Tag Archives: ginevra

Charged Lepton Flavour Violation

6 Ott

Oggi vorrei mettere da parte UFO, complotti, scie chimiche, fine del mondo, ecc., per tornare a parlare di scienza pura. Lo vorrei fare con questo articolo spceifico, per trattare nuovamente lo stato attuale della ricerca e mostrarvi quali sono i settori più “caldi” e più promettenti nel panorama della fisica delle alte energie.

Per prima cosa, in diversi articoli abbiamo parlato di modello standard:

Dafne e KLOE: alta energia in Italia

E parliamo di questo Big Bang

Universo: foto da piccolo

Ascoltate finalmente le onde gravitazionali?

Il primo vagito dell’universo

L’espansione metrica dell’universo

Come abbiamo visto, il Modello Standard è quella teoria che oggi abbiamo definito e che consente di prevedere molte delle proprietà che osserviamo per le particelle. Vi ricordo che in fisica parliamo sempre di modello proprio per indicare un qualcosa in grado di prevedere le proprietà sperimentali.

Anche se poco conosciuto ai non addetti ai lavori, il Modello Standard è stato molto citato parlando del Bosone di Higgs. Come tutti sanno, il nostro modello, che ha resistito per decenni, presenta una particolare mancanza: non è in grado di prevedere l’esistenza della massa delle particelle. Come correggere questa grave imprecisione? Che le particelle abbiano massa è noto a tutti e facilmente dimostrabile anche guardando la materia che ci circonda. Bene, per poter correggere questo “errore” è possibile inserire quello che è noto come Meccanismo di Higgs, una correzione matematica che consente al modello standard di poter prevedere l’esistenza della massa. Bene, dunque ora è tutto OK? Assolutamente no, affinché il meccanismo di Higgs possa essere inserito è necessario che sia presente quello che viene chiamato un Campo di Higgs e, soprattutto, un bosone intermedio che, neanche a dirlo, si chiama Bosone di Higgs.

Capite dunque perchè la scoperta sperimentale del Bosone di Higgs è così importante?

Del bosone di Higgs, di LHC e delle sue conseguenze abbiamo parlato in questi articoli:

Bosone di Higgs … ma cosa sarebbe?

L’universo è stabile, instabile o meta-stabile?

Hawking e la fine del mondo

2012, fine del mondo e LHC

A questo punto si potrebbe pensare di aver raggiunto il traguardo finale e di aver compreso tutto. Purtroppo, o per fortuna a seconda dei punti di vista, questo non è assolutamente vero.

Perchè?

Come è noto a tutti, esistono alcuni problemi aperti nel campo della fisica e su cui si discute già da moltissimi anni, primo tra tutti quello della materia oscura. Il nostro amato Modello Standard non prevede assolutamente l’esistenza della materia oscura di cui abbiamo moltissime verifiche indirette. Solo per completezza, e senza ripetermi, vi ricordo che di materia e energia oscura abbiamo parlato in questi post:

La materia oscura

Materia oscura intorno alla Terra?

Flusso oscuro e grandi attrattori

Troppa antimateria nello spazio

Due parole sull’antimateria

Antimateria sulla notra testa!

L’esistenza della materia oscura, insieme ad altri problemi poco noti al grande pubblico, spingono i fisici a cercare quelli che vengono chiamati Segnali di Nuova Fisica, cioè decadimenti particolari, molto rari, in cui si possa evidenziare l’esistenza di particelle finora sconosciute e non contemplate nel modello standard delle particelle.

Per essere precisi, esistono moltissime teorie “oltre il modello standard” e di alcune di queste avrete già sentito parlare. La più nota è senza ombra di dubbio la Supersimmetria, o SuSy, teoria che prevede l’esistenza di una superparticella per ogni particella del modello standard. Secondo alcuni, proprio le superparticelle, che lasciatemi dire a dispetto del nome, e per non impressionarvi, non hanno alcun super potere, potrebbero essere le componenti principali della materia oscura.

Prima importante riflessione, la ricerca in fisica delle alte energie è tutt’altro che ad un punto morto. La scoperta, da confermare come detto negli articoli precedenti, del Bosone di Higgs rappresenta un importante tassello per la nostra comprensione dell’universo ma siamo ancora molto lontani, e forse mai ci arriveremo, dalla formulazione di una “teoria del tutto”.

Detto questo, quali sono le ricerche possibii per cercare di scoprire se esiste veramente una fisica oltre il modelo Standard delle particelle?

Detto molto semplicemente, si studiano alcuni fenomeni molto rari, cioè con bassa probabilità di avvenire, e si cerca di misurare una discrepanza significativa da quanto atteso dalle teorie tradizionali. Cosa significa? Come sapete, le particelle hanno una vita molto breve prima di decadere in qualcos’altro. I modi di decadimento di una data particella possono essere molteplici e non tutti avvengono con la stessa probabilità. Vi possono essere “canali”, cioè modi, di decadimento estremamente più rari di altri. Bene, alcuni di questi possono essere “viziati” dall’esistenza di particelle non convenzionali in grado di amplificare questo effetto o, addirittura, rendere possibili modi di decadimento non previsti dalla teoria convenzionale.

L’obiettivo della fisica delle alte energie è dunque quello di misurare con precisione estrema alcuni canali rari o impossibili, al fine di evidenziare segnali di nuova fisica.

Ovviamente, anche in questo caso, LHC rappresenta un’opportunità molto importante per questo tipo di ricerche. Un collisore di questo tipo, grazie alla enorme quantità di particelle prodotte, consente di poter misurare con precisione moltissimi parametri. Detto in altri termini, se volete misurare qualcosa di molto raro, dovete prima di tutto disporre di un campione di eventi molto abbondante dove provare a trovare quello che state cercando.

Un esempio concreto, di cui abbiamo parlato in questo post, è l’esperimento LhCB del CERN:

Ancora sullo squilibrio tra materia e antimateria

Una delle ricerche in corso ad LhCB è la misura del decadimento del Bs in una coppia di muoni. Niente paura, non voglio tediarvi con una noiosa spiegazione di fisica delle alte energie. Il Bs è un mesone composto da due quark e secondo il modello standard può decadere in una coppia di muoni con una certa probabilità, estremamente bassa. Eventuali discordanze tra la probabilità misurata di decadimento del Bs in due muoni e quella prevista dal modello standard potrebbe essere un chiaro segnale di nuova fisica, cioè di qualcosa oltre il modello standard in grado di modificare queste proprietà.

Misurare la probabilità di questo decadimento è qualcosa di estremamente difficile. Se da un lato avete una particella che decade in due muoni facilmente riconoscibili, identificare questo decadimento in mezzo a un mare di altre particelle è assai arduo e ha impegnato moltissimi fisici per diverso tempo.

Purtroppo, o per fortuna anche qui, gli ultimi risultati portati da LhCB, anche in collaborazione con CMS, hanno mostrato una probabilità di decadimento paragonabile a quella attesa dal modello standard. Questo però non esclude ancora nulla dal momento che con i nuovi dati di LHC sarà possibile aumentare ancora di più la precisione della misura e continuare a cercare effetti non previsti dalla teoria.

Tra gli altri esperimenti in corso in questa direzione, vorrei poi parlarvi di quelli per la ricerca della “violazione del numero Leptonico”. Perdonatemi il campanilismo, ma vi parlo di questi semplicemente perchè proprio a questo settore è dedicata una mia parte significativa di ricerca.

Cerchiamo di andare con ordine, mantenendo sempre un profilo molto divulgativo.

Come visto negli articoli precedenti, nel nostro modello standard, oltre ai bosoni intermedi, abbiamo una serie di particelle elementari divise in quark e leptoni. Tra questi ultimi troviamo: elettrone, muone, tau e i corrispondendi neutrini. Bene, come sapete esistono delle proprietà in fisica che devono conservarsi durante i decadimenti di cui abbiamo parlato prima. Per farvi un esempio noto a tutti, in un decadimento dobbiamo mantenere la carica elettrica delle particelle, se ho una particella carica positiva che decade in qualcosa, questo qualcosa deve avere, al netto, una carica positiva. La stessa cosa avviene per il numero leptonico, cioè per quella che possiamo definire come un’etichetta per ciascun leptone. In tal caso, ad esempio, un elettrone non può decadere in un muone perchè sarebbe violato, appunto, il numero leptonico.

Facciamo un respiro e manteniamo la calma, la parte più tecnica è già conclusa. Abbiamo capito che un decadimento in cui un leptone di un certo tipo, muone, elettrone o tau, si converte in un altro non è possibile. Avete già capito dove voglio andare a finire? Se questi decadimenti non sono possibili per la teoria attuale, andiamo a cercarli per verificare se esistono influenze da qualcosa non ancora contemplato.

In realtà, anche in questo caso, questi decadimenti non sono del tutto impossibili, ma sono, come per il Bs in due muoni, fortemente soppressi. Per farvi un esempio, l’esperimento Opera dei Laboratori Nazionali del Gran Sasso, misura proprio l’oscillazione dei neutrini cioè la conversione di un neutrino di un certo tipo in un altro. Ovviamente, appartendendo alla famiglia dei leptoni, anche i neutrini hanno un numero leptonico e una loro trasformazione da un tipo all’altro rappresenta una violazione del numero leptonico, quella che si chiama Neutral Lepton Flavour Violation. Per la precisione, questi decadimenti sono possibili dal momento che, anche se estremamente piccola, i neutrini hanno una massa.

Bene, la ricerca della violazione del numero Leptonico in particelle cariche, è uno dei filoni più promettenti della ricerca. In questo settore, troviamo due esperimenti principali che, con modalità diverse, hanno ricercato o ricercheranno questi eventi, MEG a Zurigo a Mu2e a Chicago.

Mentre MEG ha già raccolto molti dati, Mu2e entrerà in funzione a partire dal 2019. Come funzionano questi esperimenti? Detto molto semplicemente, si cercano eventi di conversione tra leptoni, eventi molto rari e dominati da tantissimi fondi, cioè segnali di dcadimenti più probabili che possono confondersi con il segnale cercato.

Secondo il modello standard, questi processi sono, come già discusso, fortemente soppressi cioè hanno una probabilità di avvenire molto bassa. Una misura della probabilità di decadimemto maggiore di quella attesa, sarebbe un chiaro segnale di nuova fisica. Detto questo, capite bene perchè si parla di questi esperimenti come probabili misure da nobel qualora i risultati fossero diversi da quelli attesi.

L’esperimento MEG ha già preso moltissimi dati ma, ad oggi, ha misurato valori ancora in linea con la teoria. Questo perchè la risoluzione dell’esperimento potrebbe non essere sufficiente per evidenziare segnali di nuova fisica.

