Tag Archives: percentuali

Il processo di decaffeinizzazione

8 Ago

Nella sezione:

Hai domande o dubbi?

una nostra cara lettrice ci chiede di parlare del “caffe’ decaffeinato”. Credo che questo argomento sia molto interessante perche’ molto spesso si sentono tantissime leggende su questa soluzione. Tutti noi, almeno una volta, avremo sentito dire: “fa bene”, “fa male”, “e’ cancerogeno”, “e’ buono”, “fa schifo”, ecc. Come al solito, tante opinioni in disaccordo tra loro. Cerchiamo dunque di capire meglio come viene realizzato questo caffe’, cioe’ quali sono le tecniche maggiormente utilizzate per la decaffeinizzazione e, soprattutto, che genere di risultato si ottiene.

Qualche tempo fa, avevamo gia’ parlato della cosiddetta “fisica del caffe'”, parlando del principio di funzionamento della moka, spesso ignorato da molti, anche tra gli addetti ai lavori:

La fisica del caffe’

A questo punto, non resta che parlare invece della materia prima necessaria!

Come sapete bene, la caffeina, il cui nome chimico e’ 1,3,7-trimetilxantina, fu isolata per la prima volta nel 1820 ed e’ contenuta in almeno 60 varieta’ di piante, tra cui, ovviamente, caffe’, the, guarana’, cacao, ecc. La caffeina e’ un potente stimolante ed interagisce sul nostro umore aumentando i livelli di dopamina e bloccando i recettori dell’adenosina. Per inciso, quando i livelli di quest’ultima raggiungono una certa soglia, avvertiamo la sensazione di sonno.

Queste caratteristiche sono purtroppo sia il pro che il contro della caffeina. L’assunzione di questa sostanza puo’ infatti avere effetti dannosi in persone ansiose, con problemi di sonnoloenza, tachicardia, ecc. Come anticipato, l’effetto della caffeina e’ tutt’altro che blando, a livello biologico, questa molecola e’ un vero e proprio veleno, che risulta letale sopra una certa soglia, ovviamente non raggiungibile assumendo tazzine di caffe’.

Ora pero’, molte persone, tra cui il sottoscritto, adorano il caffe’ anche solo per il suo sapore o per la ritualita’ dell’assunzione. Proprio per questo motivo, si sono affinate diverse tecniche per eliminare la caffeina dai chicchi di caffe’, ottenendo una bevanda non stimolante, appunto il caffe’ decaffeinato.

Il decaffeinato fu inventato a Brema nel 1905 dal tedesco Ludwig Roselius, figlio di un assaggiatore di caffè, per conto della azienda “Kaffee Handels Aktien Gesellschaft”. Proprio in onore del nome dell’azienda, questo tipo di caffe’ venne chiamato prendendo le iniziali e dunque commercializzato come Caffe’ HAG. Per ottenere questo risultato, i chicchi di caffe’ venivano cotti a vapore con una salamoia di acqua e benzene. Quest’ultimo era il solvente in grado di estrarre la caffeina dal chicco.

Successivamente, questo metodo venne abbandonato trovando soluzioni alternative da utilizzare prima della tostatura, cioe’ quando il fagiolo e’ ancora verde. La tecnica maggiormente utilizzata fino a pochi anni fa, era quella che prevedeva l’utilizzo di diclorometano per estrarre la caffeina. Successivamente a questo trattamento, il caffe’ veniva lavato a vapore per eliminare il diclorometano, che ha un punto di ebollizione di circa 40 gradi. A questo punto, si passava alla essiccatura e tostatura dei chicchi a 200 gradi.

Questo metodo presentava purtroppo alcuni problemi, che poi sono quelli che spingono ancora oggi le leggende di cui parlavamo all’inizio.

Il diclorometano e’ una sostanza cancerogena per l’essere umano. Come anticipato, successivamente al suo utilizzo, il caffe’ passava per altri due processi con temperature notevolmente superiori al punto di ebollizione del diclorometano. Questo trattamento assicurava la completa evaporazione del potenziale cancerogeno sui chicchi.

Perche’ allora e’ stata abbandonata la tecnica?

Il problema reale di questa tecnica di decaffeinizzazione e’ che durante il trattamento con diclorometano, oltre alla caffeina, venivano estratte altre sostanze chimiche dai chicchi che contribuiscono al sapore della bevanda finale. In tal senso, il decaffeinato ottenuto con questa soluzione, aveva un sapore molto diverso da quello originale. Inoltre, anche altre sostanze benefiche per l’organismo venivano estratte dal caffe’ mentre venivano prodotti oli contenenti molecole da alcuni ritenute dannose per l’uomo.

Detto questo, capite bene dove nascono le leggende da cui siamo partiti, circa il sapore del decaffeinato e la pericolosita’ del suo utilizzo.

Oggi, la tecnica con diclorometano e’ quasi completamente abbandonata a favore dell’utilizzo della CO2 supercritica. Con questo termine si intende solo una stato con pressioni e temperature tali da renderla una via di mezzo tra un gas e un fluido. Nel processo di decaffeinizzazione, i chicchi di caffe’ vengono prima inumiditi con vapore per rigonfiarli ed aumentare la percentuale di acqua. Questo sempre con fagioli verdi, cioe’ prima della tostatura. A questo punto, i chicchi passano in colonne di estrattori insieme alla CO2 ad una tempratura tra 40 e 80 gradi ed una pressione intorno alle 150 atmosfere. Questo passaggio permette all’anidride carbonica di portare via la caffeina, toccando in minima parte le altre sostanze contenute nel caffe’. A seguito di questo passaggio, si procede ovviamente alla tostatura.

