Tag Archives: forze

Charged Lepton Flavour Violation

6 Ott

Oggi vorrei mettere da parte UFO, complotti, scie chimiche, fine del mondo, ecc., per tornare a parlare di scienza pura. Lo vorrei fare con questo articolo spceifico, per trattare nuovamente lo stato attuale della ricerca e mostrarvi quali sono i settori più “caldi” e più promettenti nel panorama della fisica delle alte energie.

Per prima cosa, in diversi articoli abbiamo parlato di modello standard:

Dafne e KLOE: alta energia in Italia

E parliamo di questo Big Bang

Universo: foto da piccolo

Ascoltate finalmente le onde gravitazionali?

Il primo vagito dell’universo

L’espansione metrica dell’universo

Come abbiamo visto, il Modello Standard è quella teoria che oggi abbiamo definito e che consente di prevedere molte delle proprietà che osserviamo per le particelle. Vi ricordo che in fisica parliamo sempre di modello proprio per indicare un qualcosa in grado di prevedere le proprietà sperimentali.

Anche se poco conosciuto ai non addetti ai lavori, il Modello Standard è stato molto citato parlando del Bosone di Higgs. Come tutti sanno, il nostro modello, che ha resistito per decenni, presenta una particolare mancanza: non è in grado di prevedere l’esistenza della massa delle particelle. Come correggere questa grave imprecisione? Che le particelle abbiano massa è noto a tutti e facilmente dimostrabile anche guardando la materia che ci circonda. Bene, per poter correggere questo “errore” è possibile inserire quello che è noto come Meccanismo di Higgs, una correzione matematica che consente al modello standard di poter prevedere l’esistenza della massa. Bene, dunque ora è tutto OK? Assolutamente no, affinché il meccanismo di Higgs possa essere inserito è necessario che sia presente quello che viene chiamato un Campo di Higgs e, soprattutto, un bosone intermedio che, neanche a dirlo, si chiama Bosone di Higgs.

Capite dunque perchè la scoperta sperimentale del Bosone di Higgs è così importante?

Del bosone di Higgs, di LHC e delle sue conseguenze abbiamo parlato in questi articoli:

Bosone di Higgs … ma cosa sarebbe?

L’universo è stabile, instabile o meta-stabile?

Hawking e la fine del mondo

2012, fine del mondo e LHC

A questo punto si potrebbe pensare di aver raggiunto il traguardo finale e di aver compreso tutto. Purtroppo, o per fortuna a seconda dei punti di vista, questo non è assolutamente vero.

Perchè?

Come è noto a tutti, esistono alcuni problemi aperti nel campo della fisica e su cui si discute già da moltissimi anni, primo tra tutti quello della materia oscura. Il nostro amato Modello Standard non prevede assolutamente l’esistenza della materia oscura di cui abbiamo moltissime verifiche indirette. Solo per completezza, e senza ripetermi, vi ricordo che di materia e energia oscura abbiamo parlato in questi post:

La materia oscura

Materia oscura intorno alla Terra?

Flusso oscuro e grandi attrattori

Troppa antimateria nello spazio

Due parole sull’antimateria

Antimateria sulla notra testa!

L’esistenza della materia oscura, insieme ad altri problemi poco noti al grande pubblico, spingono i fisici a cercare quelli che vengono chiamati Segnali di Nuova Fisica, cioè decadimenti particolari, molto rari, in cui si possa evidenziare l’esistenza di particelle finora sconosciute e non contemplate nel modello standard delle particelle.

Per essere precisi, esistono moltissime teorie “oltre il modello standard” e di alcune di queste avrete già sentito parlare. La più nota è senza ombra di dubbio la Supersimmetria, o SuSy, teoria che prevede l’esistenza di una superparticella per ogni particella del modello standard. Secondo alcuni, proprio le superparticelle, che lasciatemi dire a dispetto del nome, e per non impressionarvi, non hanno alcun super potere, potrebbero essere le componenti principali della materia oscura.

Prima importante riflessione, la ricerca in fisica delle alte energie è tutt’altro che ad un punto morto. La scoperta, da confermare come detto negli articoli precedenti, del Bosone di Higgs rappresenta un importante tassello per la nostra comprensione dell’universo ma siamo ancora molto lontani, e forse mai ci arriveremo, dalla formulazione di una “teoria del tutto”.

Detto questo, quali sono le ricerche possibii per cercare di scoprire se esiste veramente una fisica oltre il modelo Standard delle particelle?

Detto molto semplicemente, si studiano alcuni fenomeni molto rari, cioè con bassa probabilità di avvenire, e si cerca di misurare una discrepanza significativa da quanto atteso dalle teorie tradizionali. Cosa significa? Come sapete, le particelle hanno una vita molto breve prima di decadere in qualcos’altro. I modi di decadimento di una data particella possono essere molteplici e non tutti avvengono con la stessa probabilità. Vi possono essere “canali”, cioè modi, di decadimento estremamente più rari di altri. Bene, alcuni di questi possono essere “viziati” dall’esistenza di particelle non convenzionali in grado di amplificare questo effetto o, addirittura, rendere possibili modi di decadimento non previsti dalla teoria convenzionale.

L’obiettivo della fisica delle alte energie è dunque quello di misurare con precisione estrema alcuni canali rari o impossibili, al fine di evidenziare segnali di nuova fisica.

Ovviamente, anche in questo caso, LHC rappresenta un’opportunità molto importante per questo tipo di ricerche. Un collisore di questo tipo, grazie alla enorme quantità di particelle prodotte, consente di poter misurare con precisione moltissimi parametri. Detto in altri termini, se volete misurare qualcosa di molto raro, dovete prima di tutto disporre di un campione di eventi molto abbondante dove provare a trovare quello che state cercando.

Un esempio concreto, di cui abbiamo parlato in questo post, è l’esperimento LhCB del CERN:

Ancora sullo squilibrio tra materia e antimateria

Una delle ricerche in corso ad LhCB è la misura del decadimento del Bs in una coppia di muoni. Niente paura, non voglio tediarvi con una noiosa spiegazione di fisica delle alte energie. Il Bs è un mesone composto da due quark e secondo il modello standard può decadere in una coppia di muoni con una certa probabilità, estremamente bassa. Eventuali discordanze tra la probabilità misurata di decadimento del Bs in due muoni e quella prevista dal modello standard potrebbe essere un chiaro segnale di nuova fisica, cioè di qualcosa oltre il modello standard in grado di modificare queste proprietà.

Misurare la probabilità di questo decadimento è qualcosa di estremamente difficile. Se da un lato avete una particella che decade in due muoni facilmente riconoscibili, identificare questo decadimento in mezzo a un mare di altre particelle è assai arduo e ha impegnato moltissimi fisici per diverso tempo.

Purtroppo, o per fortuna anche qui, gli ultimi risultati portati da LhCB, anche in collaborazione con CMS, hanno mostrato una probabilità di decadimento paragonabile a quella attesa dal modello standard. Questo però non esclude ancora nulla dal momento che con i nuovi dati di LHC sarà possibile aumentare ancora di più la precisione della misura e continuare a cercare effetti non previsti dalla teoria.

Tra gli altri esperimenti in corso in questa direzione, vorrei poi parlarvi di quelli per la ricerca della “violazione del numero Leptonico”. Perdonatemi il campanilismo, ma vi parlo di questi semplicemente perchè proprio a questo settore è dedicata una mia parte significativa di ricerca.

Cerchiamo di andare con ordine, mantenendo sempre un profilo molto divulgativo.

Come visto negli articoli precedenti, nel nostro modello standard, oltre ai bosoni intermedi, abbiamo una serie di particelle elementari divise in quark e leptoni. Tra questi ultimi troviamo: elettrone, muone, tau e i corrispondendi neutrini. Bene, come sapete esistono delle proprietà in fisica che devono conservarsi durante i decadimenti di cui abbiamo parlato prima. Per farvi un esempio noto a tutti, in un decadimento dobbiamo mantenere la carica elettrica delle particelle, se ho una particella carica positiva che decade in qualcosa, questo qualcosa deve avere, al netto, una carica positiva. La stessa cosa avviene per il numero leptonico, cioè per quella che possiamo definire come un’etichetta per ciascun leptone. In tal caso, ad esempio, un elettrone non può decadere in un muone perchè sarebbe violato, appunto, il numero leptonico.

Facciamo un respiro e manteniamo la calma, la parte più tecnica è già conclusa. Abbiamo capito che un decadimento in cui un leptone di un certo tipo, muone, elettrone o tau, si converte in un altro non è possibile. Avete già capito dove voglio andare a finire? Se questi decadimenti non sono possibili per la teoria attuale, andiamo a cercarli per verificare se esistono influenze da qualcosa non ancora contemplato.

In realtà, anche in questo caso, questi decadimenti non sono del tutto impossibili, ma sono, come per il Bs in due muoni, fortemente soppressi. Per farvi un esempio, l’esperimento Opera dei Laboratori Nazionali del Gran Sasso, misura proprio l’oscillazione dei neutrini cioè la conversione di un neutrino di un certo tipo in un altro. Ovviamente, appartendendo alla famiglia dei leptoni, anche i neutrini hanno un numero leptonico e una loro trasformazione da un tipo all’altro rappresenta una violazione del numero leptonico, quella che si chiama Neutral Lepton Flavour Violation. Per la precisione, questi decadimenti sono possibili dal momento che, anche se estremamente piccola, i neutrini hanno una massa.

Bene, la ricerca della violazione del numero Leptonico in particelle cariche, è uno dei filoni più promettenti della ricerca. In questo settore, troviamo due esperimenti principali che, con modalità diverse, hanno ricercato o ricercheranno questi eventi, MEG a Zurigo a Mu2e a Chicago.

Mentre MEG ha già raccolto molti dati, Mu2e entrerà in funzione a partire dal 2019. Come funzionano questi esperimenti? Detto molto semplicemente, si cercano eventi di conversione tra leptoni, eventi molto rari e dominati da tantissimi fondi, cioè segnali di dcadimenti più probabili che possono confondersi con il segnale cercato.

Secondo il modello standard, questi processi sono, come già discusso, fortemente soppressi cioè hanno una probabilità di avvenire molto bassa. Una misura della probabilità di decadimemto maggiore di quella attesa, sarebbe un chiaro segnale di nuova fisica. Detto questo, capite bene perchè si parla di questi esperimenti come probabili misure da nobel qualora i risultati fossero diversi da quelli attesi.

L’esperimento MEG ha già preso moltissimi dati ma, ad oggi, ha misurato valori ancora in linea con la teoria. Questo perchè la risoluzione dell’esperimento potrebbe non essere sufficiente per evidenziare segnali di nuova fisica.

A livelo tecnico, MEG e Mu2e cercano lo stesso effetto ma sfruttando canali di decadimento diverso. Mentre MEG, come il nome stesso suggerisce, cerca un decadimento di muone in elettrone più fotone, Mu2e cerca la conversione di muone in elettrone senza fotone ma nel campo di un nucleo.

Ad oggi, è in corso un lavoro molto specifico per la definizione dell’esperimento Mu2e e per la scelta finale dei rivelatori da utilizzare. Il gruppo italiano, di cui faccio parte, è impegnato in uno di questi rivelatori che prevede la costruzione di un calorimetro a cristallo che, speriamo, dovrebbe raggiungere risoluzioni molto spinte ed in grado di evidenziare, qualora presenti, eventuali segnali di nuova fisica.

Concludnedo, la ricerca nella fisica delle alte energie è tutt’altro che morta ed è sempre attiva su molti fronti. Come detto, molti sforzi sono attualmente in atto per la ricerca di segnali di nuova fisica o, come noi stessi li abbiamo definiti, oltre il modello standard. Detto questo, non resta che attendere i prossimi risultati per capire cosa dobbiamo aspettarci e, soprattutto, per capire quanto ancora poco conosciamo del mondo dell’infinitamente piccolo che però regola il nostro stesso universo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Presunte previsioni di Terremoti

22 Apr

Di Patrizia Esposito

———————————————————————————————————————–

Torno ad “approfittare” dello spazio che Matteo mi ha concesso sul blog per parlare nuovamente di terremoti. Il titolo dell’articolo che vi presento oggi è il nome di una sezione del forum Psicosi 2012, dedicata alle previsioni “ad capocchiam” dei terremoti, cioè quelle che indicano il giorno e il luogo esatti di un sisma (preferibilmente catastrofico) sulla base dei parametri più bislacchi (apparizioni, profezie, ecc.). L’ultimissima della serie- segnalata da un nostro caro utente- è quella di un tizio che aveva previsto per il 17 aprile scorso niente poco di meno che il Big One in California. Ma magari bastasse la lettura dei tarocchi per prevedere eventi catastrofici e salvare vite umane! La previsione dei terremoti è una materia spinosa e complessa alla quale si dedicano anima e corpo ricercatori scientifici seri. A tal proposito, vorrei illustrarvi qui di seguito uno studio tutto italiano che, a mio avviso, aggiunge un tassello interessante al mosaico della comprensione dei meccanismi che generano i terremoti. Buona lettura a tutti.