A livelo tecnico, MEG e Mu2e cercano lo stesso effetto ma sfruttando canali di decadimento diverso. Mentre MEG, come il nome stesso suggerisce, cerca un decadimento di muone in elettrone più fotone, Mu2e cerca la conversione di muone in elettrone senza fotone ma nel campo di un nucleo.

Ad oggi, è in corso un lavoro molto specifico per la definizione dell’esperimento Mu2e e per la scelta finale dei rivelatori da utilizzare. Il gruppo italiano, di cui faccio parte, è impegnato in uno di questi rivelatori che prevede la costruzione di un calorimetro a cristallo che, speriamo, dovrebbe raggiungere risoluzioni molto spinte ed in grado di evidenziare, qualora presenti, eventuali segnali di nuova fisica.

Concludnedo, la ricerca nella fisica delle alte energie è tutt’altro che morta ed è sempre attiva su molti fronti. Come detto, molti sforzi sono attualmente in atto per la ricerca di segnali di nuova fisica o, come noi stessi li abbiamo definiti, oltre il modello standard. Detto questo, non resta che attendere i prossimi risultati per capire cosa dobbiamo aspettarci e, soprattutto, per capire quanto ancora poco conosciamo del mondo dell’infinitamente piccolo che però regola il nostro stesso universo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Hawking e la fine del mondo

11 Set

Visto che me lo state chiedendo in tantissimi, vorrei aprire una parentesi sulle affermazioni fatte dal celebre astrofisico Stephen Hawking riguardanti il bosone di Higgs. Per chi non lo avesse seguito, abbiamo già discusso di questo tema nella apposita sezione:

Hai domande o dubbi?

Dove un nostro caro lettore, già qualche giorno fa, ci aveva chiesto lumi a riguardo.

Di cosa stiamo parlando?

Come tutti avrete letto, nell’introduzione del suo ultimo libro “Starmus, 50 years of man in space” il celebre astrofisico avrebbe scritto che il bosone di Higgs avrebbe le potenzialità per poter distruggere l’intero universo. In pratica, ad energie elevate, così si legge, la particella potrebbe divenire improvvisamente instabile e provocare il collasso dello stato di vuoto, con conseguente distruzione dell’universo.

Cosa? Collaso del vuoto? Distruzione dell’universo?

Ci risiamo, qualcuno ha ripreso qualche spezzone in giro per la rete e ne ha fatto un caso mondiale semplicemente mescolando le carte in tavola. In realtà, a differenza anche di quanto io stesso ho affermato nella discussione linkata, la cosa è leggermente più sottile.

E’ possibile che il bosone di Higgs diventi instabile e bla bla bla?

No! Il bosone di Higgs non diviene instabile ad alte energie o perchè ne ha voglia. Stiamo entrando in un settore della fisica molto particolare e su cui la ricerca è ancora in corso.

Facciamo un piccolo excursus. Del bosone di Higgs ne abbiamo parlato in questo articolo:

Bosone di Higgs … ma che sarebbe?

dove abbiamo cercato di spiegare il ruolo chiave di questa particelle nella fisica e, soprattutto, la sua scoperta.

Inoltre, in questo articolo:

L’universo è stabile, instabile o metastabile?

Abbiamo visto come la misura della massa di questa particella abbia implicazioni profonde che esulano dalla mera fisica delle particelle. In particolare, la massa di questa particella, combinata con quella del quark top, determinerebbe la condizione di stabilità del nostro universo.

Bene, come visto nell’ultimo articolo citato, i valori attuali dei parametri che conosciamo, ci pongono nella strettissima zona di metastabilità del nostro universo. Detto in parole semplici, non siamo completamente stabili e, ad un certo punto, il sistema potrebbe collassare in un valore stabile modificando le proprietà del vuoto quantomeccanico.

Riprendiamo il ragionamento fatto nell’articolo. Siamo in pericolo? Assolutamente no. Se anche fossimo in una condizione di metastabilità, il sistema non collasserebbe da un momento all’altro e, per dirla tutta, capire cosa significhi in realtà metastabilità del vuoto quantomeccanico non è assolutamente certo. Premesso questo, come già discusso, i valori delle masse delle due particelle in questione, vista la ristretta zona in esame, non sono sufficienti a determinare la reale zona in cui siamo. Cosa significa? Come detto, ogni misura in fisica viene sempre accompagnata da incertezze, cioè un valore non è univoco ma è contenuto in un intervallo. Più è stretto questo intervallo, minore è l’incertezza, meglio conosciamo il valore in esame. Ad oggi, ripeto, vista la stretta banda mostrata nel grafico, le nostre incertezze sono compatibili sia con la metastabilità che con l’instabilità.

Dunque, pericolo scampato. Resta però da capire il perchè delle affermazioni di Hawking.

Su questo, vi dirò la mia senza fronzoli. Hawking conosce benissimo l’attuale livello di cui abbiamo discusso. Molto probabilmente, non avendolo letto non ne posso essere sicuro, nel libro ne parla in modo dettagliato spiegando tutto per filo e per segno. Nell’introduzione invece, appunto in quanto tale, si lascia andare ad affermazioni quantomeno naive.

Perchè fa questo? Le ipotesi sono due e sono molto semplici. La prima è che è in buona fede e la colpa è solo dei giornali che hanno ripreso questa “introduzione al discorso” proprio per creare il caso mediatico sfruttando il nome dell’astrofisico. La seconda, più cattiva, è che d’accordo con l’editore, si sia deciso di creare questo caso appunto per dare una spinta notevole alle vendite del libro.

Personalmente, una o l’altra non conta, l’importante è capire che non c’è nessun collasso dell’universo alle porte.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’universo che si dissolve “improvvisamente”

21 Mar

Nella sezione:

Hai domande o dubbi?

una nostra cara lettrice ci ha chiesto lumi su una notizia apparsa in questi giorni sui giornali che l’ha lasciata, giustamente dico io, un po’ perplessa. La notizia in questione riguarda l’annuncio fatto solo pochi giorni fa della nuova misura della massa del quark top.

Perche’ questa notizia avrebbe suscitato tanto clamore?

Senza dirvi nulla, vi riporto un estratto preso non da un giornale qualsiasi, che comunque a loro volta hanno copiato da qui, ma dalla principale agenzia di stampa italiana:

Il più pesante dei mattoni della materia, il quark top, ha una misura più precisa e la sua massa, con quella del bosone di Higgs, potrebbe essere la chiave per capire se viviamo in un universo instabile, al punto di dissolversi improvvisamente.

Universo che si dissolve “improvvisamente”?

Vi giuro che vorrei mettermi a piangere. Solo pochi giorni fa abbiamo parlato di tutte quelle cavolate sparate dopo l’annuncio della misura di Bicep-2:

Ascoltate finalmente le onde gravitazionali?

Due notizie cosi’ importanti dal punto di vista scientifico accompagnate da sensazionalismo catastrofista nella stessa settimana sono davvero un duro colpo al cuore.

Al solito, e come nostra abitudine, proviamo a spiegare meglio l’importanza della misura ma, soprattutto, cerchiamo di capire cosa dice la scienza contrapposto a quello che hanno capito i giornali.

In diversi articoli abbiamo parlato di modello standard discutendo la struttura della materia che ci circonda e, soprattutto, presentando quelle che per noi, ad oggi, sono le particelle fondamentali, cioe’ i mattoni piu’ piccoli che conosciamo:

Due parole sull’antimateria

Piccolo approfondimento sulla materia strana

Bosone di Higgs …. ma che sarebbe?

Se ci concentriamo sui quark, vediamo che ci sono 6 componenti che, come noto, sono: up, down, strange, charm, bottom e top. Come gia’ discusso, i primi due, up e down, sono quelli che formano a loro volta protoni e neutroni, cioe’ le particelle che poi formano i nuclei atomici, dunque la materia che ci circonda.

Bene, il quark top e’ il piu’ pesante di questi oltre ad essere l’ultimo ad essere stato scoperto. Il primo annuncio di decadimenti con formazione di quark top e’ stato fatto nel 1995 grazie alla combinazione dei risultati di due importanti esperimenti del Fermi National Accelerator Laboratory di Batavia, nei pressi di Chicago. A questi esperimenti, oggi in dismissione, ma la cui analisi dei dati raccolti e’ ancora in corso, partecipavano e partecipano tuttora moltissimi fisici italiani dell’Istituto Nazionale di Fisica Nucleare.

La cosa piu’ sorprendente del quark top e’ la sua enorme massa, circa 170 GeV, che lo rende la particella elementare piu’ pesante mai trovata. Per darvi un’idea, il top e’ circa 180 volte piu’ pesante di un protone con una massa paragonabile a quella di un atomo di oro nel suo complesso. Il perche’ di una massa cosi’ elevata e’ una delle chiavi per capire i meccanismi che avvengono a livello microscopico e che, come e’ normale pensare, determinano il comportamento stesso del nostro universo.

Bene, cosa e’ successo in questi giorni?

Come avete letto, nel corso della conferenza:

Rencontres de Moriond

che si svolge annualmente a La Thuille in Val d’Aosta, e’ stata presentata una nuova misura della massa del quark top. Prima cosa importante da dire e’ che la misura in questione viene da una stretta collaborazione tra i fisici di LHC e quelli che analizzano i dati del Tevatron, cioe’ il collissore dove nel 1995 fu scoperto proprio il top. Queste due macchine sono le uniche al mondo, grazie alla grande energia con cui vengono fatti scontrare i fasci, in grado di produrre particelle pesanti come il quark top.

Dalla misurazione congiunta di LHC e Tevatron e’ stato possibile migliorare notevolmente l’incertezza sulla massa del top, arrivando ad un valore molto piu’ preciso rispetto a quello conosciuto fino a qualche anno fa.

Cosa comporta avere un valore piu’ preciso?

Come potete immaginare, conoscere meglio il valore di questo parametro ci consente di capire meglio i meccanismi che avvengono a livello microscopico tra le particelle. Come discusso parlando del bosone di Higgs, il ruolo di questa particella, e soprattutto del campo scalare ad essa associato, e’ proprio quello di giustificare il conferimento della massa. Se il  top ha una massa cosi’ elevata rispetto agli altri quark, il suo meccanismo di interazione con il campo di Higgs deve essere molto piu’ intenso. Inoltre, il quark top viene prodotto da interazioni forti, ma decade con canali deboli soprattutto producendo bosoni W. Non sto assolutamente cercando di confondervi. Come visto negli articoli precedenti, il W e’ uno dei bosoni messaggeri che trasportano l’interazione debole e che e’ stato scoperto da Carlo Rubbia al CERN. Detto questo, capite come conoscere con precisione la massa del top, significhi capire meglio i meccanismi che avvengono tra top, W e campo di Higgs. In ultima analisi, la conoscenza di questi modelli e’ fondamentale per capire perche’, durante l’evoluzione dell’universo, si sono formate particelle cosi’ pesanti ma anche per capire se esistono meccanismi di decadimento non ancora considerati o anche effetti, come vengono definiti, di nuova fisica che possono mettere in discussione o integrare il modello standard delle particelle.