Quali sono i vantaggi di questa tecnica rispetto alla precedente?

Prima di tutto, si utilizza solo CO2, cioe’ una sostanza non pericolosa per l’essere umano. Il processo consente di estrarre gran parte della caffeina contenuta nel caffe’. Per legge, un caffe’ decaffeinato non deve avere piu’ del 0,1% di caffeina. Non intaccando, se non in minima parte, le altre sostanze, il sapore del caffe’ rimane quasi invariato, e quindi e’ molto piu’ simile all’analogo con caffeina.

Oltre a questi aspetti, la CO2 in uscita dal processo e’ ovviamente ricca di caffeina. Questa sostanza e’ notevolmente utilizzata in diversi settori tra cui la medicina, la farmacologia, la botanica, ecc. Proprio per questo motivo, in virtu’ del processo utilizzato, e’ possibile estrarre caffeina pura dall’anidride carbonica mediante un abbassamento di temperatura o utilizzando carboni attivi.

Lo stesso processo viene utilizzato anche su altre piante, oltre che per l’estrazione del colosterolo dal burro o dell’essenza dai fiori di luppolo, utilizzata nella produzione della birra.

Concludendo, molte delle leggende intorno al decaffeinato nascono in virtu’ del precedente metodo utilizzato per l’estrazione della caffeina dai chicchi. Oggi, l’utilizzo di CO2 supercritica consente di estrarre la maggior parte della caffeina, che oltre tutto puo’ essere recuperata e utilizzata in altri settori, lasciando quasi del tutto inalterate le altre sostanze che contribuiscono la sapore di questa ottima bevanda.

 

”Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Pubblicità

Fertilizzanti ed esplosivi

19 Apr

Molti utenti del forum mi hanno chiesto di scrivere un post su quanto accaduto l’altro giorno in Texas. Anche se questo argomento non rientra propriamente nella tematica del blog, e’ interessante parlarne cercando di spiegare gli aspetti piu’ tecnici e scientifici del terribile incidente avvenuto nella fabbrica di fertilizzanti della citta’ e che, giustamente, ha lasciato interdetti molti di noi.

Come tutti sanno, il 18, poco dopo le 20 ora locale, nella cittadina di West vicino Waco e’ scoppiato un incendio molto esteso nella fabbrica di fertilizzanti “West fertilizer Co.”. A seguito dell’incendio, e’ poi avvenuta una fortissima esplosione che ha praticamente distrutto la fabbrica ed i palazzi intorno ad essa. Come raccontano i testimoni, l’esplosione e’ stata talmente tanto forte da assomigliare a quella di un piccolo ordigno nucleare. Inoltre, dalla fabbrica si e’ alzata una nube tossica con un forte odore di ammoniaca che ha intossicato molti residenti della zona non che alcuni vigili del fuoco accorsi inizialmente sul posto per spegnere l’incendio.

In queste ore, ancora non e’ del tutto noto il numero di morti causati dall’incidente. Sui diversi giornali, trovate numeri completamente in disaccordo, si va dai 5 accertati fino a stime di 60-70 morti rimasti colpiti dalla potente deflagrazione avvenuta. A causa della nube tossica e dall’incendio ancora in corso, che potrebbe causare ulteriori esplosioni, tutti i 2800 residenti di West sono stati fatti evacuare e portati in luoghi piu’ sicuri.

Cosa e’ successo precisamente?

Prima di tutto, per darvi un’idea della potenza dell’esplosione avvenuta, a seguito di questa, i sismografi della zona hanno registrato un terremoto di magnitudo 2.1 causato interamente dalla deflagrazione. Vi mostro una foto presa dal database dell’USGS che mostra proprio il sisma registrato nella zona:

Terremoto registrato a causa dell'esplosione. Fonte: USGS

Terremoto registrato a causa dell’esplosione. Fonte: USGS

Come detto in precedenza, l’origine del disastro e’ nell’incendio che e’ divampato all’interno della fabbrica. Ad oggi, ancora non si conosco le cause di questo incendio e spettera’ alle autorita’ investigative capire meglio se questo era di origine dolosa o causato da altri eventi particolari.

La West Fertilizer era una grande industria produttrice di fertilizzanti azotati e che aveva diversi contenitori di queste sostanze. Quello che non tutti sanno e’ che i fertilizzanti azotati possono essere utilizzati proprio come base per la fabbricazione di esplosivi. Il piu’ adatto a questo scopo, e che la fabbrica texana produceva in grandi quantita’, e’ il “Nitrato di Ammonio”. Questo sale, ottenuto dalla combinazione di ammoniaca con acido nitrico, NH4NO3, e’ molto utilizzato in agricoltura per la sua notevole percentuale di azoto. Il suo alto bilancio di ossigeno pero’, lo rende estremamente adatto anche per la fabbricazione di esplosivo.

Il Nitrato di Ammonio, anche se di libera vendita per scopi agricoli, viene venduto fortemente diluito proprio per impedire utilizzi diversi di questa sostanza. La regolamentazione europea e americana ne impone la percentuale di diluizione ed in caso di richieste elevate per scopi agricoli, i nominativi degli acquirenti vengono registrati e resi disponibili per le autorita’.