———————————————————————————————————————–

Sul numero di marzo di Le Scienze è stato pubblicato un sunto dello studio condotto da Carlo Doglioni, Salvatore Barba, Eugenio Carminati e Federica Riguzzi. (1) Gli autori hanno analizzato la relazione tra la sismicità e il tasso di deformazione, evidenziando come le aree con terremoti più intensi siano quelle in cui la velocità di deformazione delle rocce è più bassa rispetto alle aree circostanti. Sono partiti dal considerare la crosta terrestre suddivisa in due porzioni: crosta superiore e crosta inferiore. La prima, spessa mediamente 15 km, ha un comportamento fragile ed è influenzata dalla pressione: il carico litostatico, che aumenta con la profondità, esercita una forza di contenimento sulle rocce, rendendole più stabili e aumentandone la resistenza. La crosta inferiore, invece, ha un comportamento duttile ed è influenzata dalla temperatura: il gradiente termico, che diminuisce con la profondità, indebolisce i legami dei reticoli cristallini rendendo le rocce meno stabili. Che cosa significa questo? Significa che le rocce crostali non si deformano tutte allo stesso modo. Infatti, quelle della crosta superiore si deformano “a scatti” attraverso l’attivazione delle faglie, quelle della crosta inferiore, invece, si deformano costantemente nel tempo, senza perdita di coesione, attraverso la distorsione dei reticoli cristallini:

Diverso comportamento meccanico della crosta superiore e della crosta inferiore.

Diverso comportamento meccanico della crosta superiore e della crosta inferiore.

I terremoti sono associati alle deformazione fragili. La transizione tra le due porzioni crostali con diverso comportamento meccanico, detta “transizione fragile-duttile”, corrisponde alla massima resistenza delle rocce, cioè la profondità a cui è necessaria l’energia massima per romperle. Più è profonda questa transizione e più lunga è una faglia, maggiore è il volume di rocce coinvolte nel sisma, quindi maggiore sarà la magnitudo. Per descrivere un evento sismico si utilizzano diversi valori numerici, come la magnitudo momento, la magnitudo locale e l’intensità macrosismica (il fatto stesso che per descrivere un sisma si prendano in considerazione diversi parametri sta ad indicare la complessità del fenomeno).

La legge di Gutenberg-Richter è l’espressione analitica della forza che agisce contemporaneamente sul guscio terrestre e che è responsabile della distribuzione sismica sul pianeta. L’origine di questa forza è ancora nel campo delle ipotesi, tra le quali sono contemplati i moti convettivi nel mantello e gli effetti della rotazione terrestre che spiegherebbero l’attuale deriva verso ovest delle placche litosferiche. La diversa velocità di queste ultime dipende dal grado di disaccoppiamento mantello-litosfera che è funzione della variazione di viscosità nel mantello: maggiore è la viscosità, minore è la velocità della placca.

Funzionamento delle faglie in funzione della transizione “fragile-duttile”.

Funzionamento delle faglie in funzione della transizione “fragile-duttile”.

In figura è illustrato il funzionamento delle faglie in relazione alla transizione fragile-duttile. Nel caso di faglia distensiva la transizione si configura come una zona dilatata in cui si formano delle fratture e dei vuoti che si riempiono di fluidi, in conseguenza all’accomodamento della crosta inferiore in lento ma costante movimento rispetto alla crosta superiore bloccata. Questa zona si espanderà fino a quando non sarà più in grado di sorreggere la parte alta (“tetto” della faglia), a quel punto le rocce si romperanno, il blocco cadrà sotto il suo stesso peso e l’energia potenziale gravitazionale accumulata sarà liberata attraverso le onde sismiche del terremoto. I fluidi presenti saranno espulsi come quando si strizza una spugna e migreranno verso l’alto: ecco perché un evento sismico è accompagnato da una risalita delle falde e da un aumento della portata delle sorgenti. Dopo la scossa principale, il tetto della faglia deve raggiungere una nuova condizione di equilibrio e questo avviene mediante le scosse di assestamento. Nel caso di faglia inversa, invece, la transizione si configura come una fascia in sovrapressione . Le rocce accumulano energia elastica fino al punto di rottura, quando le forze di deformazione superano la resistenza delle rocce e il tetto della faglia viene scagliato verso l’alto, originando il terremoto (possiamo assimilare questo meccanismo ad una molla prima totalmente compressa e poi espansa). Generalmente i terremoti associati a faglie compressive sono più violenti perché occorre più energia per vincere le forze di compressione e perché in questo contesto geodinamico occorre vincere anche la forza di gravità.

Relazione tra tasso di deformazione e magnitudo dei terremoti.

Relazione tra tasso di deformazione e magnitudo dei terremoti.

In figura sono riportati i risultati di osservazioni effettuate sulla sismicità in Italia in un intervallo temporale che va dal 1° gennaio 2007 al 31 dicembre 2011.

In particolare, sono stati messi in relazione i terremoti di magnitudo superiore a 3 con i tassi di deformazione ottenuti in corrispondenza di ciascuno degli epicentri. Il dato più importante è rappresentato dal fatto che i terremoti di magnitudo superiore a 4 sono avvenuti tutti in aree in cui il tasso di deformazione è inferiore a 40 nanostrain per anno (1 nanostrain= 1 mm ogni 1000 chilometri). Cosa significa questo? Significa che le aree che si deformano più lentamente rispetto alle aree circostanti sono le aree crostali “bloccate” che stanno accumulando energia . Anche se l’intervallo di osservazione ha dei limiti temporali, il valore stabilito può essere preso in considerazione come un parametro utile ad individuare aree a sismicità significativa. Sulla mappa della velocità di deformazione si possono sovrapporre le faglie attive note. E’ interessante notare come il terremoto de L’Aquila (2009) e quello in Emilia (2012) siano avvenuti in aree a basso tasso di deformazione. Lo studio condotto si è basato sui dati forniti dalla rete GPS e su modelli numerici. In conclusione: questa nuova idea sui terremoti non serve a sapere con esattezza quando e dove si registrerà un sisma ma può indirizzare gli studi verso aree con maggiore “urgenza” sismica, in cui fare prevenzione attraverso l’adeguamento antisismico degli edifici non a norma e l’educazione al rischio sismico. Vorrei sottolineare ancora una volta come lo studio dei terremoti sia reso complicato dall’impossibilità di investigare il sottosuolo alle profondità di interesse e quella di riprodurre perfettamente in laboratorio le condizioni di stress a cui sono sottoposte le rocce in profondità. Di certo un approccio multidisciplinare può migliorare i metodi di previsione.

Ad ogni modo, diffidate da tutte le previsioni “ad capocchiam” di cui è piena la rete!!

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’espansione metrica dell’universo

8 Apr

In questo blog, abbiamo dedicato diversi articoli al nostro universo, alla sua storia, al suo destino, alla tipologia di materia o non materia di cui e’ formato, cercando, come e’ ovvio, ogni volta di mettere il tutto in una forma quanto piu’ possibile comprensibile e divulgativa. Per chi avesse perso questi articoli, o solo come semplice ripasso, vi riporto qualche link riassuntivo:

E parliamo di questo Big Bang

Il primo vagito dell’universo

Universo: foto da piccolo

La materia oscura

Materia oscura intorno alla Terra?

Due parole sull’antimateria

Flusso oscuro e grandi attrattori

Ascoltate finalmente le onde gravitazionali?

Come e’ ovvio, rendere questi concetti fruibili a fini divulgativi non e’ semplice. Per prima cosa, si deve evitare di mettere formule matematiche e, soprattutto, si deve sempre riflettere molto bene su ogni singola frase. Un concetto che potrebbe sembrare scontato e banale per un addetto ai lavori, potrebbe essere del tutto sconosciuto a chi, non avendo basi scientifiche solide, prova ad informarsi su argomenti di questo tipo.

Perche’ faccio questo preambolo?

Pochi giorni fa, un nostro lettore mi ha contatto via mail per chiedermi di spiegare meglio il discorso dell’espansione dell’universo. Per essere precisi, la domanda era relativa non all’espansione in se, ma a quella che viene appunto definita “espansione metrica” dell’universo. Cosa significa? Come visto varie volte, l’idea comunemente accettata e’ che l’universo sia nato da un Big Bang e durante questa espansione si sono prima formate le forze, il tempo, le particelle, poi i pianeti, le galassie e via dicendo. Ci sono prove di questo? Assolutamente si e ne abbiamo parlato, anche in questo caso, piu’ volte: la radiazione cosmica di fondo, lo spostamento verso il rosso delle galassie lontane, le conclusioni stesse portate dalla scoperta del bosone di Higgs e via dicendo. Dunque? Che significa espansione metrica dell’universo? In parole povere, noi diciamo che l’universo si sta espandendo, e che sta anche accelerando, ma come possiamo essere certi di questo? Che forma ha l’universo? Per quanto ancora si espandera’? Poi cosa succedera’? Sempre nella domanda iniziale, veniva posto anche un quesito molto interessante: ma se non fosse l’universo ad espandersi ma la materia a contrarsi? L’effetto sarebbe lo stesso perche’ la mutua distanza tra due corpi aumenterebbe nel tempo dando esattamente lo stesso effetto apparente che vediamo oggi.

Come potete capire, di domande ne abbiamo fin troppe a cui rispondere. Purtroppo, e lo dico in tutta sincerita’, rendere in forma divulgativa questi concetti non e’ molto semplice. Come potete verificare, raccontare a parole che il tutto sia nato da un Big Bang, che ci sia stata l’inflazione e si sia formata la radiazione di fondo e’ cosa abbastanza fattibile, parlare invece di forma dell’universo e metrica non e’ assolutamente semplice soprattutto senza poter citare formule matematiche che per essere comprese richiedono delle solide basi scientifiche su cui ragionare.

Cerchiamo dunque di andare con ordine e parlare dei vari quesiti aperti.

Come visto in altri articoli, si dice che il Big Bang non e’ avvenuto in un punto preciso ma ovunque e l’effetto dell’espansione e’ visibile perche’ ogni coppia di punti si allontana come se ciascun punto dell’universo fosse centro dell’espansione. Cosa significa? L’esempio classico che viene fatto e’ quello del palloncino su cui vengono disegnati dei punti:

Esempio del palloncino per spiegare l'espansione dell'universo

Esempio del palloncino per spiegare l’espansione dell’universo

Quando gonfiate il palloncino, i punti presenti sulla superficie si allontanano tra loro e questo e’ vero per qualsiasi coppia di punti. Se immaginiamo di essere su un punto della superficie, vedremo tutti gli altri punti che si allontanano da noi. Bene, questo e’ l’esempio del Big Bang.

