Tag Archives: galassie

L’espansione metrica dell’universo

8 Apr

In questo blog, abbiamo dedicato diversi articoli al nostro universo, alla sua storia, al suo destino, alla tipologia di materia o non materia di cui e’ formato, cercando, come e’ ovvio, ogni volta di mettere il tutto in una forma quanto piu’ possibile comprensibile e divulgativa. Per chi avesse perso questi articoli, o solo come semplice ripasso, vi riporto qualche link riassuntivo:

E parliamo di questo Big Bang

Il primo vagito dell’universo

Universo: foto da piccolo

La materia oscura

Materia oscura intorno alla Terra?

Due parole sull’antimateria

Flusso oscuro e grandi attrattori

Ascoltate finalmente le onde gravitazionali?

Come e’ ovvio, rendere questi concetti fruibili a fini divulgativi non e’ semplice. Per prima cosa, si deve evitare di mettere formule matematiche e, soprattutto, si deve sempre riflettere molto bene su ogni singola frase. Un concetto che potrebbe sembrare scontato e banale per un addetto ai lavori, potrebbe essere del tutto sconosciuto a chi, non avendo basi scientifiche solide, prova ad informarsi su argomenti di questo tipo.

Perche’ faccio questo preambolo?

Pochi giorni fa, un nostro lettore mi ha contatto via mail per chiedermi di spiegare meglio il discorso dell’espansione dell’universo. Per essere precisi, la domanda era relativa non all’espansione in se, ma a quella che viene appunto definita “espansione metrica” dell’universo. Cosa significa? Come visto varie volte, l’idea comunemente accettata e’ che l’universo sia nato da un Big Bang e durante questa espansione si sono prima formate le forze, il tempo, le particelle, poi i pianeti, le galassie e via dicendo. Ci sono prove di questo? Assolutamente si e ne abbiamo parlato, anche in questo caso, piu’ volte: la radiazione cosmica di fondo, lo spostamento verso il rosso delle galassie lontane, le conclusioni stesse portate dalla scoperta del bosone di Higgs e via dicendo. Dunque? Che significa espansione metrica dell’universo? In parole povere, noi diciamo che l’universo si sta espandendo, e che sta anche accelerando, ma come possiamo essere certi di questo? Che forma ha l’universo? Per quanto ancora si espandera’? Poi cosa succedera’? Sempre nella domanda iniziale, veniva posto anche un quesito molto interessante: ma se non fosse l’universo ad espandersi ma la materia a contrarsi? L’effetto sarebbe lo stesso perche’ la mutua distanza tra due corpi aumenterebbe nel tempo dando esattamente lo stesso effetto apparente che vediamo oggi.

Come potete capire, di domande ne abbiamo fin troppe a cui rispondere. Purtroppo, e lo dico in tutta sincerita’, rendere in forma divulgativa questi concetti non e’ molto semplice. Come potete verificare, raccontare a parole che il tutto sia nato da un Big Bang, che ci sia stata l’inflazione e si sia formata la radiazione di fondo e’ cosa abbastanza fattibile, parlare invece di forma dell’universo e metrica non e’ assolutamente semplice soprattutto senza poter citare formule matematiche che per essere comprese richiedono delle solide basi scientifiche su cui ragionare.

Cerchiamo dunque di andare con ordine e parlare dei vari quesiti aperti.

Come visto in altri articoli, si dice che il Big Bang non e’ avvenuto in un punto preciso ma ovunque e l’effetto dell’espansione e’ visibile perche’ ogni coppia di punti si allontana come se ciascun punto dell’universo fosse centro dell’espansione. Cosa significa? L’esempio classico che viene fatto e’ quello del palloncino su cui vengono disegnati dei punti:

Esempio del palloncino per spiegare l'espansione dell'universo

Esempio del palloncino per spiegare l’espansione dell’universo

Quando gonfiate il palloncino, i punti presenti sulla superficie si allontanano tra loro e questo e’ vero per qualsiasi coppia di punti. Se immaginiamo di essere su un punto della superficie, vedremo tutti gli altri punti che si allontanano da noi. Bene, questo e’ l’esempio del Big Bang.

