alla Terra seguita da 1998 QE2

L’orbita vicino alla Terra seguita da 1998 QE2

L’asteroide e’ passato vicino alla Terra ad una distanza di 5,7 milioni di Km e, come chiaro dalla figura, molto piu’ vicino alla Terra che agli altri pianeti e al sole. Detto questo, possiamo suppore che la forza maggiore sarebbe quella esercitata dalla Terra.

Bene, per facilitare il calcolo, stimiamo il rapporto tra la forza di 1998 QE2, F(QE), rispetto a quella della Terra, F(T), sulla piccola luna dell’asteroide. Dalle formule viste, otteniamo:

F(QE)/F(T)= [m(QE)/m(T)] x [r(T)/r(QE)]^2

dove m(QE) e’ la massa di 1998 QE2, m(T) e’ la massa della Terra, r(QE) e’ la distanza tra 1998 QE2 e la sua luna e r(T) e’ la distanza tra la Terra e la luna di 1998 QE2. Notate che in questo modo abbiamo semplificato sia la costante che la massa della luna. Questo calcolo e’ possibile perche’ vogliamo fare un raffronto tra le due forze, non determinare in modo assoluto le singole componenti.

La massa della Terra vale 5,9 x 10^24 Kg, la distanza minima tra la Terra e 1998 QE2 e’ di 5,8 milioni di Km. Ovviamente possiamo supporre che la minima distanza tra la Terra e 1998 QE2 sia uguale alla distanza minima tra la Terra e la luna di 1998 QE2. Notate inoltre che per massimizzare l’effetto, stiamo prendendo come distanza quella minima di avvicinamento.

Ora, manca sia la massa di 1998 QE2 che la distanza con la sua Luna. Al momento, non e’ ancora stata stimata la massa dell’asteroide perche’ i dati sono stati raccolti al suo passaggio. Possiamo pero’, commettendo un errore sicuramente trascurabile, prendere una densita’ titpica degli asteroidi per stimare la sua massa. Se, ad esempio, prendiamo la densita’ di un altro corpo di cui abbiamo parlato tanto, Apophis, sappiamo che la densita’ e’ di 2,7 x 10^3 Kg/m^3. Il diametro di 1998 QE2 e’ di 2,7 Km, per cui abbiamo un volume di:

V(QE) = 4/3 pi r^3 = 10,3 Km^3 = 10,3 x 10^9 m^3

Come vedete, abbiamo per semplicita’ assunto che l’asteroide abbia una forma sferica. Ora, prendendo la densita’ di Apophis, possiamo stimare una massa di:

m(QE) = d(apophis) x V(QE) = 27,8 x 10^12 Kg

cioe’ circa 28 miliardi di tonnellate.

Anche per quanto riguarda la distanza tra 1998 QE2 e la sua Luna non ci sono ancora dati precisi. Questo pero’ non ci deve spaventare. Poiche’ dalle foto raccolte:

Le immagini da cui si e' evidenziata la presenza della luna per 1998 QE2

Le immagini da cui si e’ evidenziata la presenza della luna per 1998 QE2

si riesce a malapena a distinguere la luna, e considerando che il diametro massimo di 1998 QE2 e’ di 2,7 Km, possiamo esagerare e pensare che la distanza tra questi due corpi sia, ad esempio, di 1 Km. Ovviamente, questa distanza sara’ molto minore, ma nel nostro caso possiamo prendere il caso peggiorativo e considerare una distanza di 1 Km.

Bene, ora abbiamo tutti gli ingredienti per la nostra formula, sostituendo si ottiene:

F(QE)/F(T) = [27,8 x 10^12/5,9 x 10^24] x [5,8 x 10^6/1]^2 = 158

Cosa significa? Che nel caso peggiorativo, in cui abbiamo preso la minima distanza tra la Terra e 1998 QE2 e in cui abbiamo preso una distanza esagerata tra l’asteroide e la sua luna, l’attrazione esercitata dall’asteroide sulla sua luna e’ circa 160 volte maggiore di quella che esercita la Terra.

Perche’ otteniamo questo? Come evidenziato nella domanda iniziale, e’ vero che la massa della terra e’ molto maggiore di quella dell’asteroide, ma la distanza, che compare al quadrato, gioca un ruolo determinante. Detto in altri termini, in questo caso il termine fondamentale e’ quello della distanza, piuttosto che quello della massa.

Se ci pensiamo, questo risultato e’ normale. Se fosse vero il contrario, allora anche la nostra Luna dovrebbe essere strappata gravitazionalemente dal sole perche’ dotato di una massa molto maggiore di quella della Terra. In realta’, la nostra Luna e’ sempre al suo posto e tutti possiamo confermarlo.