Concludendo, la spiegazione della frase “universo che si dissolve improvvisamente” non significa nulla. Una misura piu’ precisa della massa del top implica una migliore conoscenza dei modelli ora utilizzati e soprattutto apre le porte per capire meglio cosa e’ avvenuto durante durante i primi istanti di vita dell’universo. Al solito pero’, anche sulla scia del tanto citato annuncio di Bicep-2, si e’ ben pensato di sfruttare l’occasione e trasformare anche questa importante notizia in un teatrino catastrofista. Per chi interessato ad approfondire, vi riporto anche il link di ArXiv in cui leggere l’articolo della misura in questione:

ArXiv, quark top

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Fascio di anti-idrogeno? FATTO!

22 Gen

Uno degli aspetti della fisica che suscita maggior interesse nei non addetti ai lavori e’ senza dubbio il concetto di antimateria. Molto probabilmente, il motivo di questo interesse e’ da ricercarsi nelle tante storie fantascientifiche che sono state ispirate dall’esistenza di un qualcosa molto simile alla materia, se non fosse per la carica delle particelle che la compongono, che era presente prima del Big Bang ma che ora sembra totalmente scomparsa. Inoltre, come tutti sanno, se materia e antimateria vengono messe vicine tra loro si ha il fenomeno dell’annichilazione, qualcosa di assolutamente esotico nella mente dei non addetti ai lavori e che ha offerto trame sensazionali per tanti film e serie TV.

Come detto tante volte, dobbiamo fare una distinzione precisa tra quelle che chiamiamo antiparticelle e quella che invece viene intesa come antimateria. Cosi’ come avviene per la materia ordinaria, composta di particelle che, in questo schema, possiamo pensare come elettroni, protoni e neutroni, l’antimateria e’ a sua volta composta da anti-particelle. Spesso si tende a confondere questi due concetti, facendo, come si suole dire, di tutta l’erba un fascio.

Produrre anti-particelle e’ semplice e siamo in grado di farlo gia’ da diversi anni. Per darvi un esempio, molti collisori utilizzati per la ricerca nella fisica delle alte energie fanno scontrare fasci di particelle con antiparticelle. In questo contesto, molto usati sono i positroni, cioe’ gli anti-elettroni, e gli anti-protoni.

Completamente diverso e’ invece il caso dell’antimateria.

Per formare anti-atomi e’ necessario assemblare insieme le anti-particelle per comporre qualcosa simile nella struttura alla materia, ma composto a partire da mattoncini di anti-particelle.

Di questi concetti abbiamo gia’ parlato in articoli precedenti che trovate a questi link:

Troppa antimateria nello spazio

Due parole sull’antimateria

Antimateria sulla notra testa!

Come anticipato, prima del Big Bang, erano presenti in eguale quantita’ materia e anti-materia. Ad un certo punto pero’, l’anti-materia e’ scomparsa lasciando il posto solo alla materia che ha poi formato l’universo che vediamo oggi. Anche se questo meccanismo e’ in linea di principio ipotizzato dalla fisica, ci sono ancora punti da chiarire in quella che viene chiamata “asimmetria materia-antimateria”. Anche di questo abbiamo gia’ parlato in questi articoli:

E parliamo di questo Big Bang

Ancora sullo squilibrio tra materia e antimateria

Se, da un lato, produrre antiparticelle e’ semplice, metterle insieme per formare antiatomi non e’ assolutamente banale.

Nel 2011 al CERN di Ginevra era stato annunciato per la prima volta un risultato molto importante: atomi di anti-idrogeno erano stati formati e osservati per un tempo di circa 1000 secondi prima si scomparire. Questa osservazione aveva permesso di osservare alcune importanti proprieta’. Nel 2012, sempre al CERN, un altro esperimento era riuscito a misurare altre importanti proprieta’ di questi anti-atomi, facendo ben sperare per il futuro.

Ora, invece, sempre il CERN ha annunciato di essere riuscito per la prima volta a produrre addirittura un fascio di anti-idrogeni. L’annuncio ‘e stato dato sul sito del laboratorio svizzero:

CERN, ASACUSA NEWS

e pubblicato sull’autorevole rivista Nature.

La scoperta e’ stata realizzata dalla collaborazione internazionale ASACUSA, di cui fanno parte anche alcuni ricercatori del nostro Istituto Nazionale di Fiscia Nucleare.

Cosa sarebbero questi anti-idrogeni?

Seguendo il ragionamento fatto, questi speciali atomi sono composti dagli analoghi di antimateria di protone e elettrone. Se l’idrogeno ha un nucleo composto da un protone con un elettrone che gira intorno, un anti-idrogeno e’ composto da un anti-protone, carico negativamente, e un positrone che gira intorno, carico positivamente. Come potete facilmente capire, in questo gioco di costruzione di atomi, siamo alla struttura piu’ semplice conosciuta ma, come vedremo tra poco, fondamentale per la comprensione dell’universo.

Come e’ stato fatto questo esperimento?

L'esperimento ASACUSA del CERN

L’esperimento ASACUSA del CERN

Senza annoiarvi con tecnicismi, gli anti-idrogeni sono prodotti da un deceleratore di antiprotoni e poi allontanati dal punto di produzione ad una distanza sufficiente a non risentire dei campi magnetici. Questo accorgimento e’ fondamentale per stabilizzare gli anti-atomi che altrimenti si scomporrebbero scomparendo. Come vedete nella foto riportata, la camera da vuoto utilizzata e’ infatti un lungo tubo e gli anti-idrogeni sono stati osservati e immobilizzati ad una distanza di quasi 3 metri dal punto di produzione.

Perche’ e’ cosi’ importante l’anti-idrogeno?

La sua semplicita’ rispetto agli atomi piu’ pesanti, sia per materia che per anti-materia, ha fatto si che questi siano stati i primi atomi stabili creati nell’universo in espansione. Secondo la teoria, idrogeno e anti-idrogeno dovrebbero avere esattamente lo stesso spettro di emissione. Poter disporre in laboratorio di un fascio stabile di anti-atomi consentira’ di studiare a fondo le caratteristiche di questa struttura analizzando nei minimi dettagli ogni minima possibile discrepanza con l’idrogeno. Queste caratteristiche aiuterebbero notevolmente nella comprensione dell’asimmetria tra materia e anti-materia dando una notevola spinta in avanti nella comprensione della nascita del nostro universo e nella ricerca di ogni possibile accumulo di anti-materia.

Concludendo, questa importante notizia apre nuovi scenari nello studio della fisica di base, offrendo un’occasione fondamentale per comprende il nostro universo. Come spesso avviene, molti siti e giornali si sono lanciati in speculazioni parlando di pericoli o applicazioni fantascientifiche che lasciano un po’ il tempo che trovano. Sicuramente, il futuro in questa branca della ricerca ha ancora molto da offrire e non possiamo che essere entusiasti delle novita’ che ancora ci attendono.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

I buchi neri che … evaporano

16 Ago

Uno degli aspetti che da sempre fa discutere e creare complottismi su LHC, e’ di sicuro la possibilita’ di creare mini buchi neri. Questa teoria nasce prendendo in considerazione le alte energie in gioco all’interno del collissore del CERN e la possibilita’ che nello scontro quark-quark possa venire a crearsi una singolarita’ simile a quella dei buchi neri.

Se avete perso i precedenti articoli, di LHC abbiamo parlato in questi post:

2012, fine del mondo e LHC

Bosone di Higgs … ma che sarebbe?

Sia ben chiaro, la storia dei buchi neri non e’ la sola creata su LHC. Il CERN ogni giorno riceve lettere che chiedono la chiusura dell’esperimento per il pericolo che questo rappresenta per l’intera terra. Diverse volte il CERN e’ anche stato chiamato in giudizio a fronte di vere e proprie denuncie di pseudo scienziati che lo accusavano farneticando teorie senza capo ne’ coda. Come potete immaginare, tutte le volte le accuse sono state rigettate e non solo LHC il prossimo anno ripartira’, ma a gia’ fornito risultati fisici di prim’ordine.

Perche’ si discute tanto di buchi neri? Qui ognuno puo’ formulare la propria ipotesi. Io ho una mia idea. Parlare di buchi neri, e’ qualcosa che da sempre stimola la curiosita’ e il timore delle persone. Un buco nero e’ visto come qualcosa di misterioso che vive nel nostro universo con caratteristiche uniche nel suo genere: mangia tutto cio’ che gli capita a tiro senza far uscire nulla. L’idea di poter avere un mostro del genere qui sulla terra, scatena gli animi piu’ catastrofisti pensando a qualcosa che nel giro di qualche minuto sarebbe in grado di divorare Ginevra, la Svizzera, il mondo intero.

Come anticipato, LHC e’ ora in stato di fermo. Si sta lavorando incessantemente per migliorare i rivelatori che vi operano al fine di ottenere risultati sempre piu’ accurati e affidabili. Alla ripartenza, avendo ormai preso piu’ confidenza con la macchina, si pensa anche di poter aumentare l’energia del centro di massa, cioe’ quella a disposizione per creare nuove particelle, portandola da 7 a 10 TeV. Come e’ ovvio, questa notizia non poteva che riaccendere gli animi catastrofisti. Al momento non si e’ creato nessun buco nero perche’ l’energia era troppo bassa, gli scienziati stanno giocando con il fuoco e porteranno alla distruzione della Terra. Queste sono le argomentazioni che cominciate a leggere in rete e che non potranno che riaumentare avvicinandoci al momento della ripartenza.

Se anche dovesse formarsi un mini buco nero, perche’ gli scienziati sono tanto sicuri che non accadra’ nulla? Come sapete, si parla di evaporazione dei buchi neri. Una “strana” teoria formulata dal fisico inglese Stephen Hawking ma che, almeno da quello che leggete, non e’ mai stata verificata, si tratta solo di un’idea e andrebbe anche in conflitto con la meccanica quantistica e la relativita’. Queste sono le argomentazioni che leggete. Trovate uno straccio di articolo a sostegno? Assolutamente no, ma, leggendo queste notizie, il cosiddetto uomo di strada, non addetto ai lavori, potrebbe lasciarsi convincere che stiamo accendendo una miccia, pensando che forse si spegnera’ da sola.