Questo sale viene utilizzato anche in maniera “ufficiale” per produrre esplosivi adatti a scopi specifici. In particolare, dato il bilancio positivo di ossigeno e la reazione poco esotermica che si ottiene, gli esplosivi a nitrato di ammonio vengono spesso utilizzati nelle miniere dove il calore prodotto sarebbe pericoloso a causa dell’eventuale emissione di gas. Esplosivi di questo tipo sono l’Ammonal e l’ANFO. Quest’ultimo ottenuto semplicemente mescolando nelle giuste quantita’ nitrato di ammonio e gasolio.

Sempre il nitrato di ammonio, viene utilizzato per la fabbricazione del ghiaccio istantaneo molto utile in ambito sportivo. Per intenderci, quelle tavolette che una volta rotte divengono molto fredde e che vengono utilizzate a seguito di traumi al posto del normale ghiaccio. In questo ambito, la reazione endotermica che si genera diminuisce la temperatura della tavoletta.

Nel caso della West Fertilizer, come e’ normale che sia, erano presenti diversi contenitori di questo sale, oltre ad altri fertilizzanti sempre a base di azoto, puri e non ancora diluiti per la vendita. L’incendio che si e’ sviluppato ha dunque innescato l’esplosione dei fertilizzanti che, date le notevoli quantita’ presenti, ha dato luogo ad una deflagrazione di enorme potenza.

A cuasa dell’alta reperibilita’ in agricoltura e del basso prezzo di vendita, il nitrato di ammonio e’ uno degli ingredienti preferiti da cellule terroristiche per la fabbricazione di bombe. Ovviamente, non diro’ nulla su come utilizzare il nitrato per questo scopo o quali sono le giuste percentuali da utilizzare, ma la preparazione di questi esplosivi non richiede assolutamente un laboratorio attrezzato.

Diversi attentati da parte dell’Eta, dell’Ira e di cellule Quediste  sono stati condotti utilizzando ordigni a base di  nitrato di ammonio. Molto spesso, per ottenere queste bombe e’ sufficiente mescolare il sale con oli combustibili o con nitrato di potassio e poi realizzare l’innesco nei modi piu’ diversi utilizzando schede sim, perette elettriche, siringhe senza ago, ecc. Come potete capire, l’alta reperibilita’ e la semplicita’ di realizzazione di esplosivi di questo tipo, rendono il nitrato di ammonio uno degli ingredienti piu’ ricercati sul mercato.

L’unica cosa che, giustamente regolata, rende piu’ difficoltoso l’utilizzo di questo fertilizzante per scopi terroristici e’ dunque il fattore di diluizione nella vendita. Ora, a seguito di quanto detto, immaginate dei serbatoi pieni di nitrato d’ammonio puro nella fabbrica texana coinvolta in un incendio. Come potete capire, incidenti di questo tipo sono estremamente pericolosi proprio per questo motivo.

Gia’ in passato e sempre in Texas ci fu un altro grave incidente causato dal nitrato di ammonio. Il 16 Aprile del 1947, nel porto di Texas City, si incendio’ la nave francese Grandcamp che trasportava una notevole quantita’ di questo sale puro. L’esplosione che si verifico’ fu udita nel raggio di 150 miglia e causo’ circa 600 morti. Proprio come nel caso di questi giorni, l’esplosione fu equivalente a quella di 3,2 KTon di TNT, cioe’ paragonabile a quella di un piccolo ordigno nucleare. Detto questo, capite che non c’e’ assolutamente esagerazione nei racconti dei testimoni di West.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Troppa antimateria nello spazio

5 Apr

Uno dei misteri che da sempre affascina i non addetti ai lavori e che spinge avanti la ricerca scientifica di base e’ la comprensione del nostro universo. In particolare, come sapete, ad oggi sappiamo veramente molto poco su cosa costituisce il nostro universo. Cosa significa questo? Dalle misure affettuate, solo una piccola frazione, intorno al 5%, e’ composta da materia barionica, cioe’ di quella stessa materia che compone il nostro corpo e tutti gli oggetti che ci circondano. La restante frazione e’ composta da quelli che spesso sentiamo chiamare contributi oscuri, materia oscura ed energia oscura. Mentre sulla materia oscura ci sono delle ipotesi, anche se ancora da verificare, sull’energia oscura, responsanbile dell’espansione dell’universo, sappiamo ancora molto poco.

Detto questo, la comprensione di questi contributi e’ una sfida tutt’ora aperta ed estremamente interessante per la ricerca scientifica.

Di questi argomenti, abbiamo parlato in dettaglio in questo post:

La materia oscura

Perche’ torno nuovamente su questo argomento? Solo un paio di giorni fa, e’ stata fatta una conferenza al CERN di Ginevra nella quale sono stati presentati i dati preliminari dell’esperimento AMS-02. I dati di questo rivelatore, realizzato con un’ampia collaborazione italiana, sono veramente eccezionali e potrebbero dare una spinta in avanti molto importante nella comprensione della materia oscura.

Andiamo con ordine.

Cosa sarebbe AMS-02?

AMS installato sulla Stazione Spaziale

AMS installato sulla Stazione Spaziale

AMS sta per Alpha Magnetic Spectrometer, ed e’ un rivelatore installato sulla Stazione Spaziale Internazionale. Compito di AMS-02 e’ quello di rivelare con estrema precisione le particelle dei raggi cosmici per cercare di distinguere prima di tutto la natura delle particelle ma anche per mettere in relazione queste ultime con la materia ordinaria, la materia oscura, la materia strana, ecc.