Ci sono prove di questo? Assolutamente si. La presenza della CMB e’ proprio un’evidenza che ci sia stato un Big Bang iniziale. Poi c’e’ lo spostamento verso il rosso, come viene definito, delle galassie lontane. Cosa significa questo? Siamo sulla Terra e osserviamo le galassie lontane. La radiazione che ci arriva, non necessariamente con una lunghezza d’onda nel visibile, e’ caratteristica del corpo che la emette. Misurando questa radiazione ci accorgiamo pero’ che la frequenza, o la lunghezza d’onda, sono spostate verso il rosso, cioe’ la lunghezza d’onda e’ maggiore di quella che ci aspetteremmo. Perche’ avviene questo? Questo effetto e’ prodotto proprio dal fatto che la sorgente che emette la radiazione e’ in moto rispetto a noi e poiche’ lo spostamento e’ verso il rosso, questa sorgente si sta allontanando. A questo punto sorge pero’ un quesito molto semplice e comune a molti. Come sapete, per quanto grande rapportata alle nostre scale, la velocita’ della luce non e’ infinita ma ha un valore ben preciso. Questo significa che la radiazione emessa dal corpo lontano impiega un tempo non nullo per raggiungere la Terra. Come spesso si dice, quando osserviamo stelle lontane non guardiamo la stella come e’ oggi, ma come appariva quando la radiazione e’ stata emessa. Facciamo l’esempio classico e facile del Sole. La luce emessa dal Sole impiega 8 minuti per arrivare sulla Terra. Se noi guardiamo ora il Sole lo vediamo come era 8 minuti fa. Se, per assurdo, il sole dovesse scomparire improvvisamente da un momento all’altro, noi ce ne accorgeremmo dopo 8 minuti. Ora, se pensiamo ad una stella lontana 100 anni luce da noi, quella che vediamo e’ la stella non come e’ oggi, ma come era 100 anni fa. Tornando allo spostamento verso il rosso, poiche’ parliamo di galassie lontane, la radiazione che ci arriva e’ stata emessa moltissimo tempo fa. Domanda: osservando la luce notiamo uno spostamento verso il rosso ma questa luce e’ stata emessa, supponiamo, mille anni fa. Da quanto detto si potrebbe concludere che l’universo magari era in espansione 1000 anni fa, come da esempio, mentre oggi non lo e’ piu’. In realta’, non e’ cosi’. Lo spostamento verso il rosso avviene a causa del movimento odierno tra i corpi e dunque utilizzare galassie lontane ci consente di osservare fotoni che hanno viaggiato piu’ a lungo e da cui si ottengono misure piu’ precise. Dunque, da queste misure, l’universo e’ in espansione e’ lo e’ adesso. Queste misurazioni sono quelle che hanno portato Hubble a formulare la sua famosa legge da cui si e’ ricavata per la prima volta l’evidenza di un universo in espansione.

Bene, l’universo e’ in espansione, ma se ci pensate questo risultato e’ in apparente paradosso se pensiamo alla forza di gravita’. Perche’? Negli articoli precedentemente citati, abbiamo piu’ volte parlato della gravita’ citando la teoria della gravitazione universale di Newton. Come e’ noto, due masse poste a distanza r si attraggono con una forza che dipende dal prodotto delle masse ed e’ inversamente proporzionale al quadrato della loro distanza. Ora, nel nostro universo ci sono masse distribuite qui a la in modo piu’ o meno uniforme. Se pensiamo solo alla forza di gravita’, una coppia qualunque di queste masse si attrae e quindi le due masse tenderanno ad avvicinarsi. Se anche pensiamo ad una spinta iniziale data dal Big Bang, ad un certo punto questa spinta dovra’ terminare controbilanciata dalla somma delle forze di attrazione gravitazionale. In altre parole, non e’ possibile pensare ad un universo che si espande sempre se abbiamo solo forze attrattive che lo governano.