Ci sono prove di questo? Assolutamente si. La presenza della CMB e’ proprio un’evidenza che ci sia stato un Big Bang iniziale. Poi c’e’ lo spostamento verso il rosso, come viene definito, delle galassie lontane. Cosa significa questo? Siamo sulla Terra e osserviamo le galassie lontane. La radiazione che ci arriva, non necessariamente con una lunghezza d’onda nel visibile, e’ caratteristica del corpo che la emette. Misurando questa radiazione ci accorgiamo pero’ che la frequenza, o la lunghezza d’onda, sono spostate verso il rosso, cioe’ la lunghezza d’onda e’ maggiore di quella che ci aspetteremmo. Perche’ avviene questo? Questo effetto e’ prodotto proprio dal fatto che la sorgente che emette la radiazione e’ in moto rispetto a noi e poiche’ lo spostamento e’ verso il rosso, questa sorgente si sta allontanando. A questo punto sorge pero’ un quesito molto semplice e comune a molti. Come sapete, per quanto grande rapportata alle nostre scale, la velocita’ della luce non e’ infinita ma ha un valore ben preciso. Questo significa che la radiazione emessa dal corpo lontano impiega un tempo non nullo per raggiungere la Terra. Come spesso si dice, quando osserviamo stelle lontane non guardiamo la stella come e’ oggi, ma come appariva quando la radiazione e’ stata emessa. Facciamo l’esempio classico e facile del Sole. La luce emessa dal Sole impiega 8 minuti per arrivare sulla Terra. Se noi guardiamo ora il Sole lo vediamo come era 8 minuti fa. Se, per assurdo, il sole dovesse scomparire improvvisamente da un momento all’altro, noi ce ne accorgeremmo dopo 8 minuti. Ora, se pensiamo ad una stella lontana 100 anni luce da noi, quella che vediamo e’ la stella non come e’ oggi, ma come era 100 anni fa. Tornando allo spostamento verso il rosso, poiche’ parliamo di galassie lontane, la radiazione che ci arriva e’ stata emessa moltissimo tempo fa. Domanda: osservando la luce notiamo uno spostamento verso il rosso ma questa luce e’ stata emessa, supponiamo, mille anni fa. Da quanto detto si potrebbe concludere che l’universo magari era in espansione 1000 anni fa, come da esempio, mentre oggi non lo e’ piu’. In realta’, non e’ cosi’. Lo spostamento verso il rosso avviene a causa del movimento odierno tra i corpi e dunque utilizzare galassie lontane ci consente di osservare fotoni che hanno viaggiato piu’ a lungo e da cui si ottengono misure piu’ precise. Dunque, da queste misure, l’universo e’ in espansione e’ lo e’ adesso. Queste misurazioni sono quelle che hanno portato Hubble a formulare la sua famosa legge da cui si e’ ricavata per la prima volta l’evidenza di un universo in espansione.

Bene, l’universo e’ in espansione, ma se ci pensate questo risultato e’ in apparente paradosso se pensiamo alla forza di gravita’. Perche’? Negli articoli precedentemente citati, abbiamo piu’ volte parlato della gravita’ citando la teoria della gravitazione universale di Newton. Come e’ noto, due masse poste a distanza r si attraggono con una forza che dipende dal prodotto delle masse ed e’ inversamente proporzionale al quadrato della loro distanza. Ora, nel nostro universo ci sono masse distribuite qui a la in modo piu’ o meno uniforme. Se pensiamo solo alla forza di gravita’, una coppia qualunque di queste masse si attrae e quindi le due masse tenderanno ad avvicinarsi. Se anche pensiamo ad una spinta iniziale data dal Big Bang, ad un certo punto questa spinta dovra’ terminare controbilanciata dalla somma delle forze di attrazione gravitazionale. In altre parole, non e’ possibile pensare ad un universo che si espande sempre se abbiamo solo forze attrattive che lo governano.

Questo problema ha angosciato l’esistenza di molti scienziati a partire dai primi anni del ‘900. Lo stesso Einstein, per cercare di risolvere questo problema dovette introdurre nella Relativita’ Generale quella che defini’ una costante cosmologica, a suo avviso, un artificio di calcolo che serviva per bilanciare in qualche modo l’attrazione gravitazionale. L’introduzione di questa costante venne definita dallo stesso Einstein il piu’ grande errore della sua vita. Oggi sappiamo che non e’ cosi’, e che la costante cosmologica e’ necessaria nelle equazioni non come artificio di calcolo ma, in ultima analisi, proprio per giustificare la presenza di componenti non barioniche, energia oscura in primis, che consentono di spiegare l’espansione dell’universo. Se vogliamo essere precisi, Einstein introdusse la costante non per avere un universo in espansione bensi’ un universo statico nel tempo. In altre parole, la sua costante serviva proprio a bilanciare esattamente l’attrazione e rendere il tutto fermo. Solo osservazioni successive, tra cui quella gia’ citata dello stesso Hubble, confermarono che l’universo non era assolutamente statico bensi’ in espansione.

Ora, a questo punto, potremmo decidere insieme di suicidarci dal punto di vista divulgativo e parlare della metrica dell’universo, di coordinate comoventi, ecc. Ma questo, ovviamente, implicherebbe fogli di calcoli e basi scientifiche non banali. Abbiamo le prove che l’universo e’ in espansione, dunque, ad esempio, guardando dalla Terra vediamo gli altri corpi che si allontanano da noi. Come si allontanano? O meglio, di nuovo, che forma avrebbe questo universo?

L’esempio del palloncino fatto prima per spiegare l’espansione dell’universo, e’ molto utile per far capire questi concetti, ma assolutamente fuoriviante se non ci si riflette abbstanza. Molto spesso, si confonde questo esempio affermando che l’universo sia rappresentato dall’intero palloncino compreso il suo volume interno. Questo e’ concettualmente sbagliato. Come detto in precedenza, i punti si trovano solo ed esclusivamente sulla superficie esterna del palloncino che rappresenta il nostro universo.

A complicare, o a confondere, ancora di piu’ le idee c’e’ l’esempio del pane con l’uvetta che viene usato per spiegare l’espansione dell’universo. Anche su wikipedia trovate questo esempio rappresentato con una bella animazione:

Esempio del pane dell'uvetta utilizzato per spiegare l'aumento della distanza tra i punti

Esempio del pane dell’uvetta utilizzato per spiegare l’aumento della distanza tra i punti

Come vedete, durante l’espansione la distanza tra i punti cresce perche’ i punti stessi, cioe’ i corpi presenti nell’universo, vengono trascinati dall’espansione. Tornado alla domanda iniziale da cui siamo partiti, potremmo penare che in realta’ lo spazio resti a volume costante e quello che diminuisce e’ il volume della materia. Il lettore che ci ha fatto la domanda, mi ha anche inviato una figura esplicativa per spiegare meglio il concetto:

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Come vedete, pensando ad una contrazione della materia, avremmo esattamente lo stesso effetto con la distanza mutua tra i corpi che aumenta mentre il volume occupato dall’universo resta costante.

Ragioniamo pero’ su questo concetto. Come detto, a supporto dell’espansione dell’universo, abbiamo la legge di Hubble, e anche altre prove, che ci permettono di dire che l’universo si sta espandendo. In particolare, lo spostamento verso il rosso della radiazione emessa ci conferma che e’ aumentato lo spazio tra i corpi considerati, sorgente di radiazione e bersaglio. Inoltre, la presenza dell’energia oscura serve proprio a spiegare questa evoluzione dell’universo. Se la condizione fosse quella riportata nell’immagine, cioe’ con la materia che si contrae, non ci sarebbe lo spostamento verso il rosso, e anche quello che viene definito Modello Standard del Cosmo, di cui abbiamo verifiche sperimentali, non sarebbe utilizzabile.

Resta pero’ da capire, e ritorno nuovamente su questo punto, che forma dovrebbe avere il nostro universo. Non sto cercando di volta in volta di scappare a questa domanda, semplicemente, stiamo cercando di costruire delle basi, divulgative, che ci possano consentire di capire questi ulteriori concetti.

Come detto, parlando del palloncino, non dobbiamo fare l’errore di considerare tutto il volume, ma solo la sua superificie. In particolare, come si dice in fisica, per capire la forma dell’universo dobbiamo capire che tipo di geometria assegnare allo spazio-tempo. Purtroppo, come imparato a scuola, siamo abituati a pensare alla geometria Euclidea, cioe’ quella che viene costruita su una superifice piana. In altre parole, siamo abituati a pensare che la somma degli angoli interni di un traiangolo sia di 180 gradi. Questo pero’ e’ vero solo per un triangolo disegnato su un piano. Non e’ assolutamente detto a priori che il nostro universo abbia una geometria Euclidea, cioe’ che sia piano.

Cosa significa?

Come e’ possibile dimostrare, la forma dell’universo dipende dalla densita’ di materia in esso contenuta. Come visto in precedenza, dipende dunque, come e’ ovvio pensare, dall’intensita’ della forza di attrazione gravitazionale presente. In particolare possiamo definire 3 curvature possibili in funzione del rapporto tra la densita’ di materia e quella che viene definita “densita’ critica”, cioe’ la quantita’ di materia che a causa dell’attrazione sarebbe in grado di fermare l’espasione. Graficamente, le tre curvature possibili vengono rappresentate con tre forme ben distinte:

Curvature possibili per l'universo in base al rapporto tra densita' di materia e densita' critica

Curvature possibili per l’universo in base al rapporto tra densita’ di materia e densita’ critica

Cosa significa? Se il rapporto e’ minore di uno, cioe’ non c’e’ massa a sufficienza per fermare l’espansione, questa continuera’ per un tempo infinito senza arrestarsi. In questo caso si parla di spazio a forma di sella. Se invece la curvatura e’ positiva, cioe’ la massa presente e’ maggiore del valore critico, l’espansione e’ destinata ad arrestarsi e l’universo iniziera’ ad un certo punto a contrarsi arrivando ad un Big Crunch, opposto al Big Bang. In questo caso la geometria dell’universo e’ rappresentata dalla sfera. Se invece la densita’ di materia presente e’ esattamente identica alla densita’ critica, in questo caso abbiamo una superficie piatta, cioe’ Euclidea, e l’espansione si arrestera’ ma solo dopo un tempo infinito.

Come potete capire, la densita’ di materia contenuta nell’universo determina non solo la forma di quest’ultimo, ma anche il suo destino ultimo in termini di espansione o contrazione. Fate pero’ attenzione ad un altro aspetto importante e molto spesso dimenticato. Se misuriamo questo rapporto di densita’, sappiamo automaticamente che forma ha il nostro universo? E’ vero il discorso sul suo destino ultimo, ma le rappresentazioni grafiche mostrate sono solo esplicative e non rappresentanti la realta’.

Perche’?

Semplice, per disegnare queste superifici, ripeto utilizzate solo per mostrare graficamente le diverse forme, come si e’ proceduto? Si e’ presa una superficie bidimensionale, l’equivalente di un foglio, e lo si e’ piegato seguendo le indicazioni date dal valore del rapporto di densita’. In realta’, lo spazio tempo e’ quadrimensionale, cioe’ ha 3 dimensioni spaziali e una temporale. Come potete capire molto facilmente, e’ impossibile sia disegnare che immaginare una superificie in uno spazio a 4 dimensioni! Questo significa che le forme rappresentate sono esplicative per far capire le differenze di forma, ma non rappresentano assolutamnete la reale forma dell’universo dal momento che sono ottenute eliminando una coordinata spaziale.

Qual e’ oggi il valore di questo rapporto di densita’? Come e’ ovvio, questo valore deve essere estrapolato basandosi sui dati raccolti da misure osservative nello spazio. Dal momento che sarebbe impossibile “contare” tutta la materia, questi valori vengono utilizzati per estrapolare poi il numero di barioni prodotti nel Big Bang. I migliori valori ottenuti oggi danno rapporti che sembrerebbero a cavallo di 1 anche se con incertezze ancora troppo elevate per avere una risposta definitiva.

Concludendo, affrontare queste tematiche in chiave divulgativa non e’ assolutamente semplice. Per quanto possibile, e nel limite delle mie possibilita’, spero di essere riuscito a farvi capire prima di tutto quali sono le verifiche sperimentali di cui disponiamo oggi e che sostengono le teorie di cui tanto sentiamo parlare. Queste misure, dirette o indirette che siano, ci permettono di capire che il nostro universo e’ con buona probabilita’ nato da un Big Bang, che sta attualmente espandendosi e questa espansione, almeno allo stato attuale, e’ destinata a fermarsi solo dopo un tempo infinito. Sicuramente, qualunque sia il destino ultimo del nostro universo, questo avverra’ in un tempo assolutamente molto piu’ grande della scala umana e solo la ricerca e la continua osservazione del cosmo ci possono permettere di fare chiarezza un poco alla volta.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’universo e’ stabile, instabile o meta-stabile?

25 Mar

Negli ultimi articoli, complici anche i tantissimi commenti e domande fatte, siamo tornati a parlare di ricerca e delle ultime misure scientifiche che tanto hanno fatto discutere. Come fatto notare pero’, molto spesso, queste discussioni che dovrebbero essere squisitamente scientifiche lasciano adito ad articoli su giornali, anche a diffusione nazionale, che male intendono o approfittano del clamore per sparare sentenze senza senso e, lasciatemelo dire, assolutamente fuori luogo.