In particolare, lo spettrometro di AMS e’ estremamente preciso nel distinguere particelle di materia da quelle di antimateria e soprattutto elettroni da positroni, cioe’ elettroni dalle rispettive antiparticelle.

Vi ricordo che di modello standard, di antimateria e di materia strana abbiamo parlato in dettaglio in questi post:

Piccolo approfondimento sulla materia strana

Due parole sull’antimateria

Antimateria sulla notra testa!

Bosone di Higgs … ma che sarebbe?

Bene, fin qui tutto chiaro. Ora, cosa hanno di particolarmente speciale i dati di AMS-02?

Numero di positroni misurato da AMS verso energia

Numero di positroni misurato da AMS verso energia

Utilizzando i dati raccolti nei primi 18 mesi di vita, si e’ evidenziato un eccesso di positroni ad alta energia. Detto in parole semplici, dai modelli per la materia ordinaria, il numero di queste particelle dovrebbe diminuire all’aumentare della loro energia. Al contrario, come vedete nel grafico riportato, dai dati di AMS-02 il numero di positroni aumenta ad alta energia fino a raggiungere una livello costante.

Cosa significa questo? Perche’ e’  cosi’ importante?

Come detto, dai modelli della fisica ci si aspettarebbe che il numero di positroni diminuisse, invece si trova un aumento all’aumentare dell’energia. Poiche’ i modelli ordinari sono corretti, significa che ci deve essere qualche ulteriore sorgente di positroni che ne aumenta il numero rivelato da AMS-02.

Quali potrebbero essere queste sorgenti non considerate?

La prima ipotesi e’ che ci sia una qualche pulsar relativamente in prossimita’. Questi corpi possono emettere antiparticelle “sballando” di fatto il conteggio del rivelatore. Questa ipotesi sembrerebbe pero’ non veritiera dal momento che l’aumento di positroni e’ stato rivelato in qualsiasi direzione. Cerchiamo di capire meglio. Se ci fosse una pulsar che produce positroni, allora dovremmo avere delle direzioni spaziali in cui si vede l’aumento (quando puntiamo il rivelatore in direzione della pulsar) ed altre in cui invece, seguendo i modelli tradizionali, il numero diminuisce all’aumentare dell’energia. Come detto, l’aumento del numero di positroni si osserva in tutte le direzioni dello spazio.

Quale potrebbe essere allora la spiegazione?

Come potete immaginare, una delle ipotesi piu’ gettonate e’ quella della materia oscura. Come anticipato, esistono diverse ipotesi circa la natua di questa materia. Tra queste, alcune teorie vorrebbero la materia oscura come composta da particelle debolmente interagenti tra loro e con la materia ordinaria ma dotate di una massa. In questo scenario, particelle di materia oscura potrebbero interagire tra loro producendo nello scontro materia ordinaria, anche sotto forma di antimateria, dunque di positroni.

In questo scenario, i positroni in eccesso rivelati da AMS-02 sarebbero proprio prodotti dell’annichilazione, per dirlo in termini fisici, di materia oscura. Capite dunque che questi dati e la loro comprensione potrebbero farci comprendere maggiormente la vera natura della materia oscura e fissare i paletti su un ulteriore 20% della materia che costituisce il nostro universo.

Dal momento che la materia oscura permea tutto l’universo, questa ipotesi sarebbe anche compatibile con l’aumento dei positroni in tutte le direzioni.

Ora, come anticipato, siamo di fronte ai dati dei primi 18 mesi di missione. Ovviamente, sara’ necessario acquisire ancora molti altri dati per disporre di un campione maggiore e fare tutte le analisi necessarie per meglio comprendere questa evidenza. In particolare, i precisi rivelatori di AMS-02 consentiranno di identificare o meno una sorgente localizzata per i positroni in eccesso, confermando o escludendo la presenza di pulsar a discapito dell’ipotesi materia oscura.

Per completezza, spendiamo ancora qualche parola su questo tipo di ricerca e sull’importanza di questi risultati.

Come detto in precedenza, per poter confermare le ipotesi fatte, sara’ necessario prendere ancora molti dati. Ad oggi, AMS-02 potra’ raccogliere dati ancora per almeno 10 anni. Come anticipato, questo strumento e’ installato sulla Stazione Spaziale Internazionale. Questa scelta, piuttosto che quella di metterlo in orbita su un satellite dedicato, nasce proprio dall’idea di raccogliere dati per lungo tempo. La potenza richiesta per far funzionare AMS-02 consentirebbe un funzionamento di soli 3 anni su un satellite, mentre sulla ISS il periodo di raccolta dati puo’ arrivare anche a 10-15 anni.

AMS-02 e’ stato lanciato nel 2010 sullo Shuttle dopo diversi anni di conferme e ripensamenti, principalmente dovuti agli alti costi del progetto e alla politica degli Stati Uniti per le missioni spaziali.

Perche’ si chiama AMS-02? Il 02 indica semplicemente che prima c’e’ stato un AMS-01. In questo caso, si e’ trattato di una versione semplificata del rivelatore che ha volato nello spazio a bordo dello shuttle Discovery. Questo breve viaggio ha consentito prima di tutto di capire la funzionalita’ del rivelatore nello spazio e di dare poi la conferma definitiva, almeno dal punto di vista scientifico, alla missione.