Ultima considerazione. Prima di tutto, spero di non avervi procurato un mal di testa. Quello fatto e’ un calcolo numerico interessante, che ci ha consentito di fare qualche valutazione aggiuntiva sulla famosa luna di 1998 QE2. Notate una cosa fondamentale, in diversi punti, la massa dell’asteroide, la distanza dalla luna, ecc., abbiamo fatto delle considerazioni perche’ non conoscevamo i valori esatti di questi dati. Questo e’ quello che spesso viene fatto in fisica, si creano dei modelli e da questi si stimano parametri. Una teoria e’ tanto piu’ giusta quanto piu’ questa si avvicina alla realta’, cioe’ minore e’ l’errore che si commette passando attraverso queste approssimazioni. Ora, nel nostro caso, sicuramente ci possono essere delle variazioni rispetto ai numeri calcolati, ripensate ad esempio all’aver assunto l’asteroide sferico. Queste differenze cambiano il risultato finale? Assolutamente no. La stima fatta puo’ essere sbagliata, ad esempio, al 10, al 20%? E’ vero, ma abbiamo trovato una forza che e’ 160 volte maggiore dell’altra. Come si dice, l’errore commesso, inteso come incertezza di calcolo, e’ minore della stima che e’ stata fatta. Questo e’ il metodo di calcolo che si utilizza in fisica.

Concludendo, se siete riusciti ad arrivare fino a questo punto, abbiamo visto come e’ possibile che 1998 QE2 abbia ancora la sua luna dopo il passaggio nel sistema solare e soprattutto alla minima distanza dalla Terra. Questo e’ ovviamente un calcolo approssimato, dal momento che, oltre alle stime fatte, non sono stati valutati i contributi centrifughi al moto e altri parametri dinamici. Nel nostro caso questo non e’ necessario, l’importante e’ capire come funzionano questi calcoli, dal momento che, come detto, il moto di tutti i corpi dell’universo e’ basato sulla forza gravitazionale.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Nuovi candidati per l’impatto mortale?

18 Apr

Alcuni utenti mi hanno chiesto di commentare una notizia apparsa proprio in queste ore su molti siti intenet. Stando a quanto riportato, la NASA avrebbe dichiarato di aver scoperto un nuovo asteroide orbitante vicino alla Terra e che potrebbe rappresentare una notevole minaccia per il genere umano. Per essere precisi, trovate scritto che questo corpo sarebbe molto piu’ pericoloso di Apophis di cui abbiamo parlato, ad esempio, in questo post:

Attenzione, tra poche ore passa Apophis!

Come sapete bene, su Apophis si e’ speculato tantissimo per due motivi principali. Il primo e’ che questo NEO, oggetto vicino alla Terra, per lungo tempo ha avuto una probabilita’ di impatto dalle simulazioni diversa da zero, mentre la seconda ragione si deve a Margherita Hack che in alcune interviste, per smentire le fantasie sul 2012, ha espressamente detto che forse era meglio preoccuparsi di Apophis piuttosto che della fine del calendario Maya. Questa affermazione, fatta ovviamente per sminuire il 2012, ha avuto l’effetto contrario di creare uno stato d’allerta sui meteoriti.

Detto questo, sempre secondo la notizia che stiamo analizzando, il nuovo asteroide appena scoperto sarebbe “1999 RQ36”, che dovrebbe colpire la Terra nel 2182.

Premesso che il 2182 mi sembra abbastanza lontano per iniziare a preoccuparsi, le tante notizie che trovate in rete presentano alcuni punti fondamentali completamente falsi.

Cerchiamo di capire meglio.

Prima di tutto, come suggerisce il nome stesso, l’asteroide in questione e’ stato scoperto nel 1999. La prima osservazione e’ stata fatta nell’ambito del programma LINEAR e l’asteroide e’ costantemente monitorato e studiato dall’osservatorio di Arecibo.

1999 RQ36 ha una forma sferiodale con un diametro medio di 560 metri e una massa di 0.14 miliardi di tonnellate. A livello scientifico, si e’ parlato abbastanza di questo asteroide, soprattutto perche’ e’ stato possibile determinare la sua massa con estrema precisione. Questo risultato e’ stato raggiunto sfruttando le informazioni di 3 radiotelescopi nel mondo e calcolando in maniera molto precisa gli effetti gravitazionali subiti da 1999 RQ36. Come potete facilmente immaginare, questo e’ stato un compito molto arduo, dal momento che per calcoli di queto tipo, si devono considerare tutti i corpi in prossimita’ dell’asteroide, al fine di valutare precisamente le interazioni gravitazionali subite durante il moto.

Probabilmente, leggendo qualche notizia qua e la sui siti scientifici, i nostri amici catastrofisti non hanno capito bene quello di cui si stava parlando e perche’ cosi’ tanto interesse fosse concentrato su questo asteroide. Ovviamente, non dobbiamo dimenticarci il periodo storico che stiamo attraversando. Dopo il fatto russo dell’asteroide su Cheliabynsk, speculare su eventi di questo tipo e’ divenuta una moda molto proficua per tanti siti internet.

Detto questo, come possiamo verificare la reale pericolosita’ di 1999 RQ36?

Per prima cosa, per chi volesse divertirsi a simulare l’impatto di un corpo di questo tipo sulla Terra, abbiamo fatto esperimenti di questo tipo in un altro articolo:

Effetti di un impatto con Nibiru

Seguendo i link riportati, potete accedere ad un programma di simulazione molto carino e con cui potete valutare i reali rischi che un impatto di questo tipo avrebbe per la Terra e per il genere umano.