In particole, nell’articolo precedente, abbiamo discusso l’ultima misura della massa del quark top ottenuta mediante la collaborazione dei fisici di LHC e del Tevetron. Questo risultato e’ il piu’ preciso mai ottenuto prima e ci consente, di volta in volta, di migliorare la nostra conoscenza, come spesso ripeto, sempre troppo risicata e assolutamente lontana dalla comprensione del tutto.

Per discutere la misura della massa del top, siamo partiti da una notizia apparsa sui giornali che parlava di un universo pronto a dissolversi da un istante all’altro. Premesso che, come fatto notare, questa notizia era completamente campata in aria, su suggerimento di una nostra cara lettrice, ci e’ stato chiesto di discutere con maggior dettaglio quello che molti chiamano il destino ultimo del nostro universo. Come forse avrete sentito, su alcune fonti si parla spesso di universo stabile, instabile o meta-stabile farfugliando, nel vero senso della parola, come questa particolarita’ sia legata alla massa di qualche particella.

Cerchiamo dunque di spiegare questo importante e non banale concetto cercando sempre di mantenere un approccio quanto possibile divulgativo.

Per prima cosa, dobbiamo tornare a parlare del bosone di Higgs. Come forse ricorderete, in un articolo specifico:

Bosone di Higgs, ma che sarebbe? 

abbiamo gia’ affrontato la sua scoperta, cercando in particolare di spiegare il perche’ l’evidenza di questa particella sarebbe cosi’ importnate nell’ambito del modello standard e della fisica delle alte energie. Come fatto notare pero’, anche in questo caso, parliamo ancora di “evidenza” e non di “scoperta”. Visto che me lo avete chiesto direttamente, ci tengo a sottolineare questa importante differenza.

Come sapete, la fisica e’ detta una “scienza esatta”. Il motivo di questa definizione e’ alquanto semplice: la fisica non e’ esatta perche’ basata su informazioni infinitamente esatte, ma perche’ ogni misura e’ accompagnata sempre da un’incertezza esattamente quantificata. Questa incertezza, e’ quella che comunemente viene chiamato “errore”, cioe’ il grado di confidenza statistico che si ha su un determinato valore. Per poter parlare di evidenza, e’ necessario che la probabilita’ di essersi sbagliati sia inferiore di un certo valore, ovviamente molto basso. Per poter invece gridare alla scoperta, la probabiita’ statistica che quanto misurato sia un errore deve essere ancora piu’ bassa. Questo grado di confidenza, ripeto prettamente statistico, e’ quello che spesso sentiamo valutare riferendosi alla “sigma” o “all’incertezza”.

Bene, tornando al bosone di Higgs, perche’ si dice che ancora non c’e’ la sicurezza che quanto osservato sia proprio quell’Higgs che cerchiamo? Semplice, il grado di confidenza, non ci consente ancora di poter affermare con sicurezza statistica che la particella osservata sia proprio il bosone di Higgs che cerchiamo e non “un” bosone di Higgs o un’altra particella. Come ormai sappiamo, il bosone di Higgs tanto cercato e’ proprio quello relativo al campo di Higgs che determina la massa delle particelle. Per poter essere quel bosone, la particella deve essere, in particolare, scalare e con spin zero. Che significa? Praticamente, queste sono le caratteristiche che definiscono l’identikit dell’Higgs che cerchiamo. Se per quanto riguarda il fatto di essere scalare siamo convinti, per lo spin della particella, dal momento che decade in due fotoni, potrebbe avere spin 0 o 2. Per poter essere sicuri che lo spin sia proprio zero, sara’ necessario raccogliere ancora piu’ dati per determinare con sicurezza questa proprieta’ anche se statisticamente possiamo escludere con una certa incetezza che lo spin sia 2.

Detto questo, e supposto, con una buona confidenza statistica, che quanto trovato sia proprio il bosone di Higgs, sappiamo che la massa trovata per questa particella e’ 125.6 GeV con un un’incertezza totale di 0.4 GeV. Questo valore della massa ha pero’ aperto le porte per una discussione teorica molto accesa e di cui si inizia a parlare anche sui giornali non prettamente scientifici.

Perche’?

Come anticipato, la massa del bosone di Higgs determina la condizione di stabilita’ o instabilita’ del nostro universo. Perche’ proprio l’Higgs? Ovviamente, questo bosone e’ correlato con il campo scalare di Higgs, cioe’ quello che assegna la massa delle particelle. Ora pero’, nel modello standard, troviamo particelle che hanno masse anche molto diverse tra loro. Se osserviamo i quark, passiamo dall’up, il piu’ leggero, al top, il piu’ pesante, con una differenza di massa veramente enorme per particelle che appartengono alla stessa “famiglia”. Detto questo, per determinare la condizione di equilibrio, e tra poco spiegheremo cosa significa, del nostro universo, e’ possibile ragionare considerando proprio le masse dell’Higgs e del top.

In che modo?

Senza spendere troppe parole, vi mostro un grafico molto significativo:

 

Stabilita' dell'universo data dalla correlazione delle masse Top-Higgs

Stabilita’ dell’universo data dalla correlazione delle masse Top-Higgs

Cosa significa questo grafico? Come potete vedere, incrociando il valore della massa del top con quella dell’Higgs e’ possibile capire in quale zona ci troviamo, appunto: stabile, instabile o meta-stabile. Scientificamente, queste sono le condizioni in cui puo’ trovarsi quello che e’ definito vuoto quantomeccanico dell’universo. Se l’universo fosse instabile, allora sarebbe transitato in una successione di stati diversi senza poter formare strutture complesse dovute all’evoluzione. Come potete facilmente capire, in questo caso, noi oggi non saremo qui ad interrogarci su come e’ fatto l’universo dal momento che non avremmo avuto neanche la possibilita’ di fare la nostra comparsa. In caso di universo stabile invece, come il termine stesso suggerisce, tutto rimane in uno stato stazionario senza grosse modificazioni. Meta-stabile invece cosa significa? Questo e’ un termine ricavato direttamente dalla termodinamica. Detto molto semplicemente, un sistema meta-stabile si trova in una posizione di minimo di energia non assoluto. Cioe’? Detto in altri termini, il sistema e’ in uno stato di equilibrio, ma sotto particolari condizioni puo’ uscire da questo stato e scendere verso qualcosa di piu’ stabile ancora. Per capirlo meglio, immaginate di mettere una scodella sul pavimento con dentro una pallina. Se muovete di poco la pallina questa oscillera’ e ricadra’ sul fondo, posizione di equilibrio meta-stabile. Se date un colpo piu’ forte, la pallina uscira’ dalla scodella e andra’ sul pavimento. A questo punto pero’ il vostro sistema immaginario ha raggiunto la posizione piu’ stabile.

Ora, capite bene quanto sia importante e interessante capire che tipo di sistema e’ il nostro universo per determinare eventuali e future evoluzioni temporali che potrebbero avvenire. Come visto nel grafico precedente, per capire lo stato dell’universo possiamo valutare le masse del top e dell’Higgs.

Cosa otteniamo con i valori delle masse oggi conosciuti? Come potete vedere, come per un simpatico scherzo, la massa dell’Higgs ci posizione proprio nella strettissima zona di meta-stabilita’ del nostro universo. Come anticipato, il fatto di non essere nella zona di instabilita’ e’ assolutamente comprensibile pensando al fatto che noi oggi siamo qui. Certo, una massa superiore a 126 GeV ci avrebbe piazzato nella zona stabile dove, come si dice nelle favole, “vissero felici e contenti”. Cosa comporta il fatto di essere nella regione di meta-stabilita’? Come qualcuno, incurante della scienza, cerca di farvi credere, siamo in bilico su una corda. Il nostro universo da un momento all’altro potrebbe transitare verso uno stato piu’ stabile modificando radicalmente le proprieta’ del vuoto quantomeccanico. In questo caso, il nostro universo collasserebbe e segnebbe la nostra fine.

E’ vero questo?

Assolutamente no. Prima di tutto, cerchiamo di ragionare. Come detto, la massa attuale del bosone di Higgs e’ 125.6+/-0.4 GeV. Questo significa che entro una certa probabilita’, piu’ del 15%, la massa del bosone potrebbe essere maggiore di 126 GeV. In questo caso la misura sarebbe pienamente della regione “stabile” dell’universo. Ovviamente, per poter determinare con precisione questo valore e’ necessario ridurre l’incertezza che accompagna la misura in modo da “stringere” l’intervallo entro cui potrebbe essere compresa questa massa.

Se anche l’universo fosse in uno stato meta-stabile, non possiamo certo pensare che da un momento all’altro questo potrebbe uscire dallo stato di equilibrio e transitare verso altro se non in particolari condizioni. Vi ripeto nuovamente come in questo caso ci stiamo muovendo all’interno di ragionamenti prettamente teorici in cui gli stessi principi della fisica che oggi conosciamo potrebbero non essere validi. Secondo alcuni infatti, la stessa evoluzione dell’universo che ha portato oggi fino a noi potrebbe essere stata possibile proprio grazie alla natura meta-stabile del vuoto quantomeccanico.

Come ricorderete, in questi articoli:

Universo: foto da piccolo

Ascoltate finalmente le onde gravitazionali?

cosi’ come in tutti quelli richiamati a loro volta, abbiamo parlato dell’inflazione, cioe’ di quel particolare periodo nell’evoluzione dell’universo che ha portato ad una notevole espansione in tempi brevissimi. Conseguenza dell’inflazione e’ l’avere un universo omogeneo ed isotropo ed in cui le fluttuazione della radiazione di fondo sono molto ridotte. Bene, il bosone di Higgs potrebbe avere avuto un ruolo decisivo per l’innesco del periodo inflazionario. Secondo alcune teorie, infatti, le condizioni fisiche per poter accendere l’inflazione potrebbero essere state date da una particella scalare e l’Higgs potrebbe appunto essere questa particella. Se proprio devo aprire una parentesi, per poter affermare con sicurezza questa cosa, dobbiamo essere sicuri che la fisica che conosciamo oggi possa essere applicata anche in quella particolare fase dell’universo, cioe’ che i modelli attualmente conosciuti possano essere estrapolati a quella che viene comunemente definita massa di Planck dove tutte le forze fondamentali si riunificano. Ovviamente, per poter affermare con sicurezza queste teorie sono necessarie ancora molte ricerche per determinare tutti i tasselli che ancora mancano a questo puzzle.

Seguendo questa chiave di lettura, il fatto di essere in un universo meta-stabile, piu’ che un rischio potrebbe essere stata proprio la caratteristica che ha permesso l’evoluzione che poi ha portato fino ai giorni nostri, con la razza umana presente sulla Terra.

Altro aspetto curioso e importante della meta-stabilita’ dell’universo e’ la possibilita’ di includere i cosiddetti multiversi. Detto molto semplicemente, il fatto che l’universo sia meta-stabile apre gli scenari ad una serie di universi paralleli tutti uno di seguito all’altro caratterizzati da valori continui di alcuni parametri fisici. Non si tratta di racconti fantascientifici o di fantasia ma di vere e proprie teorie fisiche riguardanti il nostro universo.

Concludendo, la scoperta, o l’evidenza, del bosone di Higgs e’ stata sicuramente un ottimo risultato raggiunto dalla fisica delle alte energie, ma certamente non un punto di arrivo. La misura, ancora solo preliminare, della massa della particella apre le porte a scenari di nuova fisica o di considerazioni molto importanti circa la natura del nostro stesso universo. Come visto in questo articolo, quelli che apparentemente potrebbero sembrare campi del sapere completamente diversi e lontani, l’infinitamente piccolo e l’infinitamente grande, sono in realta’ correlati tra loro proprio da singole misure, come quella della massa dell’Higgs. A questo punto, capite bene come lo scneario si fa sempre piu’ interessante e sara’ necessario fare ancora nuove ricerche prima di arrivare a qualcosa di certo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

(Quasi) pronta al lancio la missione GAIA

24 Ott

Diverse volte nei nostri articoli abbiamo parlato di astronomia, ma soprattutto della ricerca di esopianeti al di fuori del nostro sistema solare:

A caccia di vita sugli Esopianeti

Nuovi esopianeti. Questa volta ci siamo?