Confronto tra AMS e missioni precedenti

Confronto tra AMS e missioni precedenti

Il risultato mostrato da AMS-02 in realta’ conferma quello ottenuto anche da altre due importanti missioni nello spazio, PAMELA e FERMI. Anche in questi casi venne rivelato un eccesso di positroni nei raggi cosmici ma la minore precisione degli strumenti non consenti’ di affermare con sicurezza l’aumento a discapito di fluttuazioni statistiche dei dati. Nel grafico a lato, vedete il confronto tra i dati di AMS e quelli degli esperimento precedenti. Come vedete, le bande di errore, cioe’ l’incertezza sui punti misurati, e’ molto maggiore negli esperimenti precedenti. Detto in termini semplici, AMS-02 e’ in grado di affermare con sicurezza che c’e’ un eccesso di positroni, mentre negli altri casi l’effetto poteva essere dovuto ad incertezze sperimentali.

Concludendo, i risultati di AMS-02 sono davvero eccezionali e mostrano, con estrema precisione, un aumento di positroni ad alta energia rispetto ai modelli teorici attesi. Alla luce di quanto detto, questo eccesso potrebbe essere dovuto all’annichilazione di particelle di materia oscura nel nostro universo. Questi risultati potebbero dunque portare un balzo in avanti nella comprensione del nostro universo e sulla sua composizione. Non resta che attendere nuovi dati e vedere quali conferme e novita’ potra’ mostrare questo potente rivelatore costruito con ampio contributo italiano.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Universo: foto da piccolo

24 Mar

In questi ultimi giorni, tutti i giornali, i telegiornali, i siti internet specializzati, sono stati invasi da articoli scientifici riguardanti le ultime scoperte fatte con il telescopio Planck. I dati di questo telescopio, gestito interamente dalla nostra Agenzia Spaziale Europea, hanno mostrato una foto dell’universo quando aveva solo 380000 anni. Ecco la foto che sicuramente vi sara’ capitato di vedere:

L'universo alla tenera eta' di 380000 anni

L’universo alla tenera eta’ di 380000 anni

Si parla anche di risultati sconvolgenti: l’universo e’ piu’ vecchio di quello che si pensava fino ad oggi. Inoltre, la radiazione cosmica di fondo presenta delle differenze tra i due emisferi oltre a mostrare una regione fredda piu’ estesa di quella che si pensava.

Fantastico, direi io, questi risultati mi hanno veramente impressionato. Ora pero’, la domanda che mi sono posto e’ molto semplice, anche su giornali nazionali, ho visto articoli che commentavano questa foto parlando di CMB, anisotropie, fase inflazionistica. In pochissimi pero’, si sono degnati di spiegare in modo semplice il significato di questi termini. Purtroppo, spesso vedo molti articoli che ripetono a pappagallo le notizie senza neanche chiedersi cosa significano quei termini che stanno riportando.

Cerchiamo, per quanto possibile, di provare a fare un po’ chiarezza spiegando in maniera completamente divulgativa cosa significa: radiazione cosmica di fondo, periodo inflazionistitico, ecc.

Andiamo con ordine. La foto da cui siamo partiti ritrae l’universo quando aveva 380000 anni ed in particolare mostra la mappa della radiazione cosmica di fondo.

Prima cosa, come facciamo a fare una foto dell’universo del passato? In questo caso la risposta e’ molto semplice e tutti noi siamo in grado di sperimentarla facilmente. Quando alziamo lo sguardo e vediamo il cielo stellato, in realta’ e’ come se stessimo facendo un viaggio nel tempo. Se guardiamo una stella distante 100 anni luce da noi, significa che quell’immagine che osserviamo ha impiegato 100 anni per giungere fino a noi. Dunque, quella che vediamo non e’ la stella oggi, bensi’ com’era 100 anni fa. Piu’ le stelle sono lontane, maggiore e’ il salto indietro che facciamo.

Bene, questo e’ il principio che stiamo usando. Quando mandiamo un telescopio in orbita, migliore e’ la sua ottica, piu’ lontano possiamo vedere e dunque, equivalentemente, piu’ indietro nel tempo possiamo andare.

Facciamo dunque un altro piccolo passo avanti. Planck sta osservando l’universo quando aveva solo 380000 anni tramite la CMB o radiazione cosmica a microonde. Cosa sarebbe questa CMB?

Partiamo dall’origine. La teoria accettata sull’origine dell’universo e’ che questo si sia espanso inizialmente da un big bang. Un plasma probabilmente formato da materia e antimateria ad un certo punto e’ esploso, l’antimateria e’ scomparsa lasciando il posto alla materia che ha iniziato ad espandersi e, di conseguenza, si e’ raffreddata. Bene, la CMB sarebbe un po’ come l’eco del big bang e, proprio per questo, e’ considerata una delle prove a sostegno dell’esplosione iniziale.

