Tag Archives: simmetry

Charged Lepton Flavour Violation

6 Ott

Oggi vorrei mettere da parte UFO, complotti, scie chimiche, fine del mondo, ecc., per tornare a parlare di scienza pura. Lo vorrei fare con questo articolo spceifico, per trattare nuovamente lo stato attuale della ricerca e mostrarvi quali sono i settori più “caldi” e più promettenti nel panorama della fisica delle alte energie.

Per prima cosa, in diversi articoli abbiamo parlato di modello standard:

Dafne e KLOE: alta energia in Italia

E parliamo di questo Big Bang

Universo: foto da piccolo

Ascoltate finalmente le onde gravitazionali?

Il primo vagito dell’universo

L’espansione metrica dell’universo

Come abbiamo visto, il Modello Standard è quella teoria che oggi abbiamo definito e che consente di prevedere molte delle proprietà che osserviamo per le particelle. Vi ricordo che in fisica parliamo sempre di modello proprio per indicare un qualcosa in grado di prevedere le proprietà sperimentali.

Anche se poco conosciuto ai non addetti ai lavori, il Modello Standard è stato molto citato parlando del Bosone di Higgs. Come tutti sanno, il nostro modello, che ha resistito per decenni, presenta una particolare mancanza: non è in grado di prevedere l’esistenza della massa delle particelle. Come correggere questa grave imprecisione? Che le particelle abbiano massa è noto a tutti e facilmente dimostrabile anche guardando la materia che ci circonda. Bene, per poter correggere questo “errore” è possibile inserire quello che è noto come Meccanismo di Higgs, una correzione matematica che consente al modello standard di poter prevedere l’esistenza della massa. Bene, dunque ora è tutto OK? Assolutamente no, affinché il meccanismo di Higgs possa essere inserito è necessario che sia presente quello che viene chiamato un Campo di Higgs e, soprattutto, un bosone intermedio che, neanche a dirlo, si chiama Bosone di Higgs.

Capite dunque perchè la scoperta sperimentale del Bosone di Higgs è così importante?

Del bosone di Higgs, di LHC e delle sue conseguenze abbiamo parlato in questi articoli:

Bosone di Higgs … ma cosa sarebbe?

L’universo è stabile, instabile o meta-stabile?

Hawking e la fine del mondo

2012, fine del mondo e LHC

A questo punto si potrebbe pensare di aver raggiunto il traguardo finale e di aver compreso tutto. Purtroppo, o per fortuna a seconda dei punti di vista, questo non è assolutamente vero.

Perchè?

Come è noto a tutti, esistono alcuni problemi aperti nel campo della fisica e su cui si discute già da moltissimi anni, primo tra tutti quello della materia oscura. Il nostro amato Modello Standard non prevede assolutamente l’esistenza della materia oscura di cui abbiamo moltissime verifiche indirette. Solo per completezza, e senza ripetermi, vi ricordo che di materia e energia oscura abbiamo parlato in questi post:

La materia oscura

Materia oscura intorno alla Terra?

Flusso oscuro e grandi attrattori

Troppa antimateria nello spazio

Due parole sull’antimateria

Antimateria sulla notra testa!

L’esistenza della materia oscura, insieme ad altri problemi poco noti al grande pubblico, spingono i fisici a cercare quelli che vengono chiamati Segnali di Nuova Fisica, cioè decadimenti particolari, molto rari, in cui si possa evidenziare l’esistenza di particelle finora sconosciute e non contemplate nel modello standard delle particelle.

Per essere precisi, esistono moltissime teorie “oltre il modello standard” e di alcune di queste avrete già sentito parlare. La più nota è senza ombra di dubbio la Supersimmetria, o SuSy, teoria che prevede l’esistenza di una superparticella per ogni particella del modello standard. Secondo alcuni, proprio le superparticelle, che lasciatemi dire a dispetto del nome, e per non impressionarvi, non hanno alcun super potere, potrebbero essere le componenti principali della materia oscura.

Prima importante riflessione, la ricerca in fisica delle alte energie è tutt’altro che ad un punto morto. La scoperta, da confermare come detto negli articoli precedenti, del Bosone di Higgs rappresenta un importante tassello per la nostra comprensione dell’universo ma siamo ancora molto lontani, e forse mai ci arriveremo, dalla formulazione di una “teoria del tutto”.

Detto questo, quali sono le ricerche possibii per cercare di scoprire se esiste veramente una fisica oltre il modelo Standard delle particelle?

