Tag Archives: sincrono

Le forze di marea

13 Ago

Nella sezione:

Hai domande o dubbi?

E’ stata posta una nuova domanda molto interessante e che credo sia il caso di discutere subito. Prima di cominciare, vi ricordo che questa sezione e’ stata appositamente creata per far si che chiunque possa richiedere argomenti specifici che, qualora non ancora trattati, verranno poi affrontati negli articoli al fine di stimolare una discussione costruttiva tra tutti i lettori.

Premesso questo, la domanda riguarda le cosiddette “forze mareali” o “di marea”.

Di cosa si tratta?

Partiamo, al solito, da quello che e’ noto a tutti: i pianeti dell’universo ruotano intorno al Sole grazie alla forza di gravita’ che li tiene uniti. Allo stesso modo, a distanze minori, molti pianeti del sistema solare presentano dei satelliti orbitanti intorno a loro. Ovviamente, anche questi sono tenuti insieme dalla forza di gravita’.

Ecco un primo risultato interessante e che spesso passa inosservato. Lo studio e la formulazione matematica della forza di gravita’, fatta per la prima volta da Newton, prende il nome di “teorie della gravitazione universale”. L’aggettivo “universale” non e’ assolutamente messo li per caso, ma sta ad indicare come la validita’ di questa legge sia vera a scale estremamente diverse tra loro. Se noi rimaniamo attaccati alla Terra e perche’ c’e’ la forza di gravita’. Se la Terra ruota intorno al Sole e’ perche’ c’e’ la forza di gravita’. Allo stesso modo, la rotazione del sistema solare intorno al centro della Galassia, cosi’ come il moto della Galassia stessa e’ possibile grazie alla forza di gravita’. Detto questo, capite bene perche’ viene attribuito l’aggettivo universale a questa legge.

Dal punto di vista fisico, due qualsiasi masse poste ad una certa distanza si attraggono secondo una forza direttamente proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato della loro distanza. Come anticipato questo e’ vero per due qualsiasi masse estese nello spazio.

Per andare avanti, concentriamoci pero’ sulla domanda fatta e dunque parliamo di forze di marea. Come e’ noto, l’innalzamento e l’abbassamento del livello delle acque sulla Terra e’ dovuto alla Luna, anche se, come vedremo, anche il Sole ha il suo contributo.

Alla luce di quanto detto prima, se la Terra attrae la Luna, ed e’ vero il viceversa, come mai i due corpi non vanno uno verso l’altro finendo per scontrarsi?

Il segreto della stabilita’ delle orbite e’ appunto nel moto di rotazione della Luna intorno alla Terra. Questo movimento genera una forza centrifuga diretta verso l’esterno che stabilizza il moto. Questo e’ lo stesso effetto che trovate per qualsiasi corpo in rotazione nell’universo. Per essere precisi, due corpi in rotazione tra loro, ruotano intorno al centro di massa del sistema. Nel caso di Terra e Luna, la differenza tra le masse e’ cosi’ grande che il centro di massa cade molto vicino al centro della Terra.

Detto questo, abbiamo capito perche’ il sistema puo’ ruotare stabilmente, ma ancora non abbiamo capito da dove si originano le maree.

Come anticipato, l’intensita’ della forza di attrazione gravitazionale e’ inversamente proporzionale al quadrato della distanza. Bene, rimaniamo nell’esempio Terra-Luna. L’attrazione subita dal nostro satellite per opera della Terra, non sara’ identica in ogni punto della Luna. Mi spiego meglio, provate a guardare questo disegno:

Forze di marea subite per attrazione gravitazionale

Forze di marea subite per attrazione gravitazionale

Il lato piu’ vicino all’altro pianeta subira’ un’attrazione maggiore dal momento che la distanza tra i due corpi e’ piu’ piccola. Questo e’ vero ogni qual volta siamo in presenza di corpi grandi. Analogamente, prendendo in esame il contributo centrifugo, la forza risultante tendera’ a spingere il lato vicino verso l’altro pianeta e allontare il lato lontano.

