Tag Archives: annichilamento

I buchi neri che … evaporano

16 Ago

Uno degli aspetti che da sempre fa discutere e creare complottismi su LHC, e’ di sicuro la possibilita’ di creare mini buchi neri. Questa teoria nasce prendendo in considerazione le alte energie in gioco all’interno del collissore del CERN e la possibilita’ che nello scontro quark-quark possa venire a crearsi una singolarita’ simile a quella dei buchi neri.

Se avete perso i precedenti articoli, di LHC abbiamo parlato in questi post:

2012, fine del mondo e LHC

Bosone di Higgs … ma che sarebbe?

Sia ben chiaro, la storia dei buchi neri non e’ la sola creata su LHC. Il CERN ogni giorno riceve lettere che chiedono la chiusura dell’esperimento per il pericolo che questo rappresenta per l’intera terra. Diverse volte il CERN e’ anche stato chiamato in giudizio a fronte di vere e proprie denuncie di pseudo scienziati che lo accusavano farneticando teorie senza capo ne’ coda. Come potete immaginare, tutte le volte le accuse sono state rigettate e non solo LHC il prossimo anno ripartira’, ma a gia’ fornito risultati fisici di prim’ordine.

Perche’ si discute tanto di buchi neri? Qui ognuno puo’ formulare la propria ipotesi. Io ho una mia idea. Parlare di buchi neri, e’ qualcosa che da sempre stimola la curiosita’ e il timore delle persone. Un buco nero e’ visto come qualcosa di misterioso che vive nel nostro universo con caratteristiche uniche nel suo genere: mangia tutto cio’ che gli capita a tiro senza far uscire nulla. L’idea di poter avere un mostro del genere qui sulla terra, scatena gli animi piu’ catastrofisti pensando a qualcosa che nel giro di qualche minuto sarebbe in grado di divorare Ginevra, la Svizzera, il mondo intero.

Come anticipato, LHC e’ ora in stato di fermo. Si sta lavorando incessantemente per migliorare i rivelatori che vi operano al fine di ottenere risultati sempre piu’ accurati e affidabili. Alla ripartenza, avendo ormai preso piu’ confidenza con la macchina, si pensa anche di poter aumentare l’energia del centro di massa, cioe’ quella a disposizione per creare nuove particelle, portandola da 7 a 10 TeV. Come e’ ovvio, questa notizia non poteva che riaccendere gli animi catastrofisti. Al momento non si e’ creato nessun buco nero perche’ l’energia era troppo bassa, gli scienziati stanno giocando con il fuoco e porteranno alla distruzione della Terra. Queste sono le argomentazioni che cominciate a leggere in rete e che non potranno che riaumentare avvicinandoci al momento della ripartenza.

Se anche dovesse formarsi un mini buco nero, perche’ gli scienziati sono tanto sicuri che non accadra’ nulla? Come sapete, si parla di evaporazione dei buchi neri. Una “strana” teoria formulata dal fisico inglese Stephen Hawking ma che, almeno da quello che leggete, non e’ mai stata verificata, si tratta solo di un’idea e andrebbe anche in conflitto con la meccanica quantistica e la relativita’. Queste sono le argomentazioni che leggete. Trovate uno straccio di articolo a sostegno? Assolutamente no, ma, leggendo queste notizie, il cosiddetto uomo di strada, non addetto ai lavori, potrebbe lasciarsi convincere che stiamo accendendo una miccia, pensando che forse si spegnera’ da sola.

Date queste premesse, credo sia il caso di affrontare il discorso dell’evaporazione dei buchi neri. Purtroppo, si tratta di teorie abbastanza complicate e che richiedono molti concetti fisici. Cercheremo di mantenere un profilo divulgativo al massimo, spesso con esempi forzati e astrazioni. Cio’ nonostante, parleremo chiaramente dello stato dell’arte, senza nascondere nulla ma solo mostrando risultati accertati.