Detto molto semplicemente, si studiano alcuni fenomeni molto rari, cioè con bassa probabilità di avvenire, e si cerca di misurare una discrepanza significativa da quanto atteso dalle teorie tradizionali. Cosa significa? Come sapete, le particelle hanno una vita molto breve prima di decadere in qualcos’altro. I modi di decadimento di una data particella possono essere molteplici e non tutti avvengono con la stessa probabilità. Vi possono essere “canali”, cioè modi, di decadimento estremamente più rari di altri. Bene, alcuni di questi possono essere “viziati” dall’esistenza di particelle non convenzionali in grado di amplificare questo effetto o, addirittura, rendere possibili modi di decadimento non previsti dalla teoria convenzionale.

L’obiettivo della fisica delle alte energie è dunque quello di misurare con precisione estrema alcuni canali rari o impossibili, al fine di evidenziare segnali di nuova fisica.

Ovviamente, anche in questo caso, LHC rappresenta un’opportunità molto importante per questo tipo di ricerche. Un collisore di questo tipo, grazie alla enorme quantità di particelle prodotte, consente di poter misurare con precisione moltissimi parametri. Detto in altri termini, se volete misurare qualcosa di molto raro, dovete prima di tutto disporre di un campione di eventi molto abbondante dove provare a trovare quello che state cercando.

Un esempio concreto, di cui abbiamo parlato in questo post, è l’esperimento LhCB del CERN:

Ancora sullo squilibrio tra materia e antimateria

Una delle ricerche in corso ad LhCB è la misura del decadimento del Bs in una coppia di muoni. Niente paura, non voglio tediarvi con una noiosa spiegazione di fisica delle alte energie. Il Bs è un mesone composto da due quark e secondo il modello standard può decadere in una coppia di muoni con una certa probabilità, estremamente bassa. Eventuali discordanze tra la probabilità misurata di decadimento del Bs in due muoni e quella prevista dal modello standard potrebbe essere un chiaro segnale di nuova fisica, cioè di qualcosa oltre il modello standard in grado di modificare queste proprietà.

Misurare la probabilità di questo decadimento è qualcosa di estremamente difficile. Se da un lato avete una particella che decade in due muoni facilmente riconoscibili, identificare questo decadimento in mezzo a un mare di altre particelle è assai arduo e ha impegnato moltissimi fisici per diverso tempo.

Purtroppo, o per fortuna anche qui, gli ultimi risultati portati da LhCB, anche in collaborazione con CMS, hanno mostrato una probabilità di decadimento paragonabile a quella attesa dal modello standard. Questo però non esclude ancora nulla dal momento che con i nuovi dati di LHC sarà possibile aumentare ancora di più la precisione della misura e continuare a cercare effetti non previsti dalla teoria.

Tra gli altri esperimenti in corso in questa direzione, vorrei poi parlarvi di quelli per la ricerca della “violazione del numero Leptonico”. Perdonatemi il campanilismo, ma vi parlo di questi semplicemente perchè proprio a questo settore è dedicata una mia parte significativa di ricerca.

Cerchiamo di andare con ordine, mantenendo sempre un profilo molto divulgativo.

Come visto negli articoli precedenti, nel nostro modello standard, oltre ai bosoni intermedi, abbiamo una serie di particelle elementari divise in quark e leptoni. Tra questi ultimi troviamo: elettrone, muone, tau e i corrispondendi neutrini. Bene, come sapete esistono delle proprietà in fisica che devono conservarsi durante i decadimenti di cui abbiamo parlato prima. Per farvi un esempio noto a tutti, in un decadimento dobbiamo mantenere la carica elettrica delle particelle, se ho una particella carica positiva che decade in qualcosa, questo qualcosa deve avere, al netto, una carica positiva. La stessa cosa avviene per il numero leptonico, cioè per quella che possiamo definire come un’etichetta per ciascun leptone. In tal caso, ad esempio, un elettrone non può decadere in un muone perchè sarebbe violato, appunto, il numero leptonico.

Facciamo un respiro e manteniamo la calma, la parte più tecnica è già conclusa. Abbiamo capito che un decadimento in cui un leptone di un certo tipo, muone, elettrone o tau, si converte in un altro non è possibile. Avete già capito dove voglio andare a finire? Se questi decadimenti non sono possibili per la teoria attuale, andiamo a cercarli per verificare se esistono influenze da qualcosa non ancora contemplato.

In realtà, anche in questo caso, questi decadimenti non sono del tutto impossibili, ma sono, come per il Bs in due muoni, fortemente soppressi. Per farvi un esempio, l’esperimento Opera dei Laboratori Nazionali del Gran Sasso, misura proprio l’oscillazione dei neutrini cioè la conversione di un neutrino di un certo tipo in un altro. Ovviamente, appartendendo alla famiglia dei leptoni, anche i neutrini hanno un numero leptonico e una loro trasformazione da un tipo all’altro rappresenta una violazione del numero leptonico, quella che si chiama Neutral Lepton Flavour Violation. Per la precisione, questi decadimenti sono possibili dal momento che, anche se estremamente piccola, i neutrini hanno una massa.