Detto questo, per poter capire la reale probabilita’ di impatto, non solo di questo asteroide, ma di qualsiasi corpo che volete controllare, basta al solito accedere al sito della NASA sui corpi potenzialmente pericolosi:

NASA, NEO program

In queste pagine trovate il database completo con le informazioni su tutti i NEO potenzialmente pericolosi, insieme anche ai parametri orbitali e ai dati fisici.

Cosa troviamo su 1999 RQ36?

Aprendo la pagina dedicata a questo corpo:

NASA, 1999 RQ36

Vedete che i passaggi ravvicinati alla Terra saranno tra il 2169 e il 2199. Sempre facendo riferimento a questa tabella:

Passaggi ravvicinati per RQ36

Passaggi ravvicinati per RQ36

vedete pero’ che la probabilita’ di impatto non e’ mai superiore allo 0,026%.

Molto probabilmente, un altro fattore che ha contribuito ad alimentare il sospetto su questo corpo e’ che, facendo sempre riferimento alla tabella, non compare la valutazione nella Scala Torino per questo corpo.

Come visto in questo articolo:

L’asteroide 2012 DA14

La scala Torino e’ una classificazione del pericolo di impatto dei NEO sulla Terra. Questa scala tiene conto sia della massa dell’asteroide che della sua energia cinetica. Come capite subito, in un eventuale impatto, anche l’energia cinetica posseduta dal proiettile rappresenta un parametro di notevole importanza.

Visto che per 1999RQ36 non compare la valutazione, proviamo a valutare da noi il pericolo di impatto facendo un confronto con un altro asteroide potenzialmente pericoloso: 2007 VK184. In questo caso abbiamo un proiettile un po’ piu’ piccolo, solo 130 metri di diametro, ma che viaggia ad una velocita’ superiore a 1999 RQ36: 19 m/s contro 13 m/s.

NASA, 2007 VK184

Perche’ abbiamo scelto questo corpo? Come vedete sempre consultantdo il sito NASA, VK184 e’ considerato l’osservato speciale per la probabilita’ di impatto sulla Terra. Con questo si intende che e’ il NEO con la probabilita’ di impatto maggiore per il futuro.

Facendo riferimento alla tabella che trovate sulla pagina riportata:

Passaggi ravvicinati per VK184

Passaggi ravvicinati per VK184

Vedete che in questo caso, la probabilita’ maggiore di impatto e’ dell’ordine di 0,055% con il valore 1 nella Scala Torino. Analogamente a quanto avvenne la prima volta con Apophis, anche questo corpo ha dunque un valore diverso da zero della Scala Torino. Proprio per questo motivo, trovate il corpo evidenziato sulla pagina NASA e VK184 viene costantemente monitorato.

Cosa significa 1 nella Scala Torino?

Definizione dei valori della Scala Torino

Definizione dei valori della Scala Torino

Se avete pensato che il valore 1 ci dia la certezza di impatto, siete fuori strada. Ovviamente 1 e’ maggiore di 0, cioe’ della probabilita’ completamente nulla di impatto con la Terra. Nnostante questo, come vedete dalla figura a lato, la scala Torino a valori che vanno da 0 a 10 e che corripondono ad un crescendo di probabilita’ di impatto.

Prendendo la definizione ufficiale della scala Torino, il valore 1 corrisponde a quanto segue:

Osservazioni occasionali possono scoprire il passaggio vicino alla Terra di oggetti che li pongono in un livello di pericolo di collisione. Calcoli e analisi mostrano che le probabilità di collisione sono estremamente basse da non meritare grande attenzione e preoccupazione nella gente comune. Nuove osservazioni molto probabilmente porteranno una riassegnazione al livello 0.

Dunque? Premesso, come visto, che stiamo parlando di passaggio ravvicinati tra piu’ di un secolo, il valore 1 non corrisponde assolutamente a nessun pericolo. Complice anche la lontananza temporale dell’evento considerato, l’orbita dell’asteroide e’ conosciuta con un’incertezza tale da non consentire una valutazione precisa della probabilita’ di impatto. Cosi’ come avvenuto per Apophis, a distanza di anni e grazie alle osservazioni continue ad opera dei tanti telescopi funzionanti a Terra, la probabilita’ di impatto, e duqnue anche il valore della Scala Torino, e’ divenuta completamente nulla.

Detto questo, siete ancora convinti che sia il caso di preoccuparsi di 1999 RQ36? Secondo me, assolutamente no. Ovviamente non vogliamo tranquillizzare per partito preso. Le nostre considerazioni nascono da un’analisi dei parametri attualmente disponibili, ma soprattutto dal tempo che ancora manca per questo passaggio ravvicinato. Molto probabilmente, tra piu’ di un secolo avremo sicuramente, anche se ne fosse richiesto l’utilizzo, un qualche sistema funzionante per poter deviare o distruggere i potenziali pericoli spaziali per la Terra. Di questi sistemi, attualmente in stato di studio, abbiamo parlato in questo post:

Asteroidi: sappiamo difenderci?

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.