Esopianeti che non dovrebbero esserci

Ancora sugli esopianeti

Aggiornamento su Kepler

Come visto in particolare nell’ultimo articolo, la sonda Kepler, che tanto ha contribuito all’esplorazione della nostra Galassia, ha avuto gravi problemi di funzionamento al punto di inficiare il suo funzionamento.

Premesso questo, negli ultimi giorni, molti siti e giornali hanno invece parlato di una nuova missione quasi pronta al lancio da parte dell’ESA, con un’ampia partecipazione dei nostri ASI e INAF. La missione in questione e’ chiamata GAIA dove, come al solito, il nome non e’ altro che un acronimo che sta per Global Astrometric Interferometer for Astrophysics.

Prima di darvi qualche dettaglio tecnico sull’esperimento e dirvi a cosa servira’, partiamo invece dicendo a cosa “non” serve Gaia. Come di solito avviene, molti giornali e siti internet hanno preso la palla al balzo per inventare storielle fantastiche e rafforzare le paure degli ultimi tempi.

La missione GAIA

La missione GAIA

Leggendo in rete, trovate scritto che GAIA e’ una missione preparata in fretta e furia dall’ESA perche’, tastuali parole, gli astronomi si sono resi conto che qualcosa non torna nel nostro sistema solare e, finalmente, hanno preso in seria considerazione la possibilita’ che la nostra Terra possa essere colpita nel giro di poco tempo da qualche asteroide o cometa in grado di provocare estinzioni di massa o, peggio ancora, far scomparire del tutto il nostro pianeta. Inoltre, molti siti parlano di uno studio particolare atteso da Gaia per individuare nane brune nel nostro sistema solare e per tracciare corpi vagabondi che provengono da orbite particolari tali per cui questi oggetti sarebbero invisibili fino al momento dell’impatto con la Terra.

Cosa vi ricorda questa storia?

Ovvio, il tanto amato, citato e fantasticato Nibiru! Ovviamente, il tutto mescolato insieme nel solito brodo catastrofista. Nane brune nel sistema solare che creano pioggie di meteoriti, asteroidi killer che provengono da dietro il Sole e sono invisibili fino al momento dell’urto sulla Terra. Insomma, anche sulla missione Gaia, e notate il modo subdolo, senza citare espressamente la cosa, si cerca di rafforzare l’idea che Nibiru sia una minaccia reale ma coperta dai soliti scienziati che sanno ma non dicono.

Lasciamo perdere queste fantasie e vediamo invece come e’ fatta Gaia.

Prima premessa, per poter arrivare al momento del lancio di una qualsiasi missione, sono necessari anni di studi e preparazione. Pensare l’esperimento, fare calcoli di fattibilita’, studiare prototipi, ecc. Tutte operazioni che richiedono anni. Nel caso di Gaia, la missione e’ stata elaborata inizialmente prima ancora del 2000.

A cosa serve?

La missione punta ad ottenere una mappa 3D molto precisa delle stelle e degli oggetti vicini al sistema solare nella nostra Galassia, oltre ad una mappa meno precisa dei corpi piu’ lontani. La durata della missione dovrebbe essere all’incirca di 5 anni, periodo in cui Gaia potra’ osservare circa un miliardo di stelle.

Per ottenere queste risoluzioni, Gaia e’ dotata di due telescopi con punti di vista differenti ma focale in comune. Gli strumenti sono realizzati con una matrice di piu’ di 100 CCD che garantiranno una risoluzione intorno al miliardo di pixel. Detto in modo familiare, parliamo di 1000 Mega pixel se paragonata con le comuni macchine fotografiche.

Altro aspetto importante della missione e’ la posizione in cui il satellite orbitera’. Come potete leggere dalla vasta bibliografia, Gaia occupera’ il cosiddetto punto Lagrangiano 2, o anche L2 nel nostro sistema solare. Cosa significa? Detto in termini molto semplici, se prendiamo il sistema a tre corpi composto da Sole, Terra e Luna, come e’ noto questi interagiscono tra loro attraverso la mutua attrazione gravitazionale. Bene, visto nello spazio, a causa delle rotazioni, nel tempo e nollo spazio, l’intensita’ risultante delle tre forze non sara’ costante. Esistono pero’ dei punti particolari di equilibrio in cui le forze che agiscono sul corpo di massa minore, ad esempio, come in questo caso, il satellite che occupa il punto, si bilanciano esattamente.

Per farvi capire meglio, vi mostro un’immagine proprio del sistema Sole-Terra in cui sono riportati questi punti di equilibrio:

Punti lagrangiani in un sistema a 3 corpi

Punti lagrangiani in un sistema a 3 corpi

Come anticipato, Gaia si trovera’ proprio nel secondo punto lagrangiano. Oltre al discorso gravitazionale, questo particolare punto offre una condizione molto privilegiata: durante il suo moto Terra e Luna saranno fuori dal campo visivo del telescopio, la radiazione incidente non sara’ troppo elevata e si hanno condizioni di temperatura abbastanza costanti.

Durante la sua vita operativa, Gaia osservera’ circa 70 volte ciascuna porzione di cielo ad intervalli differenti. Questo e’ fondamentale per poter capire l’evoluzione nel tempo delle stelle osservate.

Quali sono gli obiettivi di Gaia?

Grazie ai suoi strumenti, Gaia potra’ registrare dati con una precisione quasi 200 volte maggiore dei suoi predecessori. Attraverso l’osservazione delle stelle, come anticipato, si potra’ studiare la dinamica dell’evoluzione oltre ad individuare nuovi esopianeti fuori dal sistema solare. Inoltre, la capacita’ di registrare dati a diverse lunghezze d’onda permettera’ di studiare la chimica dei corpi e ottenere informazioni nuove sull’origine della nostra galassia.

Dunque, siamo pronti a questa nuova avventura?

Purtroppo no. La data iniziale di lancio di Gaia era il 2011, come potete leggere in questo link dell’ASI:

ASI, Gaia

Da questa, sicuramente un po’ aggressiva, si era passati al 2013 e il lancio era atteso per la fine di quest’anno. Purtroppo, ci sara’ un nuovo slittamento e si spera di poter lanciare Gaia, la cui partenza sara’ fatta dallo spazioporto di Kourou nella Guiana francese, all’inizio dell’anno prossimo. Il ritardo e’ dovuto ad una serie di problemi tecnici evidenziati dall’ESA che dunque ha deciso, per motivi di sicurezza e di riuscita della missione, di rimandare di qualche mese il lancio.

Concludendo, la missione GAIA e’ quasi pronta al lancio. Come visto nell’articolo, non e’ assolutamente vero che questa missione e’ stata preparata in fretta e furia per studiare e valutare il rischio sempre crescente di scontro tra la Terra ed un asteroide proveniente dallo spazio. Al contrario, questa missione, come tutte le altre, ha richiesto anni di preparazione e di studio e i suoi obiettivi scientifici saranno molto importanti ed interessanti. Come visto, infatti, la missione si occupera’ di analizzare e registrare circa un miliardo di stelle nella nostra galassia ottenendo dati quasi 200 volte piu’ precisi di quelli delle missioni precedenti.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Le forze di marea

13 Ago

Nella sezione:

Hai domande o dubbi?

E’ stata posta una nuova domanda molto interessante e che credo sia il caso di discutere subito. Prima di cominciare, vi ricordo che questa sezione e’ stata appositamente creata per far si che chiunque possa richiedere argomenti specifici che, qualora non ancora trattati, verranno poi affrontati negli articoli al fine di stimolare una discussione costruttiva tra tutti i lettori.

Premesso questo, la domanda riguarda le cosiddette “forze mareali” o “di marea”.

Di cosa si tratta?

Partiamo, al solito, da quello che e’ noto a tutti: i pianeti dell’universo ruotano intorno al Sole grazie alla forza di gravita’ che li tiene uniti. Allo stesso modo, a distanze minori, molti pianeti del sistema solare presentano dei satelliti orbitanti intorno a loro. Ovviamente, anche questi sono tenuti insieme dalla forza di gravita’.

Ecco un primo risultato interessante e che spesso passa inosservato. Lo studio e la formulazione matematica della forza di gravita’, fatta per la prima volta da Newton, prende il nome di “teorie della gravitazione universale”. L’aggettivo “universale” non e’ assolutamente messo li per caso, ma sta ad indicare come la validita’ di questa legge sia vera a scale estremamente diverse tra loro. Se noi rimaniamo attaccati alla Terra e perche’ c’e’ la forza di gravita’. Se la Terra ruota intorno al Sole e’ perche’ c’e’ la forza di gravita’. Allo stesso modo, la rotazione del sistema solare intorno al centro della Galassia, cosi’ come il moto della Galassia stessa e’ possibile grazie alla forza di gravita’. Detto questo, capite bene perche’ viene attribuito l’aggettivo universale a questa legge.

Dal punto di vista fisico, due qualsiasi masse poste ad una certa distanza si attraggono secondo una forza direttamente proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato della loro distanza. Come anticipato questo e’ vero per due qualsiasi masse estese nello spazio.

Per andare avanti, concentriamoci pero’ sulla domanda fatta e dunque parliamo di forze di marea. Come e’ noto, l’innalzamento e l’abbassamento del livello delle acque sulla Terra e’ dovuto alla Luna, anche se, come vedremo, anche il Sole ha il suo contributo.

Alla luce di quanto detto prima, se la Terra attrae la Luna, ed e’ vero il viceversa, come mai i due corpi non vanno uno verso l’altro finendo per scontrarsi?

Il segreto della stabilita’ delle orbite e’ appunto nel moto di rotazione della Luna intorno alla Terra. Questo movimento genera una forza centrifuga diretta verso l’esterno che stabilizza il moto. Questo e’ lo stesso effetto che trovate per qualsiasi corpo in rotazione nell’universo. Per essere precisi, due corpi in rotazione tra loro, ruotano intorno al centro di massa del sistema. Nel caso di Terra e Luna, la differenza tra le masse e’ cosi’ grande che il centro di massa cade molto vicino al centro della Terra.

Detto questo, abbiamo capito perche’ il sistema puo’ ruotare stabilmente, ma ancora non abbiamo capito da dove si originano le maree.

Come anticipato, l’intensita’ della forza di attrazione gravitazionale e’ inversamente proporzionale al quadrato della distanza. Bene, rimaniamo nell’esempio Terra-Luna. L’attrazione subita dal nostro satellite per opera della Terra, non sara’ identica in ogni punto della Luna. Mi spiego meglio, provate a guardare questo disegno:

Forze di marea subite per attrazione gravitazionale

Forze di marea subite per attrazione gravitazionale

Il lato piu’ vicino all’altro pianeta subira’ un’attrazione maggiore dal momento che la distanza tra i due corpi e’ piu’ piccola. Questo e’ vero ogni qual volta siamo in presenza di corpi grandi. Analogamente, prendendo in esame il contributo centrifugo, la forza risultante tendera’ a spingere il lato vicino verso l’altro pianeta e allontare il lato lontano.

Ragioniamo su quanto detto senza perderci. Abbiamo un corpo esteso ad una certa distanza da qualcosa che lo attrae. Questa attrazione dipende dalla distanza tra i due corpi. Dal momento che abbiamo un corpo esteso, il lato che guarda il centro di attrazione sara’ necessariamente piu’ vicino subendo una forza maggiore rispetto al lato lontano.

Bene, questa differenza tra le interazioni tende ad allungare il corpo cioe’ a farlo passare da una sfera ad un elissoide. Queste sono appunto le forze di marea.

Quali effetti possiamo avere?

Nell’immagine riportata prima, si vedevano proprio le forze di marea esercitata dalla Luna sulla Terra. Come vedete, il lato verso la Luna e quello diametralmente opposto tendono ad allungarsi, provocando dunque un innalzamento delle acque. Negli punti perpendicolari al sistema invece, si avra’ uno schiacciamento e dunque un abbassamento del livello delle acque. Ecco spiegato come avvengono le maree. Ovviamente, poiche’ tutto il sistema e’ in movimento, i punti con alta e bassa marea cambieranno nel corso della giornata, presentando due cicli completi nell’arco del giorno.