Cominciamo proprio dalle basi parlando di buchi neri. La domanda principale che viene fatta e’ la seguente: se un buco nero non lascia sfuggire nulla dal suo interno, ne’ particelle ne’ radiazione, come potrebbe evaporare, cioe’ emettere qualcosa verso l’esterno? Questa e’ un’ottima domanda, e per rispondere dobbiamo capire meglio come e’ fatto un buco nero.

Secondo la teoria della relativita’, un buco nero sarebbe un oggetto estremamente denso e dotato di una gravita’ molto elevata. Questa intensa forza di richiamo non permette a nulla, nemmeno alla luce, di sfuggire al buco nero. Essendo pero’ un oggetto molto denso e compatto, questa forza e’ estremamente concentrata e localizzata. Immaginatelo un po’ come un buco molto profondo creato nello spazio tempo, cioe’ una sorta di inghiottitoio. La linea di confine tra la singolarita’ e l’esterno e’ quello che viene definito l’orizzonte degli eventi. Per capire questo concetto, immaginate l’orizzonte degli eventi come una cascata molto ripida che si apre lungo un torrente. Un pesce potra’ scendere e risalire il fiume senza problemi finche’ e’ lontano dalla cascata. In prossimita’ del confine, cioe’ dell’orizzonte degli eventi, la forza che lo trascina giu’ e’ talmente forte che il pesce non potra’ piu’ risalire e verra’ inghiottito.

Bene, questo e’ piu’ o meno il perche’ dal buco nero non esce nulla, nemmeno la luce. Dunque? Come possiamo dire che il buco nero evapora in queste condizioni?

La teoria dell’evaporazione, si basa sulle proprieta’ del vuoto. Come visto in questo articolo:

Se il vuoto non e’ vuoto

nella fisica, quello che immaginiamo come vuoto, e’ un continuo manifestarsi di coppie virtuali particella-antiparticella che vivono un tempo brevissimo e poi si riannichilano scomparendo. Come visto nell’articolo, non stiamo parlando di idee campate in aria, ma di teorie fisiche dimostrabili. L’effetto Casimir, dimostrato sperimentalmente e analizzato nell’articolo citato, e’ uno degli esempi.

Ora, anche in prossimita’ del buco nero si creeranno coppie di particelle e questo e’ altresi’ possibile quasi in prossimita’ dell’orizzonte degli eventi. Bene, ragioniamo su questo caso specifico. Qualora venisse creata una coppia di particelle virtuali molto vicino alla singolarita’, e’ possibile che una delle due particelle venga assorbita perche’ troppo vicina all’orizzonte degli eventi. In questo caso, la singola particella rimasta diviene, grazie al principio di indeterminazione di Heisenberg, una particella reale. Cosa succede al buco nero? Nei testi divulgativi spesso leggete che il buco nero assorbe una particella con energia negativa e dunque diminuisce la sua. Cosa significa energia negativa? Dal vuoto vengono create due particelle. Per forza di cose queste avranno sottratto un po’ di energia dal vuoto che dunque rimarra’ in deficit. Se ora una delle due particelle virtuali e’ persa, l’altra non puo’ che rimanere come particella reale. E il deficit chi lo paga? Ovviamente il buco nero, che e’ l’unico soggetto in zona in grado di pagare il debito. In soldoni dunque, e’ come se il buco nero assorbisse una particella di energia negativa e quindi diminuisse la sua. Cosa succede alla particella, ormai reale, rimasta? Questa, trovandosi oltre l’orizzonte degli eventi puo’ sfuggire sotto forma di radiazione. Questo processo e’ quello che si definisce evaporazione del buco nero.

Cosa non torna in questo ragionamento?