Ragioniamo su quanto detto senza perderci. Abbiamo un corpo esteso ad una certa distanza da qualcosa che lo attrae. Questa attrazione dipende dalla distanza tra i due corpi. Dal momento che abbiamo un corpo esteso, il lato che guarda il centro di attrazione sara’ necessariamente piu’ vicino subendo una forza maggiore rispetto al lato lontano.

Bene, questa differenza tra le interazioni tende ad allungare il corpo cioe’ a farlo passare da una sfera ad un elissoide. Queste sono appunto le forze di marea.

Quali effetti possiamo avere?

Nell’immagine riportata prima, si vedevano proprio le forze di marea esercitata dalla Luna sulla Terra. Come vedete, il lato verso la Luna e quello diametralmente opposto tendono ad allungarsi, provocando dunque un innalzamento delle acque. Negli punti perpendicolari al sistema invece, si avra’ uno schiacciamento e dunque un abbassamento del livello delle acque. Ecco spiegato come avvengono le maree. Ovviamente, poiche’ tutto il sistema e’ in movimento, i punti con alta e bassa marea cambieranno nel corso della giornata, presentando due cicli completi nell’arco del giorno.

Domanda lecita: perche’ nel calcolo delle maree consideriamo solo gli effetti della Luna trascurando completamente il Sole? Come sappiamo, la massa del Sole e’ notevolmente maggiore di quella della Luna quindi ci si aspetterebbe un contributo dominante. Come visto, le forze mareali si generano perche’ ci sono differenze significative tra l’attrazione subita da un lato del pianeta rispetto all’altro. Dal momento che la distanza tra la Terra e il Sole e’ molto piu’ elevata di quella Terra-Luna, la differenza di intensita’ dovuta all’attrazione solare e’ molto meno marcata. Detto in altri termini, a distanze maggiori un corpo esteso puo’ essere approssimato come un punto e dunque e’ molto piccola la forza di marea che si genera.

Effetti misurabili si possono avere quando Sole, Terra e Luna sono allineati, come avviene nel novilunio, dal momento che i contributi si sommano. In questo caso si possono dunque avere livelli di marea massimi, anche noti come maree sigiziali, cioe’ in cui la differenza di altezza tra alta e bassa marea raggiunge il picco.

Analogamente a quanto visto, anche la Luna subisce una forza di marea da parte della Terra. Dal momento pero’ che la Luna non e’ ricoperta da oceani, la resistenza meccanica alla distorsione e’ molto maggiore. In questo caso, l’effetto misurabile e’ una differenza di qualche kilometro tra l’asse rivolto verso la Terra e quello perpendicolare, tale da far apparire il nostro satellite come un elissoide.

Altro effetto delle forze di marea tra corpi estesi vicini e’ la sincronizzazione della rotazione. Come tutti sanno, la Luna rivolge sempre la stessa faccia verso la Terra. Detto in altri termini, a meno di “oscillazioni” che si registrano, un osservatore sulla Terra riesce a vedere sempre la stessa porzione di Luna o meglio, un lato della stessa rimane sempre invisibile al nostro sguardo, il cosiddetto “lato oscuro della Luna”.

Perche’ si ha questo comportamento?

Come anticipato, questo e’ dovuto alla rotazione sincrona della Luna intorno alla Terra. Detto molto semplicemente, il periodo di rotazione e di rivoluzione della Luna coincidono tra loro. Se volete, in parole povere, mentre la Luna si sta spostando sulla sua orbita, ruota su se stessa in modo tale da compensare  lo spostamento e mostrare sempre la stessa faccia a Terra. La figura puo’ aiutare meglio a comprendere questo risultato:

Rotazione sincrona tra satellite e pianeta. Fonte: wikipedia.

Rotazione sincrona tra satellite e pianeta. Fonte: wikipedia.

Ovviamente, parlare di stesso periodo di rivoluzione e rotazione non puo’ certo essere un caso. Rotazioni sincrone si hanno come conseguenza delle forze mareali potendo dimostrare che per corpi vicini tra loro, il moto tende ad essere sincrono in tempi astronomicamente brevi.