Date queste premesse, credo sia il caso di affrontare il discorso dell’evaporazione dei buchi neri. Purtroppo, si tratta di teorie abbastanza complicate e che richiedono molti concetti fisici. Cercheremo di mantenere un profilo divulgativo al massimo, spesso con esempi forzati e astrazioni. Cio’ nonostante, parleremo chiaramente dello stato dell’arte, senza nascondere nulla ma solo mostrando risultati accertati.

Cominciamo proprio dalle basi parlando di buchi neri. La domanda principale che viene fatta e’ la seguente: se un buco nero non lascia sfuggire nulla dal suo interno, ne’ particelle ne’ radiazione, come potrebbe evaporare, cioe’ emettere qualcosa verso l’esterno? Questa e’ un’ottima domanda, e per rispondere dobbiamo capire meglio come e’ fatto un buco nero.

Secondo la teoria della relativita’, un buco nero sarebbe un oggetto estremamente denso e dotato di una gravita’ molto elevata. Questa intensa forza di richiamo non permette a nulla, nemmeno alla luce, di sfuggire al buco nero. Essendo pero’ un oggetto molto denso e compatto, questa forza e’ estremamente concentrata e localizzata. Immaginatelo un po’ come un buco molto profondo creato nello spazio tempo, cioe’ una sorta di inghiottitoio. La linea di confine tra la singolarita’ e l’esterno e’ quello che viene definito l’orizzonte degli eventi. Per capire questo concetto, immaginate l’orizzonte degli eventi come una cascata molto ripida che si apre lungo un torrente. Un pesce potra’ scendere e risalire il fiume senza problemi finche’ e’ lontano dalla cascata. In prossimita’ del confine, cioe’ dell’orizzonte degli eventi, la forza che lo trascina giu’ e’ talmente forte che il pesce non potra’ piu’ risalire e verra’ inghiottito.

Bene, questo e’ piu’ o meno il perche’ dal buco nero non esce nulla, nemmeno la luce. Dunque? Come possiamo dire che il buco nero evapora in queste condizioni?

La teoria dell’evaporazione, si basa sulle proprieta’ del vuoto. Come visto in questo articolo:

Se il vuoto non e’ vuoto

nella fisica, quello che immaginiamo come vuoto, e’ un continuo manifestarsi di coppie virtuali particella-antiparticella che vivono un tempo brevissimo e poi si riannichilano scomparendo. Come visto nell’articolo, non stiamo parlando di idee campate in aria, ma di teorie fisiche dimostrabili. L’effetto Casimir, dimostrato sperimentalmente e analizzato nell’articolo citato, e’ uno degli esempi.

Ora, anche in prossimita’ del buco nero si creeranno coppie di particelle e questo e’ altresi’ possibile quasi in prossimita’ dell’orizzonte degli eventi. Bene, ragioniamo su questo caso specifico. Qualora venisse creata una coppia di particelle virtuali molto vicino alla singolarita’, e’ possibile che una delle due particelle venga assorbita perche’ troppo vicina all’orizzonte degli eventi. In questo caso, la singola particella rimasta diviene, grazie al principio di indeterminazione di Heisenberg, una particella reale. Cosa succede al buco nero? Nei testi divulgativi spesso leggete che il buco nero assorbe una particella con energia negativa e dunque diminuisce la sua. Cosa significa energia negativa? Dal vuoto vengono create due particelle. Per forza di cose queste avranno sottratto un po’ di energia dal vuoto che dunque rimarra’ in deficit. Se ora una delle due particelle virtuali e’ persa, l’altra non puo’ che rimanere come particella reale. E il deficit chi lo paga? Ovviamente il buco nero, che e’ l’unico soggetto in zona in grado di pagare il debito. In soldoni dunque, e’ come se il buco nero assorbisse una particella di energia negativa e quindi diminuisse la sua. Cosa succede alla particella, ormai reale, rimasta? Questa, trovandosi oltre l’orizzonte degli eventi puo’ sfuggire sotto forma di radiazione. Questo processo e’ quello che si definisce evaporazione del buco nero.

Cosa non torna in questo ragionamento?

Il problema principale e’, come si dice in fisica, che questo processo violerebbe l’unitarieta’. Per le basi della meccanica quantistica, un qualunque sistema in evoluzione conserva sempre l’informazione circa lo stato inziale. Cosa significa? In ogni stato e’ sempre contenuta l’indicazione tramite la quale e’ possibile determinare con certezza lo stato precedente. Nel caso dei buchi neri che evaporano, ci troviamo una radiazione termica povera di informazione, creata dal vuoto, e che quindi non porta informazione.

Proprio da questa assunzione nascono le teorie che potete leggere in giro circa il fatto che l’evaporazione non sarebbe in accordo con la meccanica quantistica. Queste argomentazioni, hanno fatto discutere anche i fisici per lungo tempo, cioe’ da quando Hawking ha proposto la teoria. Sia ben chiaro, la cosa non dovrebbe sorprendere. Parlando di buchi neri, stiamo ragionando su oggetti molto complicati e per i quali potrebbero valere  leggi modificate rispetto a quelle che conosciamo.

Nonostante questo, ad oggi, la soluzione al problema e’ stata almeno “indicata”. Nel campo della fisica, si racconta anche di una famosa scommessa tra Hawking e Preskill, un altro fisico teorico del Caltech. Hawking sosteneva che la sua teoria fosse giusta e che i buchi neri violassero l’unitarieta’, mentre Perskill era un fervido sostenitore della inviolabilita dei principi primi della meccanica quantistica.

La soluzione del rebus e’ stata indicata, anche se ancora non confermata, come vedremo in seguito, chiamando in causa le cosiddette teorie di nuova fisica. Come sapete, la teoria candidata a risolvere il problema della quantizzazione della gravita’ e’ quella delle stringhe, compatibile anche con quella delle brane. Secondo questi assunti, le particelle elementari non sarebbero puntiformi ma oggetti con un’estensione spaziale noti appunto come stringhe. In questo caso, il buco nero non sarebbe piu’ una singolarita’ puntiforme, ma avrebbe un’estensione interna molto piu’ complessa. Questa estensione permette pero’ all’informazione di uscire, facendo conservare l’unitarieta’. Detto in altri termini, togliendo la singolarita’, nel momento in cui il buco nero evapora, questo fornisce ancora un’indicazione sul suo stato precedente.

Lo studio dei buchi neri all’interno della teoria delle stringhe ha portato al cosiddetto principio olografico, secondo il quale la gravita’ sarebbe una manifestazione di una teoria quantistica che vive in un numero minore di dimensioni. Esattamente come avviene in un ologramma. Come sapete, guardando un ologramma, riuscite a percepire un oggetto tridimensionale ma che in realta’ e’ dato da un immagine a 2 sole dimensioni. Bene, la gravita’ funzionerebbe in questo modo: la vera forza e’ una teoria quantistica che vive in un numero ridotto di dimensioni, manifestabili, tra l’altro, all’interno del buco nero. All’esterno, con un numero di dimensioni maggiori, questa teoria ci apparirebbe come quella che chiamiamo gravita’. Il principio non e’ assolutamente campato in aria e permetterebbe anche di unificare agevolmente la gravita’ alle altre forze fondamentali, separate dopo il big bang man mano che l’universo si raffreddava.

Seguendo il ragionamento, capite bene il punto in cui siamo arrivati. Concepire i buchi neri in questo modo non violerebbe assolutamente nessun principio primo della fisica. Con un colpo solo si e’ riusciti a mettere insieme: la meccanica quantistica, la relativita’ generale, il principio di indeterminazione di Heisenberg, le proprieta’ del vuoto e la termodinamica studiando la radiazione termica ed estendendo il secondo principio ai buchi neri.

Attenzione, in tutta questa storia c’e’ un pero’. E’ vero, abbiamo messo insieme tante cose, ma ci stiamo affidando ad una radiazione che non abbiamo mai visto e alla teoria delle stringhe o delle brance che al momento non e’ confermata. Dunque? Quanto sostenuto dai catastrofisti e’ vero? Gli scienziati rischiano di distruggere il mondo basandosi su calcoli su pezzi di carta?

Assolutamente no.

Anche se non direttamente sui buchi neri, la radiazione di Hawking e’ stata osservata in laboratorio. Un gruppo di fisici italiani ha osservato una radiazione paragonabile a quella dell’evaporazione ricreando un orizzonte degli eventi analogo a quello dei buchi neri. Come visto fin qui, l’elemento fondamentale del gioco, non e’ il buco nero, bensi’ la curvatura della singolarita’ offerta dalla gravita’. Bene, per ricreare un orizzonte degli eventi, basta studiare le proprieta’ ottiche di alcuni materiali, in particolare il loro indice di rifrazione, cioe’ il parametro che determina il rallentamento della radiazione elettromagnetica quando questa attraversa un mezzo.

Nell’esperimento, si e’ utilizzato un potente fascio laser infrarosso, in grado di generare impulsi cortissimi, dell’ordine dei miliardesimi di metro, ma con intensita’ miliardi di volte maggiore della radiazione solare. Sparando questo fascio su pezzi di vetro, il punto in cui la radiazione colpisce il mezzo si comporta esattamente come l’orizzonte degli eventi del buco nero, creando una singolarita’ dalla quale la luce presente nell’intorno non riesce ad uscire. In laboratorio si e’ dunque osservata una radiazione con una lunghezza d’onda del tutto paragonabile con quella che ci si aspetterebbe dalla teoria di Hawking, tra 850 e 900 nm.

Dunque? Tutto confermato? Se proprio vogliamo essere pignoli, no. Come visto, nel caso del buco nero gioca un ruolo determinante la gravita’ generata dal corpo. In laboratorio invece, la singolarita’ e’ stata creata otticamente. Ovviamente, mancano ancora degli studi su questi punti, ma l’aver ottenuto una radiazione con la stessa lunghezza d’onda predetta dalla teoria di Hawking e in un punto in cui si genera un orizzonte degli eventi simile a quello del buco nero, non puo’ che farci sperare che la teoria sia giusta.

Concludendo, l’evaporazione dei buchi neri e’ una teoria molto complessa e che richiama concetti molto importanti della fisica. Come visto, le teorie di nuova fisica formulate in questi anni, hanno consentito di indicare la strada probabile per risolvere le iniziali incompatibilita’. Anche se in condizioni diverse, studi di laboratorio hanno dimostrato la probabile esistenza della radiazione di Hawking, risultati che confermerebbero l’esistenza della radiazione e dunque la possibilita’ dell’evaporazione. Ovviamente, siamo di fronte a teorie in parte non ancora dimostrate ma solo ipotizzate. I risultati ottenuti fino a questo punto, ci fanno capire pero’ che la strada indicata potrebbe essere giusta.