Il problema principale e’, come si dice in fisica, che questo processo violerebbe l’unitarieta’. Per le basi della meccanica quantistica, un qualunque sistema in evoluzione conserva sempre l’informazione circa lo stato inziale. Cosa significa? In ogni stato e’ sempre contenuta l’indicazione tramite la quale e’ possibile determinare con certezza lo stato precedente. Nel caso dei buchi neri che evaporano, ci troviamo una radiazione termica povera di informazione, creata dal vuoto, e che quindi non porta informazione.

Proprio da questa assunzione nascono le teorie che potete leggere in giro circa il fatto che l’evaporazione non sarebbe in accordo con la meccanica quantistica. Queste argomentazioni, hanno fatto discutere anche i fisici per lungo tempo, cioe’ da quando Hawking ha proposto la teoria. Sia ben chiaro, la cosa non dovrebbe sorprendere. Parlando di buchi neri, stiamo ragionando su oggetti molto complicati e per i quali potrebbero valere  leggi modificate rispetto a quelle che conosciamo.

Nonostante questo, ad oggi, la soluzione al problema e’ stata almeno “indicata”. Nel campo della fisica, si racconta anche di una famosa scommessa tra Hawking e Preskill, un altro fisico teorico del Caltech. Hawking sosteneva che la sua teoria fosse giusta e che i buchi neri violassero l’unitarieta’, mentre Perskill era un fervido sostenitore della inviolabilita dei principi primi della meccanica quantistica.

La soluzione del rebus e’ stata indicata, anche se ancora non confermata, come vedremo in seguito, chiamando in causa le cosiddette teorie di nuova fisica. Come sapete, la teoria candidata a risolvere il problema della quantizzazione della gravita’ e’ quella delle stringhe, compatibile anche con quella delle brane. Secondo questi assunti, le particelle elementari non sarebbero puntiformi ma oggetti con un’estensione spaziale noti appunto come stringhe. In questo caso, il buco nero non sarebbe piu’ una singolarita’ puntiforme, ma avrebbe un’estensione interna molto piu’ complessa. Questa estensione permette pero’ all’informazione di uscire, facendo conservare l’unitarieta’. Detto in altri termini, togliendo la singolarita’, nel momento in cui il buco nero evapora, questo fornisce ancora un’indicazione sul suo stato precedente.

Lo studio dei buchi neri all’interno della teoria delle stringhe ha portato al cosiddetto principio olografico, secondo il quale la gravita’ sarebbe una manifestazione di una teoria quantistica che vive in un numero minore di dimensioni. Esattamente come avviene in un ologramma. Come sapete, guardando un ologramma, riuscite a percepire un oggetto tridimensionale ma che in realta’ e’ dato da un immagine a 2 sole dimensioni. Bene, la gravita’ funzionerebbe in questo modo: la vera forza e’ una teoria quantistica che vive in un numero ridotto di dimensioni, manifestabili, tra l’altro, all’interno del buco nero. All’esterno, con un numero di dimensioni maggiori, questa teoria ci apparirebbe come quella che chiamiamo gravita’. Il principio non e’ assolutamente campato in aria e permetterebbe anche di unificare agevolmente la gravita’ alle altre forze fondamentali, separate dopo il big bang man mano che l’universo si raffreddava.

Seguendo il ragionamento, capite bene il punto in cui siamo arrivati. Concepire i buchi neri in questo modo non violerebbe assolutamente nessun principio primo della fisica. Con un colpo solo si e’ riusciti a mettere insieme: la meccanica quantistica, la relativita’ generale, il principio di indeterminazione di Heisenberg, le proprieta’ del vuoto e la termodinamica studiando la radiazione termica ed estendendo il secondo principio ai buchi neri.

Attenzione, in tutta questa storia c’e’ un pero’. E’ vero, abbiamo messo insieme tante cose, ma ci stiamo affidando ad una radiazione che non abbiamo mai visto e alla teoria delle stringhe o delle brance che al momento non e’ confermata. Dunque? Quanto sostenuto dai catastrofisti e’ vero? Gli scienziati rischiano di distruggere il mondo basandosi su calcoli su pezzi di carta?