Parlando di forze di marea, ci siamo limitati a studiare il caso del sistema Terra-Luna. Seguendo la spiegazione data, capite bene come questi effetti possano essere estesi a due qualsiasi corpi in rotazione vicina tra loro. In tal senso, effetti di marea si possono avere in prossimita’ di buchi neri, di stelle di neutroni o anche di galassie, cioe’ corpi in grado di generare un elevato campo gravitazionale. In particolare, nel caso delle galassie le forze di marea tendono, in alcuni casi, ad allungare la forma spostando la posizione di corpi celesti che si allontanano a causa della differenza di attrazione.

Concludendo, abbiamo visto come la Luna possa generare sulla Terra le maree. L’effetto del Sole e’ in realta’ inferiore perche’ molto maggiore e’ la distanza che ci separa dalla nostra stella. Effetti di questo tipo vengono generati a causa della differenza di attrazione gravitazionale che si registra nei diversi punti di un corpo esteso. Queste differenze, generano appunto una forza risultante, detta di marea, che tende ad allungare il corpo. Effetti analoghi si possono avere per corpi piu’ estesi e comunque ogni qual volta si hanno due masse posizionate ad una distanza non troppo maggiore del diametro dei corpi.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Anche il giorno e’ relativo …. se siete altrove

12 Giu

Pensandoci, chissa’ quante volte avremo detto “se ci fosse un giorno di 48 ore, riuscirei a fare tutto”. Proprio relativamente a questo vorrei parlare in questo post, aprendo una piccola parentesi curiosita’ sui pianeti del sistema solare. In particolare, vorrei discutere la durata del giorno sui diversi pianeti, confrontandola proprio coi numeri a cui siamo abituati, cioe’ quello che osserviamo direttamente sulla Terra.

Per prima cosa, vi diro’ qualcosa di “sorprendente”, la Terra gira intorno al Sole in circa 365.25 giorni e gira su se stessa in “quasi 24 ore”. Solo per curiosita’, quel 0,25 in piu’ nel periodo di rivoluzione e’ proprio il responsabile dell’inserimento di un anno bisestile ogni quattro. Questa soluzione serve a recuperare lo scarto che, in caso contrario, provocherebbe una differenza crescente tra periodo dell’anno ed effettiva posizione intorno al Sole.

Bene, l’alternarsi delle stagioni, che indica l’anno terrestre, e’ semplicemnete dato dalla pozione della Terra sull’orbita fatta intorno al Sole. Come detto, in poco piu’ di 365 giorni, la Terra tornera’ nella stessa posizione.

Quello che invece chiamiamo giorno, cioe’ l’alternarsi di luce e buio, dura 24 ore. Cosa significa Ogni 24 ore torniamo a vedere il Sole nella stessa posizione.

Questo ovviamente e’ vero per la Terra. Cosa possiamo dire per gli altri pianeti?

sistema_solare

Come potete immaginare, le durate del giorno e dell’anno di un pianeta del Sistema Solare dipendono dai parametri orbitali del pianeta stesso. Per quanto riguarda il periodo impiegato a percorrere l’intera orbita, pianeti piu’ lontani dal Sole dovranno percorrere un percorso piu’ lungo per tornare nella stessa posizione, e questo fa si che i periodi siano via via crescenti quando ci allontaniamo dal Sole.

Ecco una tabella con i periodi di rivoluzione dei pianeti del Sistema Solare:

Pianeta Planet Rotazione

Rotation

Rivoluzione

Revolution

Plutone Pluto ~6gg 247,7 anni/years
Nettuno Neptune 16h 165 anni/years
Urano Urans -11h 84 anni/years
Saturno Saturn 10h 40′ 29,46 anni/years
Giove Jupiter 10 h 11,86 anni/years
Marte Mars ~24 h 687 giorni/days
Terra Earth 24 h 365 giorni/days
Venere Venus -243 gg 225 giorni/days
Mercurio Mercury 59 gg 88 giorni/days

oltre a questi, trovate anche i periodi di rotazione dei corpi. Fate attenzione ad una cosa, i segni negativi che compaiono per due pianeti, Urano e Venere, servono solo per indicare il moto retrogrado questi pianeti, cioe’ il fatto che questi corpi girino al contrario sull’orbita rispetto gli altri.