Domanda lecita: perche’ nel calcolo delle maree consideriamo solo gli effetti della Luna trascurando completamente il Sole? Come sappiamo, la massa del Sole e’ notevolmente maggiore di quella della Luna quindi ci si aspetterebbe un contributo dominante. Come visto, le forze mareali si generano perche’ ci sono differenze significative tra l’attrazione subita da un lato del pianeta rispetto all’altro. Dal momento che la distanza tra la Terra e il Sole e’ molto piu’ elevata di quella Terra-Luna, la differenza di intensita’ dovuta all’attrazione solare e’ molto meno marcata. Detto in altri termini, a distanze maggiori un corpo esteso puo’ essere approssimato come un punto e dunque e’ molto piccola la forza di marea che si genera.

Effetti misurabili si possono avere quando Sole, Terra e Luna sono allineati, come avviene nel novilunio, dal momento che i contributi si sommano. In questo caso si possono dunque avere livelli di marea massimi, anche noti come maree sigiziali, cioe’ in cui la differenza di altezza tra alta e bassa marea raggiunge il picco.

Analogamente a quanto visto, anche la Luna subisce una forza di marea da parte della Terra. Dal momento pero’ che la Luna non e’ ricoperta da oceani, la resistenza meccanica alla distorsione e’ molto maggiore. In questo caso, l’effetto misurabile e’ una differenza di qualche kilometro tra l’asse rivolto verso la Terra e quello perpendicolare, tale da far apparire il nostro satellite come un elissoide.

Altro effetto delle forze di marea tra corpi estesi vicini e’ la sincronizzazione della rotazione. Come tutti sanno, la Luna rivolge sempre la stessa faccia verso la Terra. Detto in altri termini, a meno di “oscillazioni” che si registrano, un osservatore sulla Terra riesce a vedere sempre la stessa porzione di Luna o meglio, un lato della stessa rimane sempre invisibile al nostro sguardo, il cosiddetto “lato oscuro della Luna”.

Perche’ si ha questo comportamento?

Come anticipato, questo e’ dovuto alla rotazione sincrona della Luna intorno alla Terra. Detto molto semplicemente, il periodo di rotazione e di rivoluzione della Luna coincidono tra loro. Se volete, in parole povere, mentre la Luna si sta spostando sulla sua orbita, ruota su se stessa in modo tale da compensare  lo spostamento e mostrare sempre la stessa faccia a Terra. La figura puo’ aiutare meglio a comprendere questo risultato:

Rotazione sincrona tra satellite e pianeta. Fonte: wikipedia.

Rotazione sincrona tra satellite e pianeta. Fonte: wikipedia.

Ovviamente, parlare di stesso periodo di rivoluzione e rotazione non puo’ certo essere un caso. Rotazioni sincrone si hanno come conseguenza delle forze mareali potendo dimostrare che per corpi vicini tra loro, il moto tende ad essere sincrono in tempi astronomicamente brevi.

Parlando di forze di marea, ci siamo limitati a studiare il caso del sistema Terra-Luna. Seguendo la spiegazione data, capite bene come questi effetti possano essere estesi a due qualsiasi corpi in rotazione vicina tra loro. In tal senso, effetti di marea si possono avere in prossimita’ di buchi neri, di stelle di neutroni o anche di galassie, cioe’ corpi in grado di generare un elevato campo gravitazionale. In particolare, nel caso delle galassie le forze di marea tendono, in alcuni casi, ad allungare la forma spostando la posizione di corpi celesti che si allontanano a causa della differenza di attrazione.

Concludendo, abbiamo visto come la Luna possa generare sulla Terra le maree. L’effetto del Sole e’ in realta’ inferiore perche’ molto maggiore e’ la distanza che ci separa dalla nostra stella. Effetti di questo tipo vengono generati a causa della differenza di attrazione gravitazionale che si registra nei diversi punti di un corpo esteso. Queste differenze, generano appunto una forza risultante, detta di marea, che tende ad allungare il corpo. Effetti analoghi si possono avere per corpi piu’ estesi e comunque ogni qual volta si hanno due masse posizionate ad una distanza non troppo maggiore del diametro dei corpi.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Anche il giorno e’ relativo …. se siete altrove

12 Giu

Pensandoci, chissa’ quante volte avremo detto “se ci fosse un giorno di 48 ore, riuscirei a fare tutto”. Proprio relativamente a questo vorrei parlare in questo post, aprendo una piccola parentesi curiosita’ sui pianeti del sistema solare. In particolare, vorrei discutere la durata del giorno sui diversi pianeti, confrontandola proprio coi numeri a cui siamo abituati, cioe’ quello che osserviamo direttamente sulla Terra.

Per prima cosa, vi diro’ qualcosa di “sorprendente”, la Terra gira intorno al Sole in circa 365.25 giorni e gira su se stessa in “quasi 24 ore”. Solo per curiosita’, quel 0,25 in piu’ nel periodo di rivoluzione e’ proprio il responsabile dell’inserimento di un anno bisestile ogni quattro. Questa soluzione serve a recuperare lo scarto che, in caso contrario, provocherebbe una differenza crescente tra periodo dell’anno ed effettiva posizione intorno al Sole.

Bene, l’alternarsi delle stagioni, che indica l’anno terrestre, e’ semplicemnete dato dalla pozione della Terra sull’orbita fatta intorno al Sole. Come detto, in poco piu’ di 365 giorni, la Terra tornera’ nella stessa posizione.

Quello che invece chiamiamo giorno, cioe’ l’alternarsi di luce e buio, dura 24 ore. Cosa significa Ogni 24 ore torniamo a vedere il Sole nella stessa posizione.

Questo ovviamente e’ vero per la Terra. Cosa possiamo dire per gli altri pianeti?

sistema_solare

Come potete immaginare, le durate del giorno e dell’anno di un pianeta del Sistema Solare dipendono dai parametri orbitali del pianeta stesso. Per quanto riguarda il periodo impiegato a percorrere l’intera orbita, pianeti piu’ lontani dal Sole dovranno percorrere un percorso piu’ lungo per tornare nella stessa posizione, e questo fa si che i periodi siano via via crescenti quando ci allontaniamo dal Sole.

Ecco una tabella con i periodi di rivoluzione dei pianeti del Sistema Solare:

Pianeta Planet Rotazione

Rotation

Rivoluzione

Revolution

Plutone Pluto ~6gg 247,7 anni/years
Nettuno Neptune 16h 165 anni/years
Urano Urans -11h 84 anni/years
Saturno Saturn 10h 40′ 29,46 anni/years
Giove Jupiter 10 h 11,86 anni/years
Marte Mars ~24 h 687 giorni/days
Terra Earth 24 h 365 giorni/days
Venere Venus -243 gg 225 giorni/days
Mercurio Mercury 59 gg 88 giorni/days

oltre a questi, trovate anche i periodi di rotazione dei corpi. Fate attenzione ad una cosa, i segni negativi che compaiono per due pianeti, Urano e Venere, servono solo per indicare il moto retrogrado questi pianeti, cioe’ il fatto che questi corpi girino al contrario sull’orbita rispetto gli altri.

Questa tabella ci permette subito di calcolare il periodo dell’anno dei pianeti che, ad esempio, nel caso di Venere sara’ di 225 giorni.

Cosa possiamo dire riguardo al giorno?

Facciamo subito una distinzione molto importante. Quello che comunemente siamo abituati ad indicare come giorno e’ inteso come il lasso di tempo che la Terra impiega a fare un giro su se stessa. In astronomia, questo e’ noto come “giorno siderale” o “giorno sidereo”. Prima pero’, abbiamo definito, intuitivamente, il giorno in maniera diversa, cioe’ come l’alternarsi della luce e del buio. In tal senso, per un osservatore che potrebbe anche ignorare il moto di rotazione del pianeta intorno all’asse, il giorno altro non e’ che il lasso di tempo che serve per fare un intero ciclo luce-buio.

In tal senso, tra i pianeti del sistema solare, molto interessante e’ il caso di Mercurio. Come sappiamo, Mercurio e’ il piu’ interno dei pianeti del sistema solare ed inoltre e’ quello che presenta un’eccentricita’ maggiore dell’orbita. Cosa significa? Semplicemente, l’ellisse percorsa da Mercurio intorno al Sole, presenta la maggiore differenza tra asse maggiore e minore. Detto in altri termini, l’orbita di Mercurio e’ quella che maggiormente si allontana da una circonferenza. Per la precisione, l’eccentricita’ di Mercurio sarebbe seconda a quella di Plutone che pero’ e’ stato declassato da pianeta a planetoide.

Come visto nella tabella, il periodo di rivoluzione di Mercurio e’ di circa 88 giorni, mentre servono 59 giorni per completare il giro intorno all’asse. Da questi numeri, Mercurio ogni due rivoluzioni fa tre giri intorno al proprio asse.

Fate attenzione pero’, se parliamo di giorno sidereo, in questo caso le 24 ore che abbiamo sulla Terra divengono 59 giorni. Ancora piu’ marcata e’ la differenza se parliamo di periodi diurni e notturni. Data la grande eccentricita’, mentre Mercurio gira su stesso, si avvicina e si allontana notevolmente dal Sole. Questo moto fa si che il giorno inteso come alternarsi buio-luce duri su Mercurio ben 176 giorni. Dati i numeri sulla tabella, il giorno dura piu’ o meno il doppio di un anno.

Pensando a come siamo abituati a concepire il tempo sulla Terra, e’ molto difficile immaginare la situazione di Marcurio. Praticamente, aspettando che faccia buoi (o luce in alternativa), vedremo passare per due volte tutte le stagioni.

Ovviamente non c’e’ nulla di misterioso in questo fatto, e’ solo una curiosita’, a mio avviso interessante, che si evidenzia sui pianeti del Sistema Solare.

Per completezza, se l’orbita di Mercurio fosse circolare, data la sua vicinanza al Sole, gli effetti di marea farebbero si che il pianeta mostrerebbe sempre la stessa faccia, esattamente come avviene per la Luna.

Sempre in termini di curiosita’, proviamo ad immaginare di essere sulla Luna e che la Terra sia il nostro Sole. In questo senso, poiche’ come visto in questo post:

Spettacolo lunare per il 23 Giugno

a parte piccole variazioni, la Luna mostra sempre la stessa faccia alla Terra, il giorno durerebbe un tempo infinito. Se fossimo sulla faccia verso Terra, illuminata in questo esperimento mentale, sarebbe sempre giorno, in caso contrario sarebbe sempre notte perche’ ci troveremmo sempre dall’altra parte.

Concludendo, i moti dei pianeti intorno al Sole presentano ovviamente delle differenze anche marcate tra loro. Parlando di giorno sidereo, cioe’ come il periodo necessario al pianeta per compiere un moto di rotazione intorno al proprio asse, passiamo da poche ore fino a decine di giorni. Per quanto riguarda invece il giorno inteso come alternanza luce-buio, in questo caso si devono considerare contemporaneamente sia il moto di rotazione che la rivoluzione. In tal senso, come nel caso di Mercurio, si possono avere situazioni apparentemente curiosieper noi che siamo abituati a vivere sulla Terra.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

E parliamo di questo Big Bang

9 Apr

Dal momento che, in questo post:

Il primo vagito dell’universo

e in molti altri ancora, abbiamo parlato di nascita ed evoluzione del nostro universo, credo sia giunto il momento di dedicare un articolo apposito su questi concetti. Premetto, che cerchero’ di matenere un profilo piu’ semplice e divulgativo possibile, anche se ci stiamo addentrando in teorie, e spesso anche supposizioni, fisiche non del tutto banali. In questo senso, cerchero’ il piu’ possibile di utilizzare esempi anche volutamente forzati proprio per rendere il tutto maggiormente accessibile a tutti.

Partiamo dalle basi. Allo stato attuale della nostra conoscenza, la teoria maggiormente accettata all’orgine dell’universo e’ quella per cui il tutto si sarebbe formato da un’esplosione iniziale chiamata appunto Big Bang. Come visto nell’articolo precedentemente riportato, non dobbiamo immaginare questo evento come un classico boato, da cui tutti si sarebbe formato, bensi’ come un processo di espansione, anche non costante e molto veloce in alcuni istanti, ma che dura tutt’ora.

Perche’ e’ avvenuto il Big Bang?