Bene, la ricerca della violazione del numero Leptonico in particelle cariche, è uno dei filoni più promettenti della ricerca. In questo settore, troviamo due esperimenti principali che, con modalità diverse, hanno ricercato o ricercheranno questi eventi, MEG a Zurigo a Mu2e a Chicago.

Mentre MEG ha già raccolto molti dati, Mu2e entrerà in funzione a partire dal 2019. Come funzionano questi esperimenti? Detto molto semplicemente, si cercano eventi di conversione tra leptoni, eventi molto rari e dominati da tantissimi fondi, cioè segnali di dcadimenti più probabili che possono confondersi con il segnale cercato.

Secondo il modello standard, questi processi sono, come già discusso, fortemente soppressi cioè hanno una probabilità di avvenire molto bassa. Una misura della probabilità di decadimemto maggiore di quella attesa, sarebbe un chiaro segnale di nuova fisica. Detto questo, capite bene perchè si parla di questi esperimenti come probabili misure da nobel qualora i risultati fossero diversi da quelli attesi.

L’esperimento MEG ha già preso moltissimi dati ma, ad oggi, ha misurato valori ancora in linea con la teoria. Questo perchè la risoluzione dell’esperimento potrebbe non essere sufficiente per evidenziare segnali di nuova fisica.

A livelo tecnico, MEG e Mu2e cercano lo stesso effetto ma sfruttando canali di decadimento diverso. Mentre MEG, come il nome stesso suggerisce, cerca un decadimento di muone in elettrone più fotone, Mu2e cerca la conversione di muone in elettrone senza fotone ma nel campo di un nucleo.

Ad oggi, è in corso un lavoro molto specifico per la definizione dell’esperimento Mu2e e per la scelta finale dei rivelatori da utilizzare. Il gruppo italiano, di cui faccio parte, è impegnato in uno di questi rivelatori che prevede la costruzione di un calorimetro a cristallo che, speriamo, dovrebbe raggiungere risoluzioni molto spinte ed in grado di evidenziare, qualora presenti, eventuali segnali di nuova fisica.

Concludnedo, la ricerca nella fisica delle alte energie è tutt’altro che morta ed è sempre attiva su molti fronti. Come detto, molti sforzi sono attualmente in atto per la ricerca di segnali di nuova fisica o, come noi stessi li abbiamo definiti, oltre il modello standard. Detto questo, non resta che attendere i prossimi risultati per capire cosa dobbiamo aspettarci e, soprattutto, per capire quanto ancora poco conosciamo del mondo dell’infinitamente piccolo che però regola il nostro stesso universo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Fascio di anti-idrogeno? FATTO!

22 Gen

Uno degli aspetti della fisica che suscita maggior interesse nei non addetti ai lavori e’ senza dubbio il concetto di antimateria. Molto probabilmente, il motivo di questo interesse e’ da ricercarsi nelle tante storie fantascientifiche che sono state ispirate dall’esistenza di un qualcosa molto simile alla materia, se non fosse per la carica delle particelle che la compongono, che era presente prima del Big Bang ma che ora sembra totalmente scomparsa. Inoltre, come tutti sanno, se materia e antimateria vengono messe vicine tra loro si ha il fenomeno dell’annichilazione, qualcosa di assolutamente esotico nella mente dei non addetti ai lavori e che ha offerto trame sensazionali per tanti film e serie TV.

Come detto tante volte, dobbiamo fare una distinzione precisa tra quelle che chiamiamo antiparticelle e quella che invece viene intesa come antimateria. Cosi’ come avviene per la materia ordinaria, composta di particelle che, in questo schema, possiamo pensare come elettroni, protoni e neutroni, l’antimateria e’ a sua volta composta da anti-particelle. Spesso si tende a confondere questi due concetti, facendo, come si suole dire, di tutta l’erba un fascio.

Produrre anti-particelle e’ semplice e siamo in grado di farlo gia’ da diversi anni. Per darvi un esempio, molti collisori utilizzati per la ricerca nella fisica delle alte energie fanno scontrare fasci di particelle con antiparticelle. In questo contesto, molto usati sono i positroni, cioe’ gli anti-elettroni, e gli anti-protoni.

Completamente diverso e’ invece il caso dell’antimateria.