Come si e’ formata la radiazione di fondo? Soltanto 10^(-37) secondi dopo il big bang ci sarebbe stata una fase detta di inflazione in cui l’espansione dell’universo ha subito una rapida accelerazione. Dopo 10^(-6) secondi, l’universo era ancora costituito da un plasma molto caldo di  fotoni, elettroni e protoni, l’alta energia delle particelle faceva continuamente scontrare i fotoni con gli elettroni che dunque non potevano espandersi liberamente. Quando poi la temperatura dell’universo e’ scesa intorno ai 3000 gradi, elettroni e protoni hanno cominciato a combianrsi formando atomi di idrogeno e i fotoni hanno potuto fuoriuscire formando una radiazione piu’ o meno uniforme. Bene, questo e’ avvenuto, piu’ o meno, quando l’universo aveva gia’ 380000 anni.

Capiamo subito due cose: la foto da cui siamo partiti e’ dunque relativa a questo periodo, cioe’ quando la materia (elettroni e protoni) hanno potuto separarsi dalla radiazione (fotoni). Stando a questo meccanismo, capite anche perche’ sui giornali trovate che questa e’ la piu’ vecchia foto che potrebbe essere scattata. Prima di questo momento infatti, la radiazione non poteva fuoriuscire e non esisteva questo fondo di fotoni.

Bene, dopo la separazione tra materia e radiazione, l’universo ha continuato ad espandersi, dunque a raffreddarsi e quindi la temperatura della CMB e’ diminuita. A 380000 anni di eta’ dell’universo, la CMB aveva una temperatura di circa 3000 gradi, oggi la CMB e’ nota come fondo cosmico di microonde con una temperatura media di 2,7 gradi Kelvin. Per completezza, e’ detta di microonde perche’ oggi la temperatura della radiazione sposta lo spettro appunto su queste lunghezze d’onda.

Capite bene come l’evidenza della CMB, osservata per la prima volta nel 1964, sia stata una conferma proprio del modello del big bang sull’origine del nostro universo.

E’ interessante spendere due parole proprio sulla scoperta della CMB. L’esistenza di questa radiazione di fondo venne predetta per la prima volta nel 1948 da Gamow, Alpher e Herman ipotizzando una CMB a 5 Kelvin. Successivamente, questo valore venne piu’ volte corretto a seconda dei modelli che venivano utilizzati e dai nuovi calcoli fatti. Dapprima, a questa ipotesi non venne dato molto peso tra la comunita’ astronomica, fino a quando a partire dal 1960 l’ipotesi della CMB venne riproposta e messa in relazione con la teoria del Big Bang. Da questo momento, inizio’ una vera e propria corsa tra vari gruppi per cercare di individuare per primi la CMB.

Penzias e Wilson davanti all'antenna dei Bell Laboratories

Penzias e Wilson davanti all’antenna dei Bell Laboratories

Con grande sorpresa pero’ la CMB non venne individuata da nessuno di questi gruppi, tra cui i principali concorrenti erano gli Stati Uniti e la Russia, bensi’ da due ingegneri, Penzias e Wilson, con un radiotelescopio pensato per tutt’altre applicazioni. Nel 1965 infatti Penzias e Wilson stavano lavorando al loro radiotelescopio ai Bell Laboratories per lo studio della trasmissione dei segnali attraverso il satellite. Osservando i dati, i due si accorsero di un rumore di fondo a circa 3 Kelvin che non comprendenvano. Diversi tentativi furono fatti per eliminare quello che pensavano essere un rumore elettronico del telescopio. Solo per darvi un’idea, pensarono che questo fondo potesse essere dovuto al guano dei piccioni sull’antenna e per questo motivo salirono sull’antenna per ripulirla a fondo. Nonostante questo, il rumore di fondo rimaneva nei dati. Il punto di svolta si ebbe quando l’astronomo Dicke venne a conoscenza di questo “problema” dell’antenna di Penzias e Wilson e capi’ che in realta’ erano riusciti ad osservare per la prima volta la CMB. Celebre divenne la frase di Dicke quando apprese la notizia: “Boys, we’ve been scooped”, cioe’ “Ragazzi ci hanno rubato lo scoop”. Penzias e Wilson ricevettero il premio Nobel nel 1978 lasciando a bocca asciutta tutti gli astronomi intenti a cercare la CMB.

Da quanto detto, capite bene l’importanza di questa scoperta. La CMB e’ considerata una delle conferme sperimentali al modello del Big Bang e quindi sull’origine del nostro universo. Proprio questa connessione, rende la radiazione di fondo un importante strumento per capire quanto avvenuto dopo il Big Bang, cioe’ il perche’, raffreddandosi, l’universo ha formato aggreggati di materia come stelle e pianeti, lasciando uno spazio quasi vuoto a separazione.

Le osservazioni del telescopio Planck, e dunque ancora la foto da cui siamo partiti, hanno permesso di scoprire nuove importanti dinamiche del nostro universo.

Prima di tutto, la mappa della radiazione trovata mostra delle differenze, o meglio delle anisotropie. In particolare, i due emisferi presentano delle piccole differenze ed inoltre e’ stata individuata una regione piu’ fredda delle altre, anche detta “cold region”. Queste differenze furono osservate anche con la precedente missione WMAP della NASA, ma in questo caso si penso’ ad un’incertezza strumentale del telescopio. Nel caso di Plack, la tecnologia e le performance del telescopio confermano invece l’esistenza di regioni “diverse” rispetto alle altre.