Vorrei chiudere con un pensiero. Se, a questo punto, ancora pensate che potrebbero essere tutte fantasie e che un buco nero si potrebbe creare e distruggere la Terra, vi faccio notare che qui parliamo di teorie scientifiche, con basi solide e dimostrate, e che stanno ottenendo le prime conferme da esperimenti diretti. Quando leggete le teorie catastrofiste in rete, su quali basi si fondano? Quali articoli vengono portati a sostegno? Ci sono esperimenti di laboratorio, anche preliminari ed in condizioni diverse, che potrebbero confermare quanto affermato dai catastrofisti?

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Troppa antimateria nello spazio

5 Apr

Uno dei misteri che da sempre affascina i non addetti ai lavori e che spinge avanti la ricerca scientifica di base e’ la comprensione del nostro universo. In particolare, come sapete, ad oggi sappiamo veramente molto poco su cosa costituisce il nostro universo. Cosa significa questo? Dalle misure affettuate, solo una piccola frazione, intorno al 5%, e’ composta da materia barionica, cioe’ di quella stessa materia che compone il nostro corpo e tutti gli oggetti che ci circondano. La restante frazione e’ composta da quelli che spesso sentiamo chiamare contributi oscuri, materia oscura ed energia oscura. Mentre sulla materia oscura ci sono delle ipotesi, anche se ancora da verificare, sull’energia oscura, responsanbile dell’espansione dell’universo, sappiamo ancora molto poco.

Detto questo, la comprensione di questi contributi e’ una sfida tutt’ora aperta ed estremamente interessante per la ricerca scientifica.

Di questi argomenti, abbiamo parlato in dettaglio in questo post:

La materia oscura

Perche’ torno nuovamente su questo argomento? Solo un paio di giorni fa, e’ stata fatta una conferenza al CERN di Ginevra nella quale sono stati presentati i dati preliminari dell’esperimento AMS-02. I dati di questo rivelatore, realizzato con un’ampia collaborazione italiana, sono veramente eccezionali e potrebbero dare una spinta in avanti molto importante nella comprensione della materia oscura.

Andiamo con ordine.

Cosa sarebbe AMS-02?

AMS installato sulla Stazione Spaziale

AMS installato sulla Stazione Spaziale

AMS sta per Alpha Magnetic Spectrometer, ed e’ un rivelatore installato sulla Stazione Spaziale Internazionale. Compito di AMS-02 e’ quello di rivelare con estrema precisione le particelle dei raggi cosmici per cercare di distinguere prima di tutto la natura delle particelle ma anche per mettere in relazione queste ultime con la materia ordinaria, la materia oscura, la materia strana, ecc.

In particolare, lo spettrometro di AMS e’ estremamente preciso nel distinguere particelle di materia da quelle di antimateria e soprattutto elettroni da positroni, cioe’ elettroni dalle rispettive antiparticelle.

Vi ricordo che di modello standard, di antimateria e di materia strana abbiamo parlato in dettaglio in questi post:

Piccolo approfondimento sulla materia strana

Due parole sull’antimateria

Antimateria sulla notra testa!

Bosone di Higgs … ma che sarebbe?

Bene, fin qui tutto chiaro. Ora, cosa hanno di particolarmente speciale i dati di AMS-02?

Numero di positroni misurato da AMS verso energia

Numero di positroni misurato da AMS verso energia

Utilizzando i dati raccolti nei primi 18 mesi di vita, si e’ evidenziato un eccesso di positroni ad alta energia. Detto in parole semplici, dai modelli per la materia ordinaria, il numero di queste particelle dovrebbe diminuire all’aumentare della loro energia. Al contrario, come vedete nel grafico riportato, dai dati di AMS-02 il numero di positroni aumenta ad alta energia fino a raggiungere una livello costante.

Cosa significa questo? Perche’ e’  cosi’ importante?

Come detto, dai modelli della fisica ci si aspettarebbe che il numero di positroni diminuisse, invece si trova un aumento all’aumentare dell’energia. Poiche’ i modelli ordinari sono corretti, significa che ci deve essere qualche ulteriore sorgente di positroni che ne aumenta il numero rivelato da AMS-02.

Quali potrebbero essere queste sorgenti non considerate?

La prima ipotesi e’ che ci sia una qualche pulsar relativamente in prossimita’. Questi corpi possono emettere antiparticelle “sballando” di fatto il conteggio del rivelatore. Questa ipotesi sembrerebbe pero’ non veritiera dal momento che l’aumento di positroni e’ stato rivelato in qualsiasi direzione. Cerchiamo di capire meglio. Se ci fosse una pulsar che produce positroni, allora dovremmo avere delle direzioni spaziali in cui si vede l’aumento (quando puntiamo il rivelatore in direzione della pulsar) ed altre in cui invece, seguendo i modelli tradizionali, il numero diminuisce all’aumentare dell’energia. Come detto, l’aumento del numero di positroni si osserva in tutte le direzioni dello spazio.

Quale potrebbe essere allora la spiegazione?

Come potete immaginare, una delle ipotesi piu’ gettonate e’ quella della materia oscura. Come anticipato, esistono diverse ipotesi circa la natua di questa materia. Tra queste, alcune teorie vorrebbero la materia oscura come composta da particelle debolmente interagenti tra loro e con la materia ordinaria ma dotate di una massa. In questo scenario, particelle di materia oscura potrebbero interagire tra loro producendo nello scontro materia ordinaria, anche sotto forma di antimateria, dunque di positroni.

In questo scenario, i positroni in eccesso rivelati da AMS-02 sarebbero proprio prodotti dell’annichilazione, per dirlo in termini fisici, di materia oscura. Capite dunque che questi dati e la loro comprensione potrebbero farci comprendere maggiormente la vera natura della materia oscura e fissare i paletti su un ulteriore 20% della materia che costituisce il nostro universo.

Dal momento che la materia oscura permea tutto l’universo, questa ipotesi sarebbe anche compatibile con l’aumento dei positroni in tutte le direzioni.

Ora, come anticipato, siamo di fronte ai dati dei primi 18 mesi di missione. Ovviamente, sara’ necessario acquisire ancora molti altri dati per disporre di un campione maggiore e fare tutte le analisi necessarie per meglio comprendere questa evidenza. In particolare, i precisi rivelatori di AMS-02 consentiranno di identificare o meno una sorgente localizzata per i positroni in eccesso, confermando o escludendo la presenza di pulsar a discapito dell’ipotesi materia oscura.

Per completezza, spendiamo ancora qualche parola su questo tipo di ricerca e sull’importanza di questi risultati.

Come detto in precedenza, per poter confermare le ipotesi fatte, sara’ necessario prendere ancora molti dati. Ad oggi, AMS-02 potra’ raccogliere dati ancora per almeno 10 anni. Come anticipato, questo strumento e’ installato sulla Stazione Spaziale Internazionale. Questa scelta, piuttosto che quella di metterlo in orbita su un satellite dedicato, nasce proprio dall’idea di raccogliere dati per lungo tempo. La potenza richiesta per far funzionare AMS-02 consentirebbe un funzionamento di soli 3 anni su un satellite, mentre sulla ISS il periodo di raccolta dati puo’ arrivare anche a 10-15 anni.

AMS-02 e’ stato lanciato nel 2010 sullo Shuttle dopo diversi anni di conferme e ripensamenti, principalmente dovuti agli alti costi del progetto e alla politica degli Stati Uniti per le missioni spaziali.

Perche’ si chiama AMS-02? Il 02 indica semplicemente che prima c’e’ stato un AMS-01. In questo caso, si e’ trattato di una versione semplificata del rivelatore che ha volato nello spazio a bordo dello shuttle Discovery. Questo breve viaggio ha consentito prima di tutto di capire la funzionalita’ del rivelatore nello spazio e di dare poi la conferma definitiva, almeno dal punto di vista scientifico, alla missione.

Confronto tra AMS e missioni precedenti

Confronto tra AMS e missioni precedenti

Il risultato mostrato da AMS-02 in realta’ conferma quello ottenuto anche da altre due importanti missioni nello spazio, PAMELA e FERMI. Anche in questi casi venne rivelato un eccesso di positroni nei raggi cosmici ma la minore precisione degli strumenti non consenti’ di affermare con sicurezza l’aumento a discapito di fluttuazioni statistiche dei dati. Nel grafico a lato, vedete il confronto tra i dati di AMS e quelli degli esperimento precedenti. Come vedete, le bande di errore, cioe’ l’incertezza sui punti misurati, e’ molto maggiore negli esperimenti precedenti. Detto in termini semplici, AMS-02 e’ in grado di affermare con sicurezza che c’e’ un eccesso di positroni, mentre negli altri casi l’effetto poteva essere dovuto ad incertezze sperimentali.

Concludendo, i risultati di AMS-02 sono davvero eccezionali e mostrano, con estrema precisione, un aumento di positroni ad alta energia rispetto ai modelli teorici attesi. Alla luce di quanto detto, questo eccesso potrebbe essere dovuto all’annichilazione di particelle di materia oscura nel nostro universo. Questi risultati potebbero dunque portare un balzo in avanti nella comprensione del nostro universo e sulla sua composizione. Non resta che attendere nuovi dati e vedere quali conferme e novita’ potra’ mostrare questo potente rivelatore costruito con ampio contributo italiano.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Bosone di Higgs … ma che sarebbe?

25 Mar

In tanti mi avete chiesto informazioni circa la scoperta del bosone di Higgs. Come sapete bene, negli ultimi mesi, molto si e’ parlato di questa probabile scoperta, dando ampio spazio su giornali e telegiornali al CERN, all’acceleratore LHC e agli esperimenti principali, Atlas e CMS, che hanno lavorato alla ricerca di questa particella.

La scoperta, ripeto probabile come vedremo in seguito, del bosone di Higgs e’ stata fondamentale per la fisica e per la nostra conoscenza della materia e, lasciatemelo dire, mi ha riempito di gioia avendo lavorato per circa quattro anni alla costruzione proprio dell’esperimento Atlas.

Quello che pero’ molti mi chiedono e’: si parla tanto di questo bosone di Higgs, tutti ne parlano dicendo che e’ “quello che spiega la massa delle particelle”, ma, in soldoni, di cosa si tratta? Perche’ spiegherebbe la massa delle particelle?