Immaginiamo di fissare una scala temporale all’istante iniziale, cioe’ nel momento stesso in cui e’ iniziato il Big Bang. Per dirlo con parole semplici, immaginate di avere un cronometro e di farlo partire nel mometo in cui inizia questa espansione. Secondo la teoria, prima che iniziasse il big bang, materia e antimateria convivevano insieme in una singolarita’, cioe’ costituivano un volume, al limite occupante un punto, estremamemente denso e a temperatura elevatissima. Nella concezione fisica, in questa fase non esistevano le particelle, il tempo e le forze.

Poi cosa e’ successo?

Quando il sistema e’ divenuto instabile, dopo un tempo pari a 10^(-43) secondi, e’ avvenuta quella che si chiama la prima transizione di fase. Cosa significa? Le particelle si sono formate da questo plasma iniziale e ognuna di loro aveva un’energia molto elevata detta “energia di Planck”. In questa fase, detta di Grande Unificazione, tutte le forze, compresa quella gravitazionale, erano unificate, cioe’ si manifestavano come un’unica interazione.

Bene, fermiamoci un attimo e cerchiamo di capire meglio. Al punto in cui siamo arrivati, il big bang e’ gia iniziato. Le particelle cosi’ come le forze, anche se ancora unificate, si sono formate. Riprendiamo dall’inizio. Al tempo iniziale, cioe’ prima che iniziasse l’espansione, materia e antimateria convivano insieme. Dopo un tempo brevissimo, quando si formano le particelle, dopo 10^(-43) secondi, ci sono ancora materia e antimateria, appena 10^(-6) secondi dopo l’inizio, rimane solo materia.

Dove e’ finita l’antimateria?

Per chi lo avesse perso, abbiamo parlato in dettaglio di antimateria in questo post:

Due parole sull’antimateria

Il nostro attuale universo e’ formato solo da materia. L’antimateria e’ scomparsa. Perche’? Affiche’ questo sia possibile, e dunque sia iniziato il big bang, la fisica ci dice che devono essere state verificate le 3 condizioni di Sakharov. Senza entrare troppo nel dettaglio, in questa ipotesi, ci deve essere stata un’asimmetria tra materia e antimateria, che ha portato allo squilibrio che vediamo oggi. In particolare, in questo contesto si parla appunto di violazione di CP, cioe’ proprio di squilibrio della simmetria materia-antimateria nell’universo.

E’ possibile che siano rimaste delle sacche di antimateria da qualche parte oppure che l’universo sia formato da due distinte zone, una di materia ed una di antimateria?

La risposta e’ no. Capiamo il perche’. Quando entrano in contatto, materia e antimateria si annichilano, cioe’ ineragiscono distruggendosi a vicenda, e producendo radiazione gamma, cioe’, in linea di principio forzando l’esempio, luce. Se esistessero zone ben delimitate di materia e antimateria, nel punto di separazione tra di esse, si avrebbe annichilazione con la conseguente produzione di raggi gamma. Di questa radiazione non vi e’ nessuna evidenza ne’ dagli osservatori a Terra, ne’ dai satelliti, ne’ tantomeno dalle missioni esplorative che abbiamo mandato nello spazio.

Le condizioni di Sakharov offrono dunque un modello teorico in grado di spiegare perche’ potrebbe essere avvenuto questo squilibrio e quindi sia iniziato il big bang. Dico “potrebbe” perche’ al momento non tutte le condizioni sono state verificate e grande aiuto in questo senso dovrebbe venire dallo studio della fisica delle particelle agli acceleratori. Aprendo una piccola parentesi, quando in un acceleratore facciamo scontrare due fasci, questi interagiscono tra loro ad altissima energia. Man mano che aumentiamo l’energia, utilizzando sistemi sempre piu’ potenti, e’ come se andassimo indietro nel tempo tendendo verso il big bang. Ovviamente le energie oggi disponibili sono ancora molto lontane da quella iniziale, ma questo genere di studi ci consentono di comprendere molte cose importanti sul mondo delle particelle elementari.

Dunque, ricapitolando, abbiamo un sistema iniziale materia-antimateria, intervengono le condizioni di Sakharov e il sistema inizia ad espandersi facendo scomparire l’antimateria. Inizialmente le forze erano tutte unificate e le particelle si scontravano tra loro ad altissima energia.

Dopo, cosa e’ successo?

Man mano che il tempo scorreva, si passo’ attraverso varie fasi, ognuna caratterizzata da una rottura di simmetria di qualche tipo. In tal senso, le forza si divisero tra loro, lasciando quelle che oggi indichiamo come forze fondamentali: forte, debole, elettromagnetica e gravitazionale. In particolare, quest’ultima fu la prima a separarsi non appena la temperatura inizio’ a scendere e le onde gravitazionali poterono propagarsi liberamente.

Qualche minuto dopo l’istante iniziale, le particelle, cioe’ protoni e neutroni, poterono iniziare a combianrsi formando nuclei di Deuterio ed Elio. Questa importante fase viene chiamata “nucleosintesi”.

La temperatura dell’universo era pero’ ancora troppo elevata. Per osservare la formazione dei primi atomi, si dovette aspettare ancora circa 379000 anni, quando materia e radiazione finalmente si separarono e quest’ultima pote’ viaggiare libera nel cosmo. Di questo preciso istante, abbiamo anche parlato in questo post:

Universo: foto da piccolo

in cui, come visto, si ebbe la formazione della radiazione di fondo che oggi, alla temperatura attuale, e’ di 2.7K con uno spettro nelle microonde.

Dopo questa fase, gli addensamenti di materia cominciarono ad attrarsi gravitazionalmente, formando poi le galassie, le stelle, i pianeti, ecc, cioe’ , quello che vediamo oggi osservando l’universo.

Ma esistono delle prove di tutto questo? E se in realta’ il big bang non fosse mai avvenuto?

Come visto in altri post, ma anche come comprensibile da quanto detto, proprio la radiazione di fondo costituisce una prova del big bang. Detto in altri termini, la CMB non sarebbe altro che un’eco di quanto avvenuto, cioe’ un reperto fossile dell’esplosione iniziale.

Inoltre, la velocita’ di espansione delle Galassie, misurata per la prima volta da Hubble, costituisce un’altra prova a sostegno di questa teoria.

Partendo da quest’ultimo concetto, una domanda lecita che chiunque potrebbe farsi e’: “dove e’ avvenuto il Big Bang?”

Modello dell'espansione dal Big Bang

Modello dell’espansione dal Big Bang

In tal senso, se inizialmente si aveva un punto da cui poi tutto si e’ espanso, immaginando un rewind dovremmo essere in grado di identificare il punto iniziale del big bang. In realta’, non e’ cosi’. I fisici sono soliti dire che il Big Bang e’ avvenuto ovunque o anche che ogni punto dell’universo e’ un centro di espansione.

Che significa?

L’espansione dello spazio tempo avviene in piu’ di tre dimesioni, per cui non e’ facile immaginare a mente cosa sia avvenuto. Per capire questo concetto, immaginate l’universo come un palloncino inizialmente sgonfio. Ora, prendendo un pennarello, fate dei puntini sulla superificie. Se le pareti del palloncino sono l’universo che si espande, mentre gonfiate il palloncino, ciascun punto, tra quelli che avete disegnato, vedra’ gli altri allontarsi da lui. In questo contesto, ciascun punto e’ centro dell’espansione, cioe’ ogni punto vede gli altri punti allontarsi da lui in tutte le direzioni. L’animazione riportata potra’ aiutarvi a capire meglio questo discorso. Fissando un punto, tutti gli altri si allontanano da questo, indipendentemente da quello che scegliete come vostro centro. Dunque, se osservate l’universo dalla Terra, vedrete tutti gli altri corpi allontarsi da noi, come se la Terra fosse il centro dell’espansione.

Concludendo, esistono diverse prove sperimentali a sostegno del Big Bang, cioe’ di questa esplosione iniziale da cui, partendo da uno stato di equilibrio materia-antimateria, tutto si e’ formato passando attraverso diverse rotture di simmetrie. Ad oggi, o forse mai, nessuno potra’ spiegare perche’ questa materia e antimateria erano li o cosa c’era prima di questo equilibrio. Se volete, ognuno, con il suo pensiero e la sua convinzione, puo’ dare la sua spiegazione. I processi di evoluzione dal tempo zero, sono ipotizzati, ma ancora molto lavoro resta da fare per verificare queste teorie e capire a fondo perche’, come e con che intensita’ sino avvenuti determinati meccanismi. Insomma, di lavoro da fare ce n’e’ ancora molto.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

 

Cerchi nel ghiaccio: quello che ancora mancava

27 Mar

Dopo aver parlato di cerchi nel grano:

21 Dicembre 2012: Cerchi nel grano

Ancora sui cerchi nel grano

Come si realizza un cerchio nel grano

Errore nel cerchio di Santena

Nuovo cerchio, nuova data!

Nuovo cerchio a Povoletto

cerchi nella sabbia:

Crop circle? No, sand circle!

e cerchi sulla neve:

E ora gli snowcircle

ora e’ il turno dei “cerchi nel ghiaccio”!

Che significa?

Circa un paio di giorni fa, nella cittadina di Eden nello stato di New York, una signora del luogo ha fotografato uno stranissimo fenomeno in corso nello stagno di fronte la sua abitazione. Sulla superficie ghiacciata dello stagno sono apparsi dei misteriosi fori di forma quasi perfettamente circolare. Ecco la foto scattata dalla testimone:

Foto del lago di Eden con i cerchi nel ghiaccio

Foto del lago di Eden con i cerchi nel ghiaccio

La foto in questione ha fatto, in poche pre, letteralmente il giro del mondo. Moltissimi siti, giornali e TV ne hanno parlato. Tutti si chiedono da cosa potrebbero essere formati questi “cerchi nel ghiaccio”.

Le foto della testimone sono state pubblicate su facebook nella pagina di una TV locale. Nel giro di 2 ore, erano state visualizzate da quasi 40000 persone che hanno lasciato 200 commenti per cercare di dare una spiegazione a questo fenomeno. Ovviamente, potete facilmente immaginare, anche perche’ ne stiamo parlando qui, quali sono le ipotesi piu’ in voga: emergenza naturale, strane forme di vita che popolano il lago, caduta di meteoriti, fenomeno atmosferico, ecc. Ma ovviamente l’ipotesi piu’ acclamata quale poteva essere? Gli elieni!

Cosi’ come i cerchi nel grano, queste strane formazioni sarebbero il segno lasciato durante l’atterraggio di navicelle extraterrestri o un messaggio lasciato per noi da queste forme di vita.

Senza lasciarci trascinare dal sensazionalismo, proviamo invece a dare una spiegazione razionale, sempre se esiste, a questo fenomeno.

Partiamo dal presupposto che siamo ormai alla fine dell’inverno, per cui le temperature saranno leggermente superiori a quelle tipicamente rigide dello stato di New York. Perche’ dico questo? Quando la superifice di un lago o di uno stagno si ghiaccia, certamente questo non avviene di colpo, ma il processo e’ lento e graduale. Come potete facilmente immaginare, ci saranno zone in cui il ghiaccio si forma prima e zone che invece verranno ricoperte solo alla fine. Questo e’ ovviamente dovuto a vari fattori: moti delle correnti di acqua sotto la superficie, correnti d’aria esterne, eventuali sorgenti interne allo specchio d’acqua che possono avere temperature differenti da quelle dell’intero volume, ecc.

Che c’entra la formazione del ghiaccio con i buchi della foto?

Vi mostro un video, sempre dello stesso fenomeno di Eden, ma che offre angolazioni differenti:

Osservate una cosa, sotto diverse angolazioni si vede come la superficie ghiacciata del lago non e’ affatto uniforme, bensi’ presenta ampie zone con ghiaccio molto sottile, oltre ovviamente ai buchi di cui stiamo parlando. Una superficie non compatta di ghiaccio e’ del tutto normale in questo periodo, cosi’ come e’ normale avere dei buchi sulla superficie dovuti quindi ai moti convettivi interni dei volumi di acqua.

In questo caso dunque, sarebbero comprensibili i buchi sia come elementi creati durante la solidificazione della superficie, sia anche durante il disgelo. Inoltre, le eventuali correnti sotterranee, di cui molti stagni sono dotati, salgono in superficie creando proprio delle zone non coperte, o con strati sottili in base alla differenza di temperatura.

Perche’ pero’ si vedono fori circolari?

Anche in questo caso, esistono diverse ipotesi, tutte attualmente al vaglio degli esperti.