Anche se puo’ sembrare insignificante, l’evidenza di queste regioni mette in dubbio uno dei capisaldi dell’astronomia, cioe’ che l’universo sia isotropo a grande distanza. Secondo i modelli attualmente utilizzati, a seguito dell’espansione, l’universo dovrebbe apparire isotropo, cioe’ “uniforme”, in qualsiasi direzione. Le differenze mostrate da Planck aprono dunque lo scenario a nuovi modelli cosmologici da validare. Notate come si parli di “grande distanza”, questo perche’ su scale minori esistono anisotropie appunto dovute alla presenza di stelle e pianeti.

Ci sono anche altri importanti risultati che Planck ha permesso di ottenere ma di cui si e’ parlato poco sui giornali. In primis, i dati misurati da Planck hanno permesso di ritoccare il valore della costante di Hubble. Questo parametro indica la velocita’ con cui le galassie si allontanano tra loro e dunque e’ di nuovo collegato all’espansione dell’universo. In particolare, il nuovo valore di questa costante ha permesso di modificare leggermente l’eta’ dell’universo portandola a 13,82 miliardi di anni, circa 100 milioni di anni di piu’ di quanto si pensava. Capite dunque perche’ su alcuni articoli si dice che l’universo e’ piu’ vecchio di quanto si pensava.

Inoltre, sempre grazie ai risultati di Planck e’ stato possibile ritoccare le percentuali di materia, materia oscura e energia oscura che formano il nostro universo. Come saprete, la materia barionica, cioe’ quella di cui siamo composti anche noi, e’ in realta’ l’ingrediente meno abbondante nel nostro universo. Solo il 4,9% del nostro universo e’ formato da materia ordinaria che conosciamo. Il 26,8% dell’universo e’ invece formato da “Materia Oscura”, qualcosa che sappiamo che esiste dal momento che ne vediamo gli effetti gravitazionali, ma che non siamo ancora stati in grado di indentificare. In questo senso, un notevole passo avanti potra’ essere fatto con le future missioni ma anche con gli acceleratori di particelle qui sulla terra.

Una considerazione, 4,9% di materia barionica, 26,8% di materia oscura e il resto? Il 68,3% del nostro universo, proprio l’ingrediente piu’ abbondante, e’ formato da quella che viene detta “Energia Oscura”. Questo misterioso contributo di cui non sappiamo ancora nulla si ritiene essere il responsabile proprio dell’espansione e dell’accelerazione dell’universo.

Da questa ultima considerazione, capite bene quanto ancora abbiamo da imparare. Non possiamo certo pensare di aver carpito i segreti dell’universo conoscendo solo il 5% di quello che lo compone. In tal senso, la ricerca deve andare avanti e chissa’ quante altre cose strabilinati sara’ in grado di mostrarci in futuro.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Se fosse stato il meteorite di Roma ….

28 Feb

Negli ultimi articoli, molto spesso abbiamo parlato del meteorite caduto in Russia, mostrando in particolar modo le speculazioni che non accennano assolutamente a finire:

Pioggia di meteore in Russia

Meteorite anche a Cuba e Dark Rift

Alla luce di quanto accaduto, avevamo in qualche modo predetto quanto sarebbe avvenuto sui siti catastrofisti, che ovviamente non potevano certo farsi sfuggire un’occasione cosi’ ghiotta caduta dal cielo:

Lezione n.1: come cavalcare l’onda

Ora, premesso che, come sapete, questo evento ha causato il ferimento di circa 1200 persone e danni stimati per circa 22 milioni di euro, mi sembra alquanto meschino speculare sulle fobie create da questo meteorite. Ma, come ormai sappiamo, la speculazione non si ferma certamente di fronte ai feriti, ai morti o ai danni.

Premesso questo, in questo post vorrei invece mostrarvi le ultime considerazioni scientifiche fatte sul meteorite russo, a distanza di giorni, e dopo aver raccolto i dati catturati dai molti satelliti in orbita intorno alla Terra e che hanno potuto osservare l’avvicinarsi del corpo nell’atmosfera terrestre.

Prima di tutto, c’e’ un importante studio condotto dal Prof. Longo dell’universita’ di Bologna, da sempre interessato allo studio dei meteoriti ed, in particolare, dei loro effetti sgli ecosistemi naturali. Longo e’ ancora autore di diversi studi condotti per cercare di ricostruire quanto accaduto a Tunguska nel 1908, evento di cui abbiamo parlato in questo post:

Il raggio della morte

Per prima cosa, in questo studio e’ stata ricostruita la traiettoria di avvicinamento del meteorite a Chelyabinsk, che vi mostro in questa immagine:

L'orbita seguita dal meteorite russo

L’orbita seguita dal meteorite russo

Osservate una cosa, nella mappa il meteorite arriva da sinistra, passa sopra Roma e poi prosegue fino alla parte centrale della Russia dove sappiamo che fine ha fatto.

Il meteorite passa sopra Roma?

Ebbene si. ricostruendo la traiettoria percorsa dal meteorite, e’ stato evidenziato come questo corpo sia passato praticamente sopra la citta’ di Roma. Cosa significa questo? Se il corpo avesse avuto una traiettoria di avvicinamento leggermente diversa dal punto di vista angolare, in particolare piu’ inclinato rispetto alla linea di terra, quello che e’ successo in russia sarebbe potuto accadere in Italia, ed in particolare nella zona romana. Analogamente, mentre il meteorite passava, la Terra stava ovviamente ruotando su se stessa. Se ci fosse stata un differenza temporale anche solo di un paio d’ore, nel punto in cui e’ avvenuto l’impatto poteva esserci l’Italia o comunque l’Europa al posto di Chelyabinsk.