Purtroppo le domande sono ben poste, dal momento che spesso, girando per la rete, non si trovano risposte semplicissime a questi quesiti. Cerchiamo dunque, per quanto possibile, di rispondere a queste domande, mantenendo sempre un profilo divulgativo e accessibile a tutti.

Detto nel linguaggio della fisica, la spiegazione sarebbe piu’ o meno questa:

L’universo e’ permeato da un campo a spin zero, detto campo di Higgs, doppietto in SU(2) e con ipercarica U(1), ma privo di colore. I bosoni di gauge e i fermioni interagiscono con questo campo acquisendo massa.

Chiaro? Ovviamente no.

Cerchiamo di capirci qualcosa di piu’.

In questi post:

Piccolo approfondimento sulla materia strana

Due parole sull’antimateria

Abbiamo parlato del “Modello Standard” delle particelle. Come visto, la materia ordinaria, anche se apparentemente sembrerebbe molto variegata, e’ in realta’ composta di pochi ingredienti fondamentali: i quark, i leptoni e i bosoni messaggeri. Niente di difficile, andiamo con ordine.

Le particelle del Modello Standard

Le particelle del Modello Standard

Protoni e neutroni, ad esempio, non sono particelle fondamentali, ma sono composti da 3 quark. Tra i leptoni, sicuramente il piu’ conosciuto e’ l’elettrone, quello che orbita intorno ai nuclei per formare gli atomi. E i bosoni messaggeri? In fisica esistono delle interazioni, chiamiamole anche forze, che sono: la forza gravitazionale, la forza elettromagnetica, la forza forte e la forza debole. La forza forte, ad esempio, che viene scambiata mediante gluoni, e’ quella che tiene insieme i quark nelle particelle. Il fotone invece e’ quello che trasporta la forza elettromagnetica, responsabile, in ultima analisi, delle interazioni chimiche e delle forze meccaniche che osserviamo tutti i giorni.

Bene, fin qui sembra tutto semplice. L’insieme di queste particelle forma il Modello Standard. Ci sono gli ingredienti per formare tutte le particelle ordinarie e ci sono i bosoni messaggeri che ci permettono di capire le forze che avvengono. Dunque? Con il Modello Standard abbiamo capito tutto? Assolutamente no.

Il Modello Standard funziona molto bene, ma presenta un problema molto importante. Nella trattazione vista, non e’ possibile inserire la massa delle particelle. Se non c’e’ la massa, non c’e’ peso. Se un pezzo di ferro e’ composto di atomi di ferro e se gli atomi di ferro sono fatti di elettroni, protoni e neutroni, le particelle “devono” avere massa.

Dunque? Basta inserire la massa nel modello standard. Facile a dirsi ma non a farsi. Se aggiungiamo a mano la massa nelle equazioni del modello standard, le equazioni non funzionano piu’. I fisici amano dire che l’invarianza di Gauge non e’ rispettata, ma e’ solo un modo complicato per spiegare che le equazioni non funzionano piu’.

Se non possiamo inserire la massa, e noi sappiamo che la massa c’e’ perche’ la testiamo tutti i giorni, il modello standard non puo’ essere utilizzato.

A risolvere il problema ci ha pensato Peter Higgs negli anni ’60. Ora la spiegazione di Higgs e’ quella che ho riportato sopra, ma cerchiamo di capirla in modo semplice. Supponiamo che effettivamente le particelle non abbiano massa. Hanno carica elettrica, spin, momento angolare, ma non hanno massa intrinseca. L’universo e’ pero’ permeato da un campo, vedetelo come una sorta di gelatina, che e’ ovunque. Quando le particelle passano attraverso questa gelatina, vengono frenate, ognuna in modo diverso. Proprio questo frenamento sarebbe responsabile della massa che le particelle acquisiscono.

Tradotto in equazioni, questo ragionamento, noto come “meccanismo di Higgs”, funzionerebbe benissimo e il modello standard sarebbe salvo. Perche’ dico funzionerebbe? Come facciamo a dimostrare che esiste il campo di Higgs?

Il campo di Higgs, se esiste, deve possedere un quanto, cioe’ un nuovo bosone la cui esistenza non era predetta nel modello standard, detto appunto “bosone di Higgs”. Detto proprio in termini semplici, riprendendo l’esempio del campo di Higgs come la gelatina di frenamento, questa gelatina ogni tanto si dovrebbe aggrumare formando una nuova particella, appunto il bosone di Higgs.

Dunque, se esiste il bosone di Higgs, allora esite il campo di Higgs e dunque possiamo spiegare la massa delle particelle.

Capite dunque l’importanza della ricerca di questa particella. La sua scoperta significherebbe un notevole passo avanti nella comprensione dell’infinitamente piccolo, cioe’ dei meccanismi che regolano l’esistenza e la combinazione di quei mattoncini fondamentali che formano la materia che conosciamo.

Oltre a questi punti, il bosone di Higgs e’ stato messo in relazione anche con la materia oscura di cui abbiamo parlato in questo post:

La materia oscura

In questo caso, la scoperta e lo studio di questa particella potrebbe portare notevoli passi avanti ad esempio nello studio delle WIMP, come visto uno dei candidati della materia oscura.

Dunque? Cosa e’ successo al CERN? E’ stato trovato o no questo bosone di Higgs?

In realta’ si e no. Nella prima conferenza stampa del CERN si parlava di evidenza di una particella che poteva essere il bosone di Higgs. In questo caso, le affermazioni non sono dovute al voler essere cauti dei fisici, semplicemente, l’evidenza statistica della particella non era ancora sufficiente per parlare di scoperta.

L’ultimo annuncio, solo di pochi giorni fa, ha invece confermato che si trattava proprio di “un” bosone di Higgs. Perche’ dico “un” bosone? In realta’, potrebbero esistere diverse tipologie di bosoni di Higgs. Ad oggi, quello trovato e’ sicuramente uno di questi, ma non sappiamo ancora se e’ proprio quello di cui stiamo parlando per il modello standard.

Anche se tutte le indicazioni fanno pensare di aver fatto centro, ci vorranno ancora diversi anni di presa dati per avere tutte le conferme e magari anche per evidenziare l’esistenza di altri bosoni di Higgs. Sicuramente, la scoperta di questa particella apre nuovi orizzonti nel campo della fisica delle particelle e prepara il campo per una nuova ricchissima stagione di misure e di scoperte.

Onde evitare commenti del tipo: “serviva spendere tutti questi soldi per una particella?”, vi segnalo due post molto interessanti proprio per rispondere a queste, lasciatemi dire lecite, domande:

Perche’ la ricerca: scienza e tecnologia

Perche’ la ricerca: economia

In realta’, LHC ed i suoi esperimenti, oltre a portare tantissime innovazioni tecnologiche che non possiamo ancora immaginare, sono state un importante volano per l’economia dei paesi europei. Investendo nel CERN, l’Italia, e soprattutto le nostre aziende, hanno avuto un ritorno economico molto elevato e sicuramente superiore a quanto investito.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

World Economic Forum: gli alieni sono tra di noi

27 Gen

Ci risiamo. Capisco il voler cercare le notizia sempre e comunque, anche a costo di invertarla, ma ad un certo punto si arriva anche ad un limite di separazione tra cio’ che e’ legale e quello che costituisce reato.

Perche’ dico questo?

Abbiamo dedicato alcuni post alla questione aliena ed in particolare a dichiarazioni, piu’ o meno felici e piu’ o meno allegre, fatte da personaggi pubblici del mondo della politica:

21 Dicembre: fenomeno italiano?

Il 21/12 in Australia

Se lo dice Borghezio …

Gli UFO sbarcano anche al parlamento italiano

In particolare, molto interesse avevano riscosso le dichiarazioni fatte dal presidente russo Medvedev durante un fuori onda:

Russia, Medvedev tranquillizza i suoi!

Come visto nell’articolo, ma soprattutto nel video allegato, si tratta di dichiarazioni fatte in modo del tutto allegro, chiamando in causa il film “Men in Black” e i presunti dossier top secret conservati nella valigetta del presidente in carica insieme ai codici di lancio delle testate nucleari.

Dunque? Perche’ torniamo sulla questione?

Il logo del World Economic Forum

Negli ultimi giorni, sul web sono apparsi tantissimi articoli a caratteri cubitali, secondo i quali, in concomitanza con il “World Economic Forum”, proprio Medvedev sarebbe intenzionato a dichiarare al mondo intero l’esistenza degli alieni e dare la conferma ufficiale che forme di vita extraterrestre sarebbero gia’ mescolate con la popolazione umana. Addirittura, in questi articoli, si parla di un documento russo inviato al presidente Obama, in cui Medvedev minaccia il suo omologo americano che “se gli Stati Uniti non vorranno rendere pubbliche queste informazioni, allora ci pensera’ il Cremlino da solo”.

Cerchiamo di analizzare i fatti e capire da dove nascono, sempre che siano reali, notizie di questo tipo.

Piccola premessa, il gia’ menzionato “World Economic Forum” si e’ concluso poche ore fa, e nessuna dichiarazione di questo tipo e’ stata fatta. Questo solo per chiarire subito il contesto.

Da dove nascono dunque le affermazioni di cui stiamo parlando?

Prima di tutto, e’ necessario aprire una parentesi e capire meglio cos’e’ il World Economic Forum. Si tratta di un’associazione senza fini di lucro con sede a Ginevra. Ogni anno il forum organizza un incontro a Davos in cui vengono invitati i dirigenti politici ed economici di tutto il mondo, insieme anche ad esperti del settore e giornalisti selezionati. Scopo dell’incontro e’ quello di discutere le questioni piu’ urgenti che il mondo dovra’ affrontare, sia dal punto di vista economico che sociale, ambientale e di sicurezza. Al termine degli incontri, vengono prodotti diversi report delle riunioni che vengono poi resi pubblici su internet e liberamente consultabili da tutti.

Medvedev al WFE forum 2013

Fin qui tutto chiaro. Qual’e’ allora la relazione tra Medvedev, Obama, gli alieni e il Forum Economico?

Semplice, sia Medvedev che Obama hanno preso parte al forum. Il primo pero’, si era reso autore del fuori onda che abbiamo gia’ discusso sugli alieni. Russia e Stati Uniti, sono da sempre viste come le super potenze del complotto e del top secret. Gia’ questi ingredienti dovrebbero essere sufficienti a far capire la linea guida. Ora, manca da aggiungere l’elemento fondamentale, cioe’ una particolare discussione inserita nel programma del World Economic Forum, e che ha fatto da miccia alla speculazione sul web.