Assolutamente no.

Anche se non direttamente sui buchi neri, la radiazione di Hawking e’ stata osservata in laboratorio. Un gruppo di fisici italiani ha osservato una radiazione paragonabile a quella dell’evaporazione ricreando un orizzonte degli eventi analogo a quello dei buchi neri. Come visto fin qui, l’elemento fondamentale del gioco, non e’ il buco nero, bensi’ la curvatura della singolarita’ offerta dalla gravita’. Bene, per ricreare un orizzonte degli eventi, basta studiare le proprieta’ ottiche di alcuni materiali, in particolare il loro indice di rifrazione, cioe’ il parametro che determina il rallentamento della radiazione elettromagnetica quando questa attraversa un mezzo.

Nell’esperimento, si e’ utilizzato un potente fascio laser infrarosso, in grado di generare impulsi cortissimi, dell’ordine dei miliardesimi di metro, ma con intensita’ miliardi di volte maggiore della radiazione solare. Sparando questo fascio su pezzi di vetro, il punto in cui la radiazione colpisce il mezzo si comporta esattamente come l’orizzonte degli eventi del buco nero, creando una singolarita’ dalla quale la luce presente nell’intorno non riesce ad uscire. In laboratorio si e’ dunque osservata una radiazione con una lunghezza d’onda del tutto paragonabile con quella che ci si aspetterebbe dalla teoria di Hawking, tra 850 e 900 nm.

Dunque? Tutto confermato? Se proprio vogliamo essere pignoli, no. Come visto, nel caso del buco nero gioca un ruolo determinante la gravita’ generata dal corpo. In laboratorio invece, la singolarita’ e’ stata creata otticamente. Ovviamente, mancano ancora degli studi su questi punti, ma l’aver ottenuto una radiazione con la stessa lunghezza d’onda predetta dalla teoria di Hawking e in un punto in cui si genera un orizzonte degli eventi simile a quello del buco nero, non puo’ che farci sperare che la teoria sia giusta.

Concludendo, l’evaporazione dei buchi neri e’ una teoria molto complessa e che richiama concetti molto importanti della fisica. Come visto, le teorie di nuova fisica formulate in questi anni, hanno consentito di indicare la strada probabile per risolvere le iniziali incompatibilita’. Anche se in condizioni diverse, studi di laboratorio hanno dimostrato la probabile esistenza della radiazione di Hawking, risultati che confermerebbero l’esistenza della radiazione e dunque la possibilita’ dell’evaporazione. Ovviamente, siamo di fronte a teorie in parte non ancora dimostrate ma solo ipotizzate. I risultati ottenuti fino a questo punto, ci fanno capire pero’ che la strada indicata potrebbe essere giusta.

Vorrei chiudere con un pensiero. Se, a questo punto, ancora pensate che potrebbero essere tutte fantasie e che un buco nero si potrebbe creare e distruggere la Terra, vi faccio notare che qui parliamo di teorie scientifiche, con basi solide e dimostrate, e che stanno ottenendo le prime conferme da esperimenti diretti. Quando leggete le teorie catastrofiste in rete, su quali basi si fondano? Quali articoli vengono portati a sostegno? Ci sono esperimenti di laboratorio, anche preliminari ed in condizioni diverse, che potrebbero confermare quanto affermato dai catastrofisti?

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Antimateria sulla nostra testa!

17 Gen

Proprio oggi, su diversi siti catastrofisti e pseudoscientifici, e’ apparsa la notizia che il telescopio della NASA Fermi avrebbe individuato la produzione di antimateria durante i temporali. Stando a quanto si legge in rete, durante un temporale, i forti campi elettrici che si possono creare, sono in grado di trasformare l’aria in un plasma e produrre, grazie alle alte energie in gioco, antimateria sotto forma di positroni.