Questo problema ha angosciato l’esistenza di molti scienziati a partire dai primi anni del ‘900. Lo stesso Einstein, per cercare di risolvere questo problema dovette introdurre nella Relativita’ Generale quella che defini’ una costante cosmologica, a suo avviso, un artificio di calcolo che serviva per bilanciare in qualche modo l’attrazione gravitazionale. L’introduzione di questa costante venne definita dallo stesso Einstein il piu’ grande errore della sua vita. Oggi sappiamo che non e’ cosi’, e che la costante cosmologica e’ necessaria nelle equazioni non come artificio di calcolo ma, in ultima analisi, proprio per giustificare la presenza di componenti non barioniche, energia oscura in primis, che consentono di spiegare l’espansione dell’universo. Se vogliamo essere precisi, Einstein introdusse la costante non per avere un universo in espansione bensi’ un universo statico nel tempo. In altre parole, la sua costante serviva proprio a bilanciare esattamente l’attrazione e rendere il tutto fermo. Solo osservazioni successive, tra cui quella gia’ citata dello stesso Hubble, confermarono che l’universo non era assolutamente statico bensi’ in espansione.

Ora, a questo punto, potremmo decidere insieme di suicidarci dal punto di vista divulgativo e parlare della metrica dell’universo, di coordinate comoventi, ecc. Ma questo, ovviamente, implicherebbe fogli di calcoli e basi scientifiche non banali. Abbiamo le prove che l’universo e’ in espansione, dunque, ad esempio, guardando dalla Terra vediamo gli altri corpi che si allontanano da noi. Come si allontanano? O meglio, di nuovo, che forma avrebbe questo universo?

L’esempio del palloncino fatto prima per spiegare l’espansione dell’universo, e’ molto utile per far capire questi concetti, ma assolutamente fuoriviante se non ci si riflette abbstanza. Molto spesso, si confonde questo esempio affermando che l’universo sia rappresentato dall’intero palloncino compreso il suo volume interno. Questo e’ concettualmente sbagliato. Come detto in precedenza, i punti si trovano solo ed esclusivamente sulla superficie esterna del palloncino che rappresenta il nostro universo.

A complicare, o a confondere, ancora di piu’ le idee c’e’ l’esempio del pane con l’uvetta che viene usato per spiegare l’espansione dell’universo. Anche su wikipedia trovate questo esempio rappresentato con una bella animazione:

Esempio del pane dell'uvetta utilizzato per spiegare l'aumento della distanza tra i punti

Esempio del pane dell’uvetta utilizzato per spiegare l’aumento della distanza tra i punti

Come vedete, durante l’espansione la distanza tra i punti cresce perche’ i punti stessi, cioe’ i corpi presenti nell’universo, vengono trascinati dall’espansione. Tornado alla domanda iniziale da cui siamo partiti, potremmo penare che in realta’ lo spazio resti a volume costante e quello che diminuisce e’ il volume della materia. Il lettore che ci ha fatto la domanda, mi ha anche inviato una figura esplicativa per spiegare meglio il concetto:

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Come vedete, pensando ad una contrazione della materia, avremmo esattamente lo stesso effetto con la distanza mutua tra i corpi che aumenta mentre il volume occupato dall’universo resta costante.

Ragioniamo pero’ su questo concetto. Come detto, a supporto dell’espansione dell’universo, abbiamo la legge di Hubble, e anche altre prove, che ci permettono di dire che l’universo si sta espandendo. In particolare, lo spostamento verso il rosso della radiazione emessa ci conferma che e’ aumentato lo spazio tra i corpi considerati, sorgente di radiazione e bersaglio. Inoltre, la presenza dell’energia oscura serve proprio a spiegare questa evoluzione dell’universo. Se la condizione fosse quella riportata nell’immagine, cioe’ con la materia che si contrae, non ci sarebbe lo spostamento verso il rosso, e anche quello che viene definito Modello Standard del Cosmo, di cui abbiamo verifiche sperimentali, non sarebbe utilizzabile.

Resta pero’ da capire, e ritorno nuovamente su questo punto, che forma dovrebbe avere il nostro universo. Non sto cercando di volta in volta di scappare a questa domanda, semplicemente, stiamo cercando di costruire delle basi, divulgative, che ci possano consentire di capire questi ulteriori concetti.

Come detto, parlando del palloncino, non dobbiamo fare l’errore di considerare tutto il volume, ma solo la sua superificie. In particolare, come si dice in fisica, per capire la forma dell’universo dobbiamo capire che tipo di geometria assegnare allo spazio-tempo. Purtroppo, come imparato a scuola, siamo abituati a pensare alla geometria Euclidea, cioe’ quella che viene costruita su una superifice piana. In altre parole, siamo abituati a pensare che la somma degli angoli interni di un traiangolo sia di 180 gradi. Questo pero’ e’ vero solo per un triangolo disegnato su un piano. Non e’ assolutamente detto a priori che il nostro universo abbia una geometria Euclidea, cioe’ che sia piano.