Questa tabella ci permette subito di calcolare il periodo dell’anno dei pianeti che, ad esempio, nel caso di Venere sara’ di 225 giorni.

Cosa possiamo dire riguardo al giorno?

Facciamo subito una distinzione molto importante. Quello che comunemente siamo abituati ad indicare come giorno e’ inteso come il lasso di tempo che la Terra impiega a fare un giro su se stessa. In astronomia, questo e’ noto come “giorno siderale” o “giorno sidereo”. Prima pero’, abbiamo definito, intuitivamente, il giorno in maniera diversa, cioe’ come l’alternarsi della luce e del buio. In tal senso, per un osservatore che potrebbe anche ignorare il moto di rotazione del pianeta intorno all’asse, il giorno altro non e’ che il lasso di tempo che serve per fare un intero ciclo luce-buio.

In tal senso, tra i pianeti del sistema solare, molto interessante e’ il caso di Mercurio. Come sappiamo, Mercurio e’ il piu’ interno dei pianeti del sistema solare ed inoltre e’ quello che presenta un’eccentricita’ maggiore dell’orbita. Cosa significa? Semplicemente, l’ellisse percorsa da Mercurio intorno al Sole, presenta la maggiore differenza tra asse maggiore e minore. Detto in altri termini, l’orbita di Mercurio e’ quella che maggiormente si allontana da una circonferenza. Per la precisione, l’eccentricita’ di Mercurio sarebbe seconda a quella di Plutone che pero’ e’ stato declassato da pianeta a planetoide.

Come visto nella tabella, il periodo di rivoluzione di Mercurio e’ di circa 88 giorni, mentre servono 59 giorni per completare il giro intorno all’asse. Da questi numeri, Mercurio ogni due rivoluzioni fa tre giri intorno al proprio asse.

Fate attenzione pero’, se parliamo di giorno sidereo, in questo caso le 24 ore che abbiamo sulla Terra divengono 59 giorni. Ancora piu’ marcata e’ la differenza se parliamo di periodi diurni e notturni. Data la grande eccentricita’, mentre Mercurio gira su stesso, si avvicina e si allontana notevolmente dal Sole. Questo moto fa si che il giorno inteso come alternarsi buio-luce duri su Mercurio ben 176 giorni. Dati i numeri sulla tabella, il giorno dura piu’ o meno il doppio di un anno.

Pensando a come siamo abituati a concepire il tempo sulla Terra, e’ molto difficile immaginare la situazione di Marcurio. Praticamente, aspettando che faccia buoi (o luce in alternativa), vedremo passare per due volte tutte le stagioni.

Ovviamente non c’e’ nulla di misterioso in questo fatto, e’ solo una curiosita’, a mio avviso interessante, che si evidenzia sui pianeti del Sistema Solare.

Per completezza, se l’orbita di Mercurio fosse circolare, data la sua vicinanza al Sole, gli effetti di marea farebbero si che il pianeta mostrerebbe sempre la stessa faccia, esattamente come avviene per la Luna.

Sempre in termini di curiosita’, proviamo ad immaginare di essere sulla Luna e che la Terra sia il nostro Sole. In questo senso, poiche’ come visto in questo post:

Spettacolo lunare per il 23 Giugno

a parte piccole variazioni, la Luna mostra sempre la stessa faccia alla Terra, il giorno durerebbe un tempo infinito. Se fossimo sulla faccia verso Terra, illuminata in questo esperimento mentale, sarebbe sempre giorno, in caso contrario sarebbe sempre notte perche’ ci troveremmo sempre dall’altra parte.

Concludendo, i moti dei pianeti intorno al Sole presentano ovviamente delle differenze anche marcate tra loro. Parlando di giorno sidereo, cioe’ come il periodo necessario al pianeta per compiere un moto di rotazione intorno al proprio asse, passiamo da poche ore fino a decine di giorni. Per quanto riguarda invece il giorno inteso come alternanza luce-buio, in questo caso si devono considerare contemporaneamente sia il moto di rotazione che la rivoluzione. In tal senso, come nel caso di Mercurio, si possono avere situazioni apparentemente curiosieper noi che siamo abituati a vivere sulla Terra.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.