Ovviamente, non mancano ipotesi catastrofiste che richiamano la pericolosita’ dell’antimateria, oltre a puntare il dito contro questa sorgente posta solo a pochi kilometri dalle nostre teste. Su alcuni siti si ipotizza anche che potrebbe trattarsi di una modifica indotta del clima attraverso l’antimateria prodotta in questo modo. Se ci pensate, il collegamento e’ sempre il solito, l’uomo modifica il clima creando tempeste di fortissima intensita’, e mediante queste tempesta innesca la produzione dell’antimateria in atmosfera che sicuramente qualche effetto potrebbe darlo anche a noi che siamo subito sotto.

Inutile dirvi che in tutto questo discorso, che ripeto potete trovare su molti siti, si fa una gran confusione su argomenti scientifici ben noti e gia’ oggetto di studi da diversi anni.

Cerchiamo di capire meglio.

Prima di tutto, mi dispiace deludere tutti i fan di “Angeli e Demoni”, ma in questo fenomeno non viene prodotta antimateria, nel senso di antiatomi, ma solo antiparticelle, ed in particolare positroni, cioe’ anti-elettroni. Molto spesso, nell’immaginario colletivo, colpa anche dei tanti film fantascientifici, l’antimateria e’ vista come un qualcosa di molto pericoloso e che potrebbe addirittura essere usata per far scomparire la Terra. Di questi concetti abbiamo gia’ parlato in questi post:

Piccolo approfondimento sulla materia strana

Lotteria profetica 2012

Due parole sull’antimateria

Come sappiamo, le antiparticelle vengono prodotte tutti i giorni nei nostri laboratori di fisica delle alte energie. Molti degli acceleratori presenti nel mondo lavorano facendo scontrare fasci di particelle con fasci di antiparticelle. Se prima non eravate a conoscenza di questa produzione artificiale, non penso che ora possiate credere che produrre antiparticelle possa distruggere la Terra.

Premesso questo, torniamo alla scoperta fatta dal telescopio Fermi e cerchiamo di capire di cosa si tratta.

Durante un temporale, i forti campi elettrici che si generano possono accelerare gli elettroni presenti nell’atmosfera portandoli a velocita’ prossima a quella della luce. Durante il loro percorso, gli elettroni possono interagire con gli atomi dell’aria e perdere una parte della loro energia emettendo un fotone. Fin qui e’ semplice, la causa di tutto e’ l’elettrone che viene accelerato dal campo elettrico ed emette fotoni. Bene, questi fotoni, interagendo anche loro con i nuclei presenti in atmosfera, possono scomparire producendo una coppia elettrone-antielettrone. Questi effetti sono del tutto noti in fisica e non rappresentano assolutamente una novita’.

Rivediamo tutto il processo, elettrone dell’atmosfera, accelerato dal campo elettrico dovuto al temporale, produce un fotone. Il fotone decade formando una coppia elettrone-antielettrone. Su internet trovate una confusione enorme su questi processi in cascata. Spesso si confondono le particelle o i meccanismi descritti tirando fuori ipotesi completamente impossibili dal punto di vista fisico.

Dunque, abbiamo una coppia elettrone-antielettrone, quindi particelle e antiparticelle. Quello che e’ successo in Fermi, e da cui siamo partiti con la notizia iniziale, e’ che il telescopio ha osservato questi antielettroni, anche detti positroni, prodotti attraverso il meccanismo descritto. Per essere precisi, Fermi ha osservato l’annichilamento dei positroni nel telescopio.

Questo processo e’ ben descritto in questa rappresentazione che altro non e’ che una simulazione condotta proprio dalla NASA per comprendere il fenomeno alla base:

Produzione di un TGF. Fonte: NASA

Produzione di un TGF. Fonte: NASA

Ora, quello che in realta’ molti “dimenticano” di dire e’ che questo fenomeno non e’ stato osservato oggi da Fermi con grande stupore degli scienziati, ma e’ un processo che si conosceva e che anche questo telescopio aveva osservato a partire dal 2011.