Andando a consultare i report pubblici su internet, che trovate a questa pagina:

WEF Report 2013

Tra i tanti temi trattati, prendiamo quello sui “Rischi Globali del 2013”. Se ora aprite questo report, vedete una lunga lista di potenziali pericoli per il mondo che vanno dal rischio ambientale a quello economico. Sfogliando i titoli, trovate anche il paragrafo “X Factor” che a sua volta include: “Discovery of Alien Life”, cioe’ “Scoperta di vita aliena”:

X Factor nei rischi globali 2013

Per chi avesse difficolta’ a trovare la pagina, vi riporto anche il link diretto:

WEF, X Factor

Ecco l’elemento che mancava all’appello. Perche’ ad un forum economico, in cui partecipano tra gli altri i grandi della Terra, si discute di cose di questo tipo?

La risposta in realta’ e’ semplice e molto meno misteriosa di quanto si potrebbe pensare.

Come potete leggere, questo paragrafo “X Factor” viene scritto in collaborazione con la famosa rivista scientifica Nature. Se sfogliate i vari temi, trovate tutti argomenti molto noti e davvero molto attuali: geoingegneria, allungamento della vita, variazioni climatiche ed ovviamente scoperta di forme di vita aliene.

Come potete leggere, le recenti osservazioni fatte grazie alle missioni spaziali, hanno conesentito di scoprire ed identificare diversi pianeti lontani, molto simili alla Terra. Continuando questo andamento, tra qualche anno si potrebbe arrivare ad un segnale inconfutabile che uno di questi pianeti ospita forme di vita aliene intelligenti. Questo discorso deve anche essere ampliato, partendo dal presupposto che fino ad oggi siamo stati in grado di esplorare soltanto una piccolissima frazione del nostro universo. Visto l’enorme numero di pianeti simili alla Terra che potrebbero esserci, dobbiamo pensare che prima o poi potremmo avere la prova che uno di questi e’ abitato, cioe’ che esistono civilta’ aliene oltre a noi.

Cosa c’e’ di strano in questo discorso?

Personalmente, non credo ci sia nulla da discutere o su cui speculare. In fondo, quanto detto, rientra esattamente nel punto di vista che abbiamo gia’ discusso parlando di alieni, e, come detto, personalmente non mi sorprenderei se venissero trovate altre forme di vita nel nostro universo. Parlando da scienziato, o meglio da amante della statistica, mi meraviglierei del contrario, cioe’ se la razza umana fosse la sola nell’universo.

Proprio questo argomento di discussione ha scatenato il mare di fandonie che potete leggere su internet sul presunto intervento di Medvedev pronto a parlare al mondo intero, con o senza l’appoggio degli Stati Uniti. Ancora oggi, su internet, trovate diversi siti sicuri che questo annuncio ci sara’. Purtroppo, al solito l’ignoranza la fa da padrona in questo contesto, dimenticando che il Forum e’ gia’ finito. Come potete vedere dal sito riportato in precedenza, il tutto si e’ svolto tra il 23 e il 27 Gennaio, cioe’ si e’ concluso stamattina.

Proprio per concludere, vi segnalo anche un articolo del “Fatto quotidiano” scritto da Giulietto Chiesa che incontrando Gorbaciov ha chiesto, tra le altre cose, se fosse vero che la valigetta del presidente russo contiene documenti sugli UFO. Trovate la risposta alla fine dell’articolo:

Chiesa-Gorbaciov

 

 

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Perche’ la ricerca: economia

5 Gen

Nel post precedente:

Perche’ la ricerca: scienza e tecnologia

abbiamo cercato di rispondere alla domanda “perche’ fare ricerca?” discutendo il lato tecnologico e le possibili ricadute scientifiche nella vita di tutti i giorni. Come detto, stiamo cercando di rispondere a questa domanda non in senso generale, ma proprio contestualizzando la risposta in questi anni di profonda crisi economica o, comunque, investendo nella ricerca a discapito di settori considerati piu’ importanti o vitali per tutti i cittadini.

Dopo queste considerazioni piu’ tecniche, vorrei invece analizzare il discorso economico della ricerca. Come sappiamo, e come abbiamo visto nel precedente post, fare ricerca ad alti livelli implica investimenti molto massicci. Tolte le ricadute tecnologiche, cerchiamo invece di capire se sono investimenti a fondo perduto o se implicano un ritorno economico tangibile per le nazioni.

Come nel caso precedente, prendiamo come esempio tra grandi ricerche in settori diversi per cercare di quantificare in modo pratico, numeri alla mano. I soliti tre esempi sono: ITER, il reattore a fusione per scopi di ricerca, le missioni spaziali e il CERN, come esempio di grande laboratorio per la fisica delle particelle.

Partiamo da ITER e partiamo con una considerazione che ci deve far riflettere. ITER e’ una collaborazione internazionale in cui entrano gli Stati Uniti, il Giappone e alcuni paesi europei. Come detto, parliamo di un investimento dell’ordine di 10 miliardi di euro. Forse vi fara’ riflettere il fatto che Francia e Giappone hanno discusso per lungo tempo proprio per cercare di costruire il reattore nel proprio paese. Ovviamente averlo in casa offre dei vantaggi notevoli in termini di ricadute tecnologiche, ma sicuramente implica una maggiore spesa per il paese ospitante. Conoscendo la situazione economica attuale, se un paese cerca in tutti i modi di averlo in casa e dunque spendere di piu’, significa che qualcosa indietro deve avere.

Passiamo invece alle missioni spaziali. Altro tema scottante nel discorso economico e molte volte visto come una spesa enorme ma non necessaria in tempi di crisi. Partiamo, ad esempio, dal discorso occupazionale. Molte volte sentiamo dire dai nostri politicanti o dagli esperti di politica ecnomica che si devono fare investimenti per creare posti di lavoro. Vi faccio un esempio, al suo apice, il programma di esplorazione Apollo dava lavoro a circa 400000 persone. Non pensiamo solo agli scienziati. Un programma del genere crea occupazione per tutte le figure professionali che vanno dall’operaio fino al ricercatore, dall’addetto alle pulizie dei laboratori fino all’ingegnere. Ditemi voi se questo non significa creare posti di lavoro.

Passando invece all’esempio del CERN, sicuramente i numeri occupazionali sono piu’ piccoli, ma di certo non trascurabili. Al CERN ci sono circa 2500 persone che tutti i giorni lavorano all’interno del laboratorio. A questi numeri si devono poi sommare quelli dei paesi che partecipano agli esperimenti ma non sono stanziali a Ginevra. In questo caso, arriviamo facilmente ad una stima intorno alle 15000 unita’.

A questo punto pero’ sorge una domanda che molti di voi si staranno gia’ facendo. LHC, come esempio, e’ costato 6 miliardi di euro. E’ vero, abbiamo creato posti di lavoro, ma la spesa cosi’ elevata giustifica questi posti? Con questo intendo, se il ritorno fosse solo di numeri occupazionali, allora tanto valeva investire cifre minori in altri settori e magari creare piu’ posti di lavoro.

L’obiezione e’ corretta. Se il ritorno fosse solo questo, allora io stesso giudicherei l’investimento economico, non scientifico, fallimentare. Ovviamente c’e’ molto altro in termini finanziari.

Prima di tutto vi devo spiegare come funziona il CERN. Si tratta di un laboratorio internazionale, nel vero senso della parola. Il finanziamento del CERN viene dai paesi membri. Tra questi, dobbiamo distinguere tra finanziatori principali e membri semplici. Ovviamente i finanziatori principali, che poi sono i paesi che hanno dato il via alla realizzazione del CERN, sono venti, tra cui l’Italia, ma, ad esempio, alla costruzione di LHC hanno partecipato circa 50 paesi. Essere un finanziatore principale comporta ovviamente una spesa maggiore che viene pero’ calcolata anno per anno in base al PIL di ogni nazione.

Concentriamoci ovviamente sul caso Italia, ed in particolare sugli anni caldi della costruzione di LHC, quelli che vanno dal 2000 al 2006, in cui la spesa richiesta era maggiore.

Nel 2009, ad esempio, il contributo italiano e’ stato di 83 milioni di euro, inferiore, in termini percentuali, solo a Francia, Germania e Regno Unito.

Contributo italiano al CERN in milioni di euro. Fonte: S.Centro, Industrial Liasion Officer

Contributo italiano al CERN in milioni di euro. Fonte: S.Centro, Industrial Liaison Officer

Il maggiore ritorno economico per i paesi e’ ovviamente in termini di commesse per le industrie. Che significa questo? Servono 100 magneti, chi li costruisce? Ovviamente le industrie dei paesi membri che partecipano ad una gara pubblica. Il ritorno economico comincia dunque a delinearsi. Investire nel CERN implica un ritorno economico per le industrie del paese che dunque assumeranno personale per costruire questi magneti. Stiamo dunque facendo girare l’economia e stiamo creando ulteriori posti di lavoro in modo indiretto.

Apriamo una parentesi sull’assegnazione delle commesse. Ovviamente si tratta di gare pubbliche di appalto. Come viene decretato il vincitore? Ogni anno, il CERN calcola un cosiddetto “coefficiente di giusto ritorno”, e’ un parametro calcolato come il rapporto tra il ritorno in termini di commesse per le industrie e il finanziamento offerto alla ricerca. Facciamo un esempio, voi investite 100 per finanziare la costruzione di LHC, le vostre industrie ottengono 100 di commesse dal CERN, il coefficiente di ritorno vale 1.

Ogni anno, in base al profilo di spesa, ci saranno coefficienti diversi per ciascun paese. Si parla di paesi bilanciati e non bilanciati a seconda che il loro coefficiente sia maggiore o minore del giusto ritorno. In una gara per una commessa, se l’industria di un paese non bilanciato arriva seconda dietro una di un paese gia’ bilanciato, e lo scarto tra le offerte e’ inferiore al 20%, allora l’industria del paese non bilanciato puo’ aggiudicarsi la gara allineandosi con l’offerta del vincitore. In questo modo, viene ripartito equamente, secondo coefficienti matematici, il ritorno per ciascun paese.

Cosa possiamo dire sull’Italia? Negli anni della costruzione di LHC, LItalia ha sempre avuto un coefficiente molto superiore al giusto ritorno. Per dare qualche numero, tra il 1995 e il 2008, il nostro paese si e’ aggiudicato commesse per le nostre aziende per un importo di 337 milioni di euro.

Vi mostro un altro grafico interessante, sempre preso dal rapporto del prof. S.Centro dell'”Industrial Liaison Officer for Italian industry at CERN”:

Commesse e coefficiente di ritorno per l'Italia. Fonte: S.Centro, Industrial Liaison Officer

Commesse e coefficiente di ritorno per l’Italia. Fonte: S.Centro, Industrial Liaison Officer

A sinistra vedete gli importi delle commesse per gli anni in esame per il nostro Paese, sempre in milioni di euro, mentre a destra troviamo il coefficiente di ritorno per l’Italia calcolato in base all’investimento fatto. Tenete conto che in quesgli anni, la media del giusto ritorno calcolato dal CERN era di 0.97.