Per formare anti-atomi e’ necessario assemblare insieme le anti-particelle per comporre qualcosa simile nella struttura alla materia, ma composto a partire da mattoncini di anti-particelle.

Di questi concetti abbiamo gia’ parlato in articoli precedenti che trovate a questi link:

Troppa antimateria nello spazio

Due parole sull’antimateria

Antimateria sulla notra testa!

Come anticipato, prima del Big Bang, erano presenti in eguale quantita’ materia e anti-materia. Ad un certo punto pero’, l’anti-materia e’ scomparsa lasciando il posto solo alla materia che ha poi formato l’universo che vediamo oggi. Anche se questo meccanismo e’ in linea di principio ipotizzato dalla fisica, ci sono ancora punti da chiarire in quella che viene chiamata “asimmetria materia-antimateria”. Anche di questo abbiamo gia’ parlato in questi articoli:

E parliamo di questo Big Bang

Ancora sullo squilibrio tra materia e antimateria

Se, da un lato, produrre antiparticelle e’ semplice, metterle insieme per formare antiatomi non e’ assolutamente banale.

Nel 2011 al CERN di Ginevra era stato annunciato per la prima volta un risultato molto importante: atomi di anti-idrogeno erano stati formati e osservati per un tempo di circa 1000 secondi prima si scomparire. Questa osservazione aveva permesso di osservare alcune importanti proprieta’. Nel 2012, sempre al CERN, un altro esperimento era riuscito a misurare altre importanti proprieta’ di questi anti-atomi, facendo ben sperare per il futuro.

Ora, invece, sempre il CERN ha annunciato di essere riuscito per la prima volta a produrre addirittura un fascio di anti-idrogeni. L’annuncio ‘e stato dato sul sito del laboratorio svizzero:

CERN, ASACUSA NEWS

e pubblicato sull’autorevole rivista Nature.

La scoperta e’ stata realizzata dalla collaborazione internazionale ASACUSA, di cui fanno parte anche alcuni ricercatori del nostro Istituto Nazionale di Fiscia Nucleare.

Cosa sarebbero questi anti-idrogeni?

Seguendo il ragionamento fatto, questi speciali atomi sono composti dagli analoghi di antimateria di protone e elettrone. Se l’idrogeno ha un nucleo composto da un protone con un elettrone che gira intorno, un anti-idrogeno e’ composto da un anti-protone, carico negativamente, e un positrone che gira intorno, carico positivamente. Come potete facilmente capire, in questo gioco di costruzione di atomi, siamo alla struttura piu’ semplice conosciuta ma, come vedremo tra poco, fondamentale per la comprensione dell’universo.

Come e’ stato fatto questo esperimento?

L'esperimento ASACUSA del CERN

L’esperimento ASACUSA del CERN

Senza annoiarvi con tecnicismi, gli anti-idrogeni sono prodotti da un deceleratore di antiprotoni e poi allontanati dal punto di produzione ad una distanza sufficiente a non risentire dei campi magnetici. Questo accorgimento e’ fondamentale per stabilizzare gli anti-atomi che altrimenti si scomporrebbero scomparendo. Come vedete nella foto riportata, la camera da vuoto utilizzata e’ infatti un lungo tubo e gli anti-idrogeni sono stati osservati e immobilizzati ad una distanza di quasi 3 metri dal punto di produzione.

Perche’ e’ cosi’ importante l’anti-idrogeno?

La sua semplicita’ rispetto agli atomi piu’ pesanti, sia per materia che per anti-materia, ha fatto si che questi siano stati i primi atomi stabili creati nell’universo in espansione. Secondo la teoria, idrogeno e anti-idrogeno dovrebbero avere esattamente lo stesso spettro di emissione. Poter disporre in laboratorio di un fascio stabile di anti-atomi consentira’ di studiare a fondo le caratteristiche di questa struttura analizzando nei minimi dettagli ogni minima possibile discrepanza con l’idrogeno. Queste caratteristiche aiuterebbero notevolmente nella comprensione dell’asimmetria tra materia e anti-materia dando una notevola spinta in avanti nella comprensione della nascita del nostro universo e nella ricerca di ogni possibile accumulo di anti-materia.

Concludendo, questa importante notizia apre nuovi scenari nello studio della fisica di base, offrendo un’occasione fondamentale per comprende il nostro universo. Come spesso avviene, molti siti e giornali si sono lanciati in speculazioni parlando di pericoli o applicazioni fantascientifiche che lasciano un po’ il tempo che trovano. Sicuramente, il futuro in questa branca della ricerca ha ancora molto da offrire e non possiamo che essere entusiasti delle novita’ che ancora ci attendono.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.