Cerchiamo di capire meglio.

Questo genere di produzione di antielettroni avviene normalmente nello spazio in prossimita’ di buchi neri o di fenomeni di altissima energia cosmica. Nel 1994, qualche anno fa dunque, questo processo venne osservato per la prima volta nell’atmosfera terrestre, ad un’altezza tra 20 e 50Km, dalla NASA utilizzando il telescopio Compton. Il processo in atmosfera viene anche detto “Terrestrial Gamma Ray Flash”, TGF o TGRF.

Compton osservo ben 78 eventi di produzione di TGF nella nostra atmosfera durante tempeste tropicali.

Fermi ha gia’ osservato diversi TGF ed in piu’ ha scoperto che questi fenomeni possono avvenire anche a quote fino a 10Km. Dal momento che queste altezze comprendono i voli di linea, gia’ dal 2010 e’ stato formato un gruppo di ricerca congiunto tra INAF, ASI e ENAC, l’ente per la sicurezza in volo, per determinare gli eventuali rischi, sempre che sussistano, per i passeggeri dei voli di linea. Al momento, non e’ emersa nessuna pericolosita’ dei TGF.

Prima di chiudere, spendiamo due parole sul protagonista di questa notizia, cioe’ il telescopio Fermi.

Il telescopio e’ stato lanciato l’11 giugno 2008 e chiamato inizialmente GLAST, Telescopio Spaziale a Grande Area per Raggi gamma, e successivamente, il 26 Agosto 2008, ribattezzato Fermi Gamma Ray Space Telescope, in onore del nostro Enrico Fermi.

Raffigurazione del telescopio Fermi-GLAST in orbita

Raffigurazione del telescopio Fermi-GLAST in orbita

Questo telescopio ha la particolarita’ di essere dedicato all’osservazione dei raggi gamma, cioe’ ai fotoni di alta energia. L’osservazione di queste particelle e’ molto importante per l’identificazione di sorgenti gamma nella nostra galassia e fuori di questa, per lo studio dei cosiddetti Nuclei Galattici Attivi, per l’individuazione di Pulsar e resti di Supernove e per lo studio dei Gamma Ray burst, cioe’ l’emissione di raggi gamma da sorgenti energetiche, come descritto in precedenza.

Inoltre, lo studio dei fotoni nello spazio, puo’ aiutare nell’identificazione della materia oscura e per cercare di capire la natura di questa importante componente del nostro universo. Anche di materia oscura abbiamo parlato nei post riportati in precedenza dal momento che molto spesso anche questa viene chiamata in causa con assurdita’ scientifiche.

L’oosservazione dei TGF in Fermi e’ avvenuta proprio mentre il telescopio era interno a studiare l’universo lontano. I raggi gamma emessi da questo meccanismo raggiungono comunque i sensibili strumenti di Fermi che dunque e’ in grado di rivelarli con estrema precisione.

Concludendo, non c’e’ assolutamente nulla di allarmante nella scoperta della produzione di antiparticelle nell’atmosfera. Come visto, si tratta di un meccanismo ben compreso e che era gia’ conosciuto nella fisica. Per essere precisi, Fermi non ha assolutamente scoperto in questi giorni il fenomeno dei TGF, ma la loro prima osservazione risale al 1994 grazie al telescopio Compton. Fermi ha il pregio di poter studiare questi eventi con una risoluzione ed una precisione mai raggiunta prima ed inoltre, grazie proprio ai suoi strumenti, e’ stato possibile individuare questi fenomeni in strati piu’ bassi della nostra atmosfera, dove non si pensava potessero avvenire.

Anche in questo caso, l’informazione sulla rete presenta molti tratti catastrofisti del tutto ingiustificati, oltre ovviamente ad una sana componente di imprecisioni scientifiche a cui ormai dovremmo essere abituati.

 

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.