Il mio non e’ ovviamente un discorso del tipo “mors tua vita mea”, ma semplicemente una considerazione oggettiva su quanto accaduto. Come visto anche nei post precedenti, il meteorite e’ caduto in una regione della Russia popolata, ma non densamente come potrebbe essere Roma o una qualsiasi altra zona dell’Europa. Questo solo per dire che le conseguenze dell’impatto potevano essere molto piu’ dannosse di quelle che in realta’ sono state.

Con il senno di poi, possiamo certamente dire che nella sfortuna di avere un meteorite impattante sulla Terra, siamo stati molto fortunati. I danni, ma soprattutto i feriti, potevano essere molti di piu’.

Detto questo, ci tengo a sottolineare un altro punto di cui abbiamo gia’ parlato. Il caso russo e’ completamente scorrelato dal passaggio di 2012 DA14 di cui abbiamo parlato in passato. Come anticipato, questo meteorite aveva un orbita e tempi di passaggio completamente differenti rispetto al meteorite russo. Anche se questi concetti dovrebbero gia’ essere chiari a tutti, in rete ancora oggi si trovano ipotesi assurde che vorrebbero far credere che quanto accaduto in Russia e’ stato causato da un pezzo di 2012 DA14, o ancora peggio che gli scienziati avessero calcolato male la traiettoria di 2012 DA14 che in realta’ e’ caduto su Chelyabinsk. Queste considerazioni assurde lasciano ovviamente il tempo che trovano. Come detto tante volte, anche solo dal punto di vista del diametro, il meteorite russo era un sassolino rispetto a 2012 DA14. Se quest’ultimo avesse impattato la Terra, le conseguenze non sarebbero certo state qualche vetro frantumato o 1200 feriti da schegge.

Per fugare ogni dubbio, vi mostro un’immagine molto interessante in cui si vedono sia la traiettoria di avvicinamento del meteorite russo, sia quella del passaggio di 2012 DA14:

Il meteorite russo confrontato con 2012 DA14

Il meteorite russo confrontato con 2012 DA14

Come potete vedere, i due corpi prima di tutto arrivano da parti opposte rispetto alla Terra. Inoltre, se vi soffermate sugli orari indicati nel disegno, vedete bene che quando e’ accaduto il fatto russo, DA14 era ancora troppo lontano dalla Terra.

Facciamo anche un’altra considerazione aggiuntiva su questo disegno. Come vedere, il meteorite russo si e’ avvicinato alla Terra dala direzione del Sole. Questo rende il corpo meno visibile e giustifica in parte la non osservazione preventiva dalla Terra. Dico “in parte” perche’ ovviamente le dimensioni di questo meteorite erano troppo piccole rispetto a quelle generalmente cercate dal programma NEO della NASA. Stiamo infatti parlando di un corpo di soli, si fa per dire, 10-15 metri di diametro. Come sappiamo, gli oggetti orbitanti e catalogati come potenzialmente pericolosi per la Terra, hanno diametro sensibilmente maggiore. Di questi aspetti abbiamo parlato in dettaglio in questo post:

Asteroidi: sappiamo difenderci?

Solo per completezza, visto che in questi giorni mi e’ stato chiesto in diverse occasioni, vi riporto anche una foto molto interessante di un frammento rcuperato in Russia:

Composizione chimica di un frammento trovato in Russia

Composizione chimica di un frammento trovato in Russia

Questa immagine e’ importante per due aspetti. Prima di tutto, dimostra che sono stati trovati frammenti nella zona. Non ci crederete, ma in rete c’e’ anche chi cerca di convincere che non esistono frammenti del meteorite perche’ in realta’ non si e’ trattato di un evento di questo tipo, bensi’ della caduta di un astronave aliena. Sembra assurdo, ma purtroppo c’e’ anche chi, anche sulla TV pubblica, cerca di convincere adducendo motivazioni di questo tipo.

L’altro aspetto, questa volta scientifico, che rende la foto molto interessnate e’ invece la percentuale di elementi trovati dall’analisi del frammento. Dai valori riportati si evince che il corpo fosse una condrite ordinaria, cioe’ una roccia dotata delle stessa composizione dei corpi freddi che si sono formati nelle prime fasi del sistema solare primordiale.

Le condriti sono dunque molto antiche, ma anche molto frequenti nel sistema solare. Si stima che circa l’85% dei corpi che cadono sulla Terra siano delle condriti ordinarie.

Se ci limitiamo al punto di vista economico, il fatto di avere frammenti cosi’ ordinari fa anche diminuire il valore commerciale di questi ritrovamenti. Come infatti abbiamo visto in questo post:

Primi segnali della fine del mondo?

Esiste addirittura un mercato online di compra-vendita di frammenti di metoriti. In alcuni casi, i prezzi possono raggiungere cifre davvero esorbitanti.

Questo ultimo punto risponde ache alla curiosita’ di molti lettori che mi hanno chiesto di cosa fosse composto il meteorite russo.

Concludendo, lo studio visto mostra come le conseguenze della caduta del meteorite potevano essere molto piu’ dannose di quanto in realta’ sono state. In condizioni solo di poco diverse, il corpo avrebbe potuto impattare, invece che in una regione degli Urali, in Europa o peggio ancora sulla citta’ di Roma. In questo caso, i danni provocati sarebbero stati senza dubbio molto piu’ gravi.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.