Cosa significa?

Come e’ possibile dimostrare, la forma dell’universo dipende dalla densita’ di materia in esso contenuta. Come visto in precedenza, dipende dunque, come e’ ovvio pensare, dall’intensita’ della forza di attrazione gravitazionale presente. In particolare possiamo definire 3 curvature possibili in funzione del rapporto tra la densita’ di materia e quella che viene definita “densita’ critica”, cioe’ la quantita’ di materia che a causa dell’attrazione sarebbe in grado di fermare l’espasione. Graficamente, le tre curvature possibili vengono rappresentate con tre forme ben distinte:

Curvature possibili per l'universo in base al rapporto tra densita' di materia e densita' critica

Curvature possibili per l’universo in base al rapporto tra densita’ di materia e densita’ critica

Cosa significa? Se il rapporto e’ minore di uno, cioe’ non c’e’ massa a sufficienza per fermare l’espansione, questa continuera’ per un tempo infinito senza arrestarsi. In questo caso si parla di spazio a forma di sella. Se invece la curvatura e’ positiva, cioe’ la massa presente e’ maggiore del valore critico, l’espansione e’ destinata ad arrestarsi e l’universo iniziera’ ad un certo punto a contrarsi arrivando ad un Big Crunch, opposto al Big Bang. In questo caso la geometria dell’universo e’ rappresentata dalla sfera. Se invece la densita’ di materia presente e’ esattamente identica alla densita’ critica, in questo caso abbiamo una superficie piatta, cioe’ Euclidea, e l’espansione si arrestera’ ma solo dopo un tempo infinito.

Come potete capire, la densita’ di materia contenuta nell’universo determina non solo la forma di quest’ultimo, ma anche il suo destino ultimo in termini di espansione o contrazione. Fate pero’ attenzione ad un altro aspetto importante e molto spesso dimenticato. Se misuriamo questo rapporto di densita’, sappiamo automaticamente che forma ha il nostro universo? E’ vero il discorso sul suo destino ultimo, ma le rappresentazioni grafiche mostrate sono solo esplicative e non rappresentanti la realta’.

Perche’?

Semplice, per disegnare queste superifici, ripeto utilizzate solo per mostrare graficamente le diverse forme, come si e’ proceduto? Si e’ presa una superficie bidimensionale, l’equivalente di un foglio, e lo si e’ piegato seguendo le indicazioni date dal valore del rapporto di densita’. In realta’, lo spazio tempo e’ quadrimensionale, cioe’ ha 3 dimensioni spaziali e una temporale. Come potete capire molto facilmente, e’ impossibile sia disegnare che immaginare una superificie in uno spazio a 4 dimensioni! Questo significa che le forme rappresentate sono esplicative per far capire le differenze di forma, ma non rappresentano assolutamnete la reale forma dell’universo dal momento che sono ottenute eliminando una coordinata spaziale.

Qual e’ oggi il valore di questo rapporto di densita’? Come e’ ovvio, questo valore deve essere estrapolato basandosi sui dati raccolti da misure osservative nello spazio. Dal momento che sarebbe impossibile “contare” tutta la materia, questi valori vengono utilizzati per estrapolare poi il numero di barioni prodotti nel Big Bang. I migliori valori ottenuti oggi danno rapporti che sembrerebbero a cavallo di 1 anche se con incertezze ancora troppo elevate per avere una risposta definitiva.

Concludendo, affrontare queste tematiche in chiave divulgativa non e’ assolutamente semplice. Per quanto possibile, e nel limite delle mie possibilita’, spero di essere riuscito a farvi capire prima di tutto quali sono le verifiche sperimentali di cui disponiamo oggi e che sostengono le teorie di cui tanto sentiamo parlare. Queste misure, dirette o indirette che siano, ci permettono di capire che il nostro universo e’ con buona probabilita’ nato da un Big Bang, che sta attualmente espandendosi e questa espansione, almeno allo stato attuale, e’ destinata a fermarsi solo dopo un tempo infinito. Sicuramente, qualunque sia il destino ultimo del nostro universo, questo avverra’ in un tempo assolutamente molto piu’ grande della scala umana e solo la ricerca e la continua osservazione del cosmo ci possono permettere di fare chiarezza un poco alla volta.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Flusso oscuro e grandi attrattori

28 Feb

Nella ormai celebre sezione:

Hai domande o dubbi?

in cui sono usciti fuori davvero gli argomenti piu’ disparati ma sempre contraddistinti da curiosita’ e voglia di discutere, una nostra cara lettrice ci ha chiesto maggiori lumi sul cosiddetto “dark flow” o flusso oscuro. Una richiesta del genere non puo’ che farci piacere, dal momento che ci permette di parlare nuovamente di scienza e, in particolare, di universo.

Prima di poterci addentrare in questo argomento scientifico ma, anche a livello di ricerca, poco conosciuto, e’ necessario fare una piccolissima premessa iniziale che serve per riprendere in mano concetti sicuramente conosciuti ma su cui spesso non si riflette abbastanza.

Per iniziare la discussione, voglio mostrarvi una foto:

sir-isaac-newtons-philosophic3a6-naturalis-principia-mathematica

Quello che vedete non e’ un semplice libro, ma uno dei tre volumi che compongono il Philosophiae Naturalis Principia Mathematica o, tradotto in italiano, “I principi naturali della filosofia naturale”. Quest’opera e’ stata pubblicata il 5 luglio 1687 da Isaac Newton.

Perche’ e’ cosi’ importante questa opera?

Questi tre volumi sono considerati l trattato piu’ importante del pensiero scientifico. Prima di tutto, contengono la dinamica formulata da Newton che per primo ha posto le basi per lo studio delle cause del moto ma, soprattutto, perche’ contengono quella che oggi e’ nota come “Teoria della Gravitazione Universale”.

Sicuramente, tutti avrete sentito parlare della gravitazione di Newton riferita al famoso episodio della mela che si stacco’ dall’albero e cadde sulla testa del celebre scienziato. Come racconta la leggenda, da questo insignificante episodio, Newton capi’ l’esistenza della forza di gravita’ e da qui la sua estensione all’universo. Se vogliamo pero’ essere precisi, Newton non venne folgorato sulla via di Damasco dalla mela che cadeva, ma questo episodio fu quello che fece scattare la molla nella testa di un Newton che gia’ da tempo studiava questo tipo di interazioni.

Volendo essere brevi, la teoria della gravitazione di Newton afferma che nello spazio ogni punto materiale attrae ogni altro punto materiale con una forza che e’ proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato della loro distanza. In soldoni, esiste una forza solo attrattiva che si esercita tra ogni coppia di corpi dotati di massa e questa interazione e’ tanto maggiore quanto piu’ grandi sono le masse e diminuisce con il quadrato della loro distanza.

Semplice? Direi proprio di si, sia dal punto di vista fisico che matematico. Perche’ allora chiamare questa legge addirittura con l’aggettivo “universale”?

Se prendete la male di Newton che cade dall’albero, la Luna che ruota intorno alla Terra, la Terra che ruota intorno al Sole, il sistema solare che ruota intorno al centro della Galassia, tutti questi fenomeni, che avvengono su scale completamente diverse, avvengono proprio grazie unicamente alla forza di gravita’. Credo che questo assunto sia sufficiente a far capire l’universalita’ di questa legge.

Bene, sulla base di questo, l’interazione che regola l’equilibrio delle masse nell’universo e’ dunque la forza di gravita’. Tutto quello che vediamo e’ solo una conseguenza della sovrapposizione delle singole forze che avvengono su ciascuna coppia di masse.

Detto questo, torniamo all’argomento principale del post. Cosa sarebbe il “flusso oscuro”? Detto molto semplicemente, si tratta del movimento a grande velocita’ di alcune galassie in una direzione ben precisa, situata tra le costellazioni del Centauro e della Vela. Questo movimento direzionale avviene con velocita’ dell’ordine di 900 Km al secondo e sembrerebbe tirare le galassie in un punto ben preciso al di fuori di quello che definiamo universo osservabile.

Aspettate, che significa che qualcosa tira le galassie fuori dall’universo osservabile?

Per prima cosa, dobbiamo definire cosa significa “universo osservabile”. Come sappiamo, l’universo si sta espandendo e se lo osserviamo da Terra siamo in grado di vedere le immagini che arrivano a noi grazie al moto dei fotoni che, anche se si muovono alla velocita’ della luce, si spostano impiegando un certo tempo per percorrere delle distanze precise. Se sommiamo questi due effetti, dalla nostra posizione di osservazione, cioe’ la Terra, possiamo vedere solo quello che e’ contenuto entro una sfera con un raggio di 93 miliardi anni luce. Come potete capire, l’effetto dell’espansione provoca un aumento di quello che possiamo osservare. Se l’universo ha 14.7 miliardi di anni, ci si potrebbe aspettare di poter vedere dalla terra la luce partita 14.7 miliardi di anni fa, cioe’ fino ad una distanza di 14.7 miliardi di anni luce. In realta’, come detto, il fatto che l’universo sia in continua espansione fa si che quello che vediamo oggi non si trova piu’ in quella posizione, ma si e’ spostato a causa dell’espansione. Altro aspetto importante, la definizione di sfera osservabile e’ vera per ogni punto dell’universo, non solo per quella sfera centrata sulla Terra che rappresenta cquello che noi possiamo vedere.

Bene, dunque si sarebbe osservato un flusso di alcune galassie verso un punto preciso fuori dall’universo osservabile. Proprio dal fatto che questo flusso e’ all’esterno del nostro universo osservabile, si e’ chiamato questo movimento con l’aggettivo oscuro.

Aspettate un attimo pero’, se le galassie sono tirate verso un punto ben preciso, cos’e’ che provoca questo movimento? Riprendendo l’introduzione sulla forza di gravitazione, se le galassie, che sono oggetti massivi, sono tirate verso un punto, significa che c’e’ una massa che sta esercitando una forza. Poiche’ la forza di gravitazione si esercita mutuamente tra i corpi, questo qualcosa deve anche essere molto massivo.

Prima di capire di cosa potrebbe trattarsi, e’ importante spiegare come questo flusso oscuro e’ stato individuato.

Secondo le teorie cosmologiche riconosciute, e come spesso si dice, l’universo sarebbe omogeneo e isotropo cioe’ sarebbe uguale in media in qualsiasi direzione lo guardiamo. Detto in altri termini, non esiste una direzione privilegiata, almeno su grandi scale, in cui ci sarebbero effetti diversi. Sempre su grandi scale, non esisterebbe neanche un movimento preciso verso una direzione ma l’isotropia produrrebbe moti casuali in tutte le direzioni.

Gia’ nel 1973 pero’, si osservo’ un movimento particolare di alcune galassie in una direzione precisa. In altri termini, un’anomalia nell’espansione uniforme dell’universo. In questo caso, il punto di attrazione e’ all’interno del nostro universo osservabile e localizzato in prossimita’ del cosiddetto “ammasso del Regolo”, una zona di spazio dominata da un’alta concentrazione di galassie vecchie e massive. Questa prima anomalia gravitazionale viene chiamata “Grande Attrattore”. In questa immagine si vede appunto una porzione di universo osservabile da Terra ed in basso a destra trovate l’indicazione del Grande Attrattore:

800px-2MASS_LSS_chart-NEW_Nasa

Questa prima anomalia dell’espansione venne osservata tramite quello che e’ definito lo spostamento verso il rosso. Cosa significa? Se osservate un oggetto che e’ in movimento, o meglio se esiste un movimento relativo tra l’osservatore e il bersaglio, la luce che arriva subisce uno spostamento della lunghezza d’onda dovuto al movimento stesso. Questo e’ dovuto all’effetto Doppler valido, ad esempio, anche per le onde sonore e di cui ci accorgiamo facilmente ascoltando il diverso suono di una sirena quando questa si avvicina o si allontana da noi.

220px-Redshift_blueshift.svg

Bene, tornando alle onde luminose, se la sorgente si allontana, si osserva uno spostamento verso lunghezze d’onda piu’ alte, redshift, se si avvicina la lunghezza d’onda diminuisce, blueshift. Mediate questo semplice effetto, si sono potuti osservare molti aspetti del nostro universo e soprattutto i movimenti che avvengono.

Tornando al grnde attrattore, questa zona massiva verso cui si osserva un moto coerente delle galassie del gruppo e’ localizzato a circa 250 milioni di anni luce da noi nella direzione delle costellazioni dell’