Prima di tutto, eventuali vegetazioni sotto lo stagno possono produrre gas che, risalendo in superficie, possono portare ad uno scioglimento parziale del ghiaccio. In questo senso, l’effetto a pois visibile sarebbe causato dalla morfologia sottomarina della vegetazione.

Formazioni circolari su terreni ghiacciati non sono affatto una novita’ in natura. Un esempio di questo tipo e’ costituito dalle cosiddette Lithalse.

Di cosa si tratta?

Foto di Lithalse

Foto di Lithalse

Nei terreni in cui si ha un frequente congelamento e disgelo causato dai rigidi inverni, si possono verificare espansioni e contrazioni del terreno, che dunque viene sollevato formando delle strutture perfettamente circolari, dette appunto lithalse. In particolare, sul permafrost, cioe’ sul terreno permanentemente ghiacciato, la formazione delle lithalse sotto lo strato di ghiaccio possono provocare dei fori perfettamente circolari.

Questo esempio ci fa capire come forme geometriche regolari non siano assolutamente una novita’ in natura. Nel caso dello stagno ad Eden invece, la formazione dei fori e’ dovuta con buona probabilita’ ai gas prodotti dalla vegetazione o alle sorgenti presenti sotto la superficie che, in questo periodo dell’anno, possono facilmente sciogliere il ghiaccio in ampie zone.

Solo per curiosita’, vi vorrei invece raccontare un altro avvenimento simile che forse ricorderete. Il caso di Eden mi ha fatto ricordare quello che e’ avvenuto nel 2009, quando gli astronauti della stazione spaziale osservarono dei misteriosi fori circolari sulla superficie ghiacciata del lago Baikal in Siberia.

Ecco una foto presa proprio dalla stazione spaziale:

Il lago Baikal ghiacciato con i due fori circolari

Il lago Baikal ghiacciato con i due fori circolari

Come potete vedere, ci sono due fori circolari perfettamente visibili sulla superficie e con diametri che arrivano a circa 4 kilometri.

Anche in questo caso, si parlo’ di evento misterioso e non mancarono le ipotesi extraterrestri sempre in voga su avvenimenti di questo tipo.

Cosi’ come per il lago di Eden, anche per il Baikal esiste una spiegazione razionale che venne trovata dopo mesi di analisi e considerazioni sul ritrovamento.

Sul fondo del lago Baikal sono presenti diverse sorgenti con emissioni di gas metano. Risalendo dal sottosuolo, il gas entra a contatto con l’acqua del fondo che ovviamente si trova ad una temperatura minore. Questo surriscaldamento provoca moti convettivi che portano l’acqua calda a salire verso la superficie sciogliendo parzialmente il ghiaccio. La precisa posizione delle sorgenti fa si che i fori non si formino ovunque sul ghiaccio ma sempre nelle stesse zone, che poi sono quelle visibili dalla foto della stazione spaziale.

Secondo alcuni esperti poi, l’esatta forma circolare potrebbe essere aiutata anche dalla forza di Coriolis dovuta al movimento della Terra. Non entrando troppo nel dettaglio fisico, la Terra ovviamente non e’ ferma su se stessa ma ruota intorno al suo asse e intorno al Sole. Questi movimenti creano delle forze aggiuntive a quella di gravita’, dette forze apparenti, chiamate “Forza Centrifuga” e “Forza di Coriolis”. Quest’ultima e’ anche quella responsabile della forma spiraleggiante dei cicloni e delle masse d’aria in atmosfera. Secondo questa ipotesi, proprio questa forza aiuterebbe l’acqua piu’ calda a salire in superficie spiraleggiando e creando le strutture esattamente circolari che vediamo dalla foto.

Solo per curiosita’, a seguito dell’osservazione di questo fenomeno, il governo russo ha anche predisposto un monitoraggio continuo del lago Baikal dai satelliti. La formazione di queste strutture, che dunque indicano un aumento dell’emissione di metano, non e’ facilmente visibile stando sulla superficie del lago. Data la grande dimensione, affinche’ si possa osservare la forma identificativa, e’ necessario osservare il tutto dallo spazio, cioe’ da una visuale adatta. Il monitoraggio delle emissioni di metano deve essere eseguito perche’ questo gas potrebbe essere correlato con l’aumento dell’attivita’ tettonica sotto la superficie del lago. In questo senso, conviene monitorare la situazione in modo semplice attraverso le foto dei tanti satelliti in orbita intorno alla Terra.

 

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Bosone di Higgs … ma che sarebbe?

25 Mar

In tanti mi avete chiesto informazioni circa la scoperta del bosone di Higgs. Come sapete bene, negli ultimi mesi, molto si e’ parlato di questa probabile scoperta, dando ampio spazio su giornali e telegiornali al CERN, all’acceleratore LHC e agli esperimenti principali, Atlas e CMS, che hanno lavorato alla ricerca di questa particella.

La scoperta, ripeto probabile come vedremo in seguito, del bosone di Higgs e’ stata fondamentale per la fisica e per la nostra conoscenza della materia e, lasciatemelo dire, mi ha riempito di gioia avendo lavorato per circa quattro anni alla costruzione proprio dell’esperimento Atlas.

Quello che pero’ molti mi chiedono e’: si parla tanto di questo bosone di Higgs, tutti ne parlano dicendo che e’ “quello che spiega la massa delle particelle”, ma, in soldoni, di cosa si tratta? Perche’ spiegherebbe la massa delle particelle?

Purtroppo le domande sono ben poste, dal momento che spesso, girando per la rete, non si trovano risposte semplicissime a questi quesiti. Cerchiamo dunque, per quanto possibile, di rispondere a queste domande, mantenendo sempre un profilo divulgativo e accessibile a tutti.

Detto nel linguaggio della fisica, la spiegazione sarebbe piu’ o meno questa:

L’universo e’ permeato da un campo a spin zero, detto campo di Higgs, doppietto in SU(2) e con ipercarica U(1), ma privo di colore. I bosoni di gauge e i fermioni interagiscono con questo campo acquisendo massa.

Chiaro? Ovviamente no.

Cerchiamo di capirci qualcosa di piu’.

In questi post:

Piccolo approfondimento sulla materia strana

Due parole sull’antimateria

Abbiamo parlato del “Modello Standard” delle particelle. Come visto, la materia ordinaria, anche se apparentemente sembrerebbe molto variegata, e’ in realta’ composta di pochi ingredienti fondamentali: i quark, i leptoni e i bosoni messaggeri. Niente di difficile, andiamo con ordine.

Le particelle del Modello Standard

Le particelle del Modello Standard

Protoni e neutroni, ad esempio, non sono particelle fondamentali, ma sono composti da 3 quark. Tra i leptoni, sicuramente il piu’ conosciuto e’ l’elettrone, quello che orbita intorno ai nuclei per formare gli atomi. E i bosoni messaggeri? In fisica esistono delle interazioni, chiamiamole anche forze, che sono: la forza gravitazionale, la forza elettromagnetica, la forza forte e la forza debole. La forza forte, ad esempio, che viene scambiata mediante gluoni, e’ quella che tiene insieme i quark nelle particelle. Il fotone invece e’ quello che trasporta la forza elettromagnetica, responsabile, in ultima analisi, delle interazioni chimiche e delle forze meccaniche che osserviamo tutti i giorni.

Bene, fin qui sembra tutto semplice. L’insieme di queste particelle forma il Modello Standard. Ci sono gli ingredienti per formare tutte le particelle ordinarie e ci sono i bosoni messaggeri che ci permettono di capire le forze che avvengono. Dunque? Con il Modello Standard abbiamo capito tutto? Assolutamente no.

Il Modello Standard funziona molto bene, ma presenta un problema molto importante. Nella trattazione vista, non e’ possibile inserire la massa delle particelle. Se non c’e’ la massa, non c’e’ peso. Se un pezzo di ferro e’ composto di atomi di ferro e se gli atomi di ferro sono fatti di elettroni, protoni e neutroni, le particelle “devono” avere massa.

Dunque? Basta inserire la massa nel modello standard. Facile a dirsi ma non a farsi. Se aggiungiamo a mano la massa nelle equazioni del modello standard, le equazioni non funzionano piu’. I fisici amano dire che l’invarianza di Gauge non e’ rispettata, ma e’ solo un modo complicato per spiegare che le equazioni non funzionano piu’.

Se non possiamo inserire la massa, e noi sappiamo che la massa c’e’ perche’ la testiamo tutti i giorni, il modello standard non puo’ essere utilizzato.

A risolvere il problema ci ha pensato Peter Higgs negli anni ’60. Ora la spiegazione di Higgs e’ quella che ho riportato sopra, ma cerchiamo di capirla in modo semplice. Supponiamo che effettivamente le particelle non abbiano massa. Hanno carica elettrica, spin, momento angolare, ma non hanno massa intrinseca. L’universo e’ pero’ permeato da un campo, vedetelo come una sorta di gelatina, che e’ ovunque. Quando le particelle passano attraverso questa gelatina, vengono frenate, ognuna in modo diverso. Proprio questo frenamento sarebbe responsabile della massa che le particelle acquisiscono.

Tradotto in equazioni, questo ragionamento, noto come “meccanismo di Higgs”, funzionerebbe benissimo e il modello standard sarebbe salvo. Perche’ dico funzionerebbe? Come facciamo a dimostrare che esiste il campo di Higgs?

Il campo di Higgs, se esiste, deve possedere un quanto, cioe’ un nuovo bosone la cui esistenza non era predetta nel modello standard, detto appunto “bosone di Higgs”. Detto proprio in termini semplici, riprendendo l’esempio del campo di Higgs come la gelatina di frenamento, questa gelatina ogni tanto si dovrebbe aggrumare formando una nuova particella, appunto il bosone di Higgs.

Dunque, se esiste il bosone di Higgs, allora esite il campo di Higgs e dunque possiamo spiegare la massa delle particelle.

Capite dunque l’importanza della ricerca di questa particella. La sua scoperta significherebbe un notevole passo avanti nella comprensione dell’infinitamente piccolo, cioe’ dei meccanismi che regolano l’esistenza e la combinazione di quei mattoncini fondamentali che formano la materia che conosciamo.

Oltre a questi punti, il bosone di Higgs e’ stato messo in relazione anche con la materia oscura di cui abbiamo parlato in questo post:

La materia oscura

In questo caso, la scoperta e lo studio di questa particella potrebbe portare notevoli passi avanti ad esempio nello studio delle WIMP, come visto uno dei candidati della materia oscura.

Dunque? Cosa e’ successo al CERN? E’ stato trovato o no questo bosone di Higgs?

In realta’ si e no. Nella prima conferenza stampa del CERN si parlava di evidenza di una particella che poteva essere il bosone di Higgs. In questo caso, le affermazioni non sono dovute al voler essere cauti dei fisici, semplicemente, l’evidenza statistica della particella non era ancora sufficiente per parlare di scoperta.

L’ultimo annuncio, solo di pochi giorni fa, ha invece confermato che si trattava proprio di “un” bosone di Higgs. Perche’ dico “un” bosone? In realta’, potrebbero esistere diverse tipologie di bosoni di Higgs. Ad oggi, quello trovato e’ sicuramente uno di questi, ma non sappiamo ancora se e’ proprio quello di cui stiamo parlando per il modello standard.

Anche se tutte le indicazioni fanno pensare di aver fatto centro, ci vorranno ancora diversi anni di presa dati per avere tutte le conferme e magari anche per evidenziare l’esistenza di altri bosoni di Higgs. Sicuramente, la scoperta di questa particella apre nuovi orizzonti nel campo della fisica delle particelle e prepara il campo per una nuova ricchissima stagione di misure e di scoperte.

Onde evitare commenti del tipo: “serviva spendere tutti questi soldi per una particella?”, vi segnalo due post molto interessanti proprio per rispondere a queste, lasciatemi dire lecite, domande:

Perche’ la ricerca: scienza e tecnologia

Perche’ la ricerca: economia

In realta’, LHC ed i suoi esperimenti, oltre a portare tantissime innovazioni tecnologiche che non possiamo ancora immaginare, sono state un importante volano per l’economia dei paesi europei. Investendo nel CERN, l’Italia, e soprattutto le nostre aziende, hanno avuto un ritorno economico molto elevato e sicuramente superiore a quanto investito.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.