Guardando i numeri, non possiamo certo lamentarci o dire che ci abbiano trattato male. La conclusione di questo ragionamento e’ dunque che un investimento nella ricerca scientifica di qualita’, permette un ritorno economico con un indotto non indifferente per le aziende del paese. Ogni giorno sentiamo parlare di rilancio delle industrie, di creazione di posti di lavoro, di rimessa in moto dell’economia, mi sembra che LHC sia stato un ottimo volano per tutti questi aspetti.

Ultima considerazione scientifico-industriale. Le innovazioni apportate facendo ricerca scientifica, non muoiono dopo la realizzazione degli esperimenti. Soluzioni tecnologiche e migliorie entrano poi nel bagaglio industriale delle aziende che le utilizzano per i loro prodotti di punta. Molte aziende vengono create come spin-off di laboratori, finanziate in grossa parte dalla ricerca e poi divengono delle realta’ industriali di prim’ordine. L’innovazione inoltra porta brevetti che a loro volta creano un ritorno economico futuro non quantificabile inizialmente.

Concludendo, anche dal punto di vista economico, fare ricerca non significa fare finanziamenti a fondo perduto o fallimentari. Questo sicuramente comporta un ritorno economico tangibile immediato. Inoltre, il ritorno in termini tecnologici e di innovazione non e’ quantificabile. Fare ricerca in un determinato campo puo’ portare, immediatamente o a distanza di anni, soluzioni che poi diventeranno di uso comune o che miglioreranno settori anche vitali per tutti.

Vi lascio con una considerazione. Non per portare acqua al mulino della ricerca, ma vorrei farvi riflettere su una cosa. In questi anni di crisi, molti paesi anche europei, ma non l’Italia, hanno aumentato i fondi dati alla ricerca scientifica. A fronte di quanto visto, forse non e’ proprio uno sperpero di soldi.

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Perche’ la ricerca: scienza e tecnologia

4 Gen

Molte volte, parlando di scienza e di ricerca scientifica, mi viene fatta una domanda apparentemente banale, ma che in realta’ nasconde un vero e proprio mondo: Perche’ fare ricerca?

Ovviamente in questo caso non parlo del senso letterale della domanda. E’ noto a tutti che la ricerca scientifica ci permette di aumentare la nostra conoscenza del mondo, dei meccanimi della natura e ci consente di dare un piccolo contributo al dilemma: da dove veniamo e dove andiamo?

In questo post e nel successivo, vorrei cercare di parlare proprio del senso piu’ pratico di questa domanda. Al giorno d’oggi, con la crisi che imperversa, molti si chiedono che senso abbia “sperperare” soldi nella ricerca scientifica invece di utilizzarli per fini piu’ pratici e tangibili per la societa’.

In questo primo post vorrei parlare delle motivazioni scientifiche e tenologiche della ricerca scientifica, mentre nel prossimo post mi vorrei concentrare sugli aspetti piu’ prettamente economici.

Premesso questo, cerchiamo di capire quali sono le implicazioni e le migliorie scientifiche apportate dall’attivita’ di ricerca.

Molti di voi sapranno gia’ che diverse tecniche di diagnostica medica, come la radiografia, la TAC, la PET, provengono e sono state pensate nell’ambito della ricerca scientifica ed in particolare per la costruzione di rivelatori per le particelle. Questi sono discorsi abbastanza noti e per principio non vi faro’ la solita storiella con date e introduzione negli ospedali di queste tecniche.

Parliamo invece di cose meno note, ma forse ben piu’ importanti.

A costo di sembrare banale, vorrei proprio iniziare da LHC al CERN di Ginevra e dalla ricerca nella fisica delle alte energie. In questo caso, stiamo parlando del piu’ grande acceleratore in questo settore e ovviamente anche del piu’ costoso. Con i suoi 6 miliardi di euro, solo per l’acceleratore senza conteggiare gli esperimenti, parliamo di cifre che farebbero saltare sulla sedia molti non addetti ai lavori.

Che vantaggi abbiamo ottenuto a fronte di una spesa cosi grande?

Next: il primo server WWW del CERN

Next: il primo server WWW del CERN

Partiamo dalle cose conosciute. Solo per darvi un esempio, il “world wide web” e’ nato proprio al CERN di Ginevra, dove e’ stato sviluppato per creare un modo semplice e veloce per lo scambio di dati tra gli scienziati. Ad essere sinceri, un prototipo del WWW era gia’ stato sviluppato per ambiti militari, ma l’ottimizzazione e la resa “civile” di questo mezzo si deve a due ricercartori proprio del CERN:

CERN, were the web was born

Restando sempre in ambito tecnlogico, anche l’introduzione del touchscreen e’ stata sviluppata al CERN e sempre nell’ambito della preparazione di rivelatori di particelle. A distanza di quasi 20 anni, questi sistemi sono ormai di uso collettivo e vengono utilizzati in molti degli elettrodomestici e dei gadget a cui siamo abituati.

Uno dei primi sistemi touch introdotti al CERN

Uno dei primi sistemi touch introdotti al CERN

Pensandoci bene, tutto questo e’ normale. Rendiamoci conto che costruire un acceleratore o un esperimento sempre piu’ preciso, impone delle sfide tecnologiche senza precedenti. Laser, sistemi di controllo ad alta frequenza, magneti, rivelatori sono solo alcuni esempi dei sistemi che ogni volta e’ necessario migliorare e studiare per poter costruire una nuova macchina acceleratrice.

Anche in ambito informatico, la ricerca in fisica delle alte energie impone dei miglioramenti che rappresentano delle vere e proprie sfide tecnologiche. Un esperimento di questo tipo, produce un’enorme quantita’ di dati che devono essere processati e analizzati in tempi brevissimi. Sotto questo punto di vista, la tecnologia di connessione ad altissima velocita’, le realizzazione di sistemi di contenimento dei dati sempre piu’ capienti e lo sviluppo di macchine in grado di fare sempre piu’ operazioni contemporaneamente, sono solo alcuni degli aspetti su cui la ricerca scientifica per prima si trova a lavorare.

Saltando i discorsi della diagnostica per immagini di cui tutti parlano, molte delle soluzioni per la cura di tumori vengono proprio dai settori della fisica delle alte energia. Basta pensare alle nuove cure adroterapiche in cui vengono utilizzati fasci di particelle accelerati in piccoli sistemi per colpire e distruggere tumori senza intaccare tessuti sani. Secondo voi, dove sono nate queste tecniche? Negli acceleratori vengono accelerate particelle sempre piu’ velocemente pensando sistemi sempre piu’ tecnologici. La ricerca in questi settori e’ l’unico campo che puo’ permettere di sviluppare sistemi via via piu’ precisi e che possono consentire di colpire agglomerati di cellule tumorali di dimensioni sempre minori.

Detto questo, vorrei cambiare settore per non rimanere solo nel campo della fisica delle alte energie.

In Francia si sta per realizzare il primo reattore a fusione per scopi di ricerca scientifica. Questo progetto, chiamato ITER, e’ ovviamente una collaborazione internazionale che si prefigge di studiare la possibile realizzazione di centrali necleari a fusione in luogo di quelle a fissione. Parlare di centrali nucleari e’ un discorso sempre molto delicato. Non voglio parlare in questa sede di pericolosita’ o meno di centrali nucleari, ma il passaggio della fissione alla fusione permetterebbe di eliminare molti degli svantaggi delle normali centrali: scorie, fusione totale, ecc. Capite dunque che un investimento di questo tipo, parliamo anche in questo caso di 10 miliardi di euro investiti, potrebbe portare un’innovazione nel campo della produzione energetica senza eguali. Se non investiamo in queste ricerche, non potremmo mai sperare di cambiare i metodi di produzione dell’energia, bene primario nella nostra attuale societa’.

La sonda Curiosity della NASA

La sonda Curiosity della NASA

Passando da un discorso all’altro, in realta’ solo per cercare di fare un quadro variegato della situazione, pensiamo ad un altro settore sempre molto discusso, quello delle missioni spaziali. Se c’e’ la crisi, che senso ha mandare Curiosity su Marte? Perche’ continuiamo ad esplorare l’universo?

Anche in questo caso, saltero’ le cose ovvie cioe’ il fatto che questo genere di missioni ci consente di capire come il nostro universo e’ nato e come si e’ sviluppato, ma parlero’ di innovazione tecnologica. Una missione spaziale richiede l’utilizzo di sistemi elettronici che operano in ambienti molto difficili e su cui, una volta in orbita, non potete certo pensare di mettere mano in caso di guasto. L’affidabilita’ di molte soluzioni tecnologiche attuali, viene proprio da studi condotti per le missioni spaziali. Esperimenti di questo tipo comportano ovviamente la ricerca di soluzioni sempre piu’ avanzate, ad esempio, per i sistemi di alimentazione. L’introduzione di batterie a lunghissima durata viene proprio da studi condotti dalle agenzie spaziali per le proprie missioni. Anche la tecnologia di trasmissione di dati a distanza, ha visto un salto senza precedenti proprio grazie a questo tipo di ricerca. Pensate semplicemente al fatto che Curiosity ogni istante invia dati sulla Terra per essere analizzati. Se ci ragionate capite bene come queste missioni comportino lo sviluppo di sistemi di trasferimento dei dati sempre piu’ affidabili e precise per lunghissime distanze. Ovviamente tutti questi sviluppi hanno ricadute molto rapide nella vita di tutti i giorni ed in settori completamente diversi da quelli della ricerca scientifica.

Concludendo, spero di aver dato un quadro, che non sara’ mai completo e totale, di alcune delle innovazioni portate nella vita di tutti i giorni dalla ricerca scientifica. Come abbiamo visto, affrontare e risolvere sfide tecnologiche nuove e sempre piu’ impegnativa consente di trovare soluzioni che poi troveranno applicazione in campi completamente diversi e da cui tutti noi potremmo trarre beneficio.

Ovviamente, ci tengo a sottolineare che la conoscenza apportata dai diversi ambiti di ricerca non e’ assolutamente un bene quantificabile. Se vogliamo, questo potrebbe essere il discorso piu’ criticabile in tempi di crisi, ma assolutamente e’ la miglioria della nostra consapevolezza che ci offre uno stimolo sempre nuovo e crea sempre piu’ domande che risposte.

Post successivo sul discorso economico: Perche’ la ricerca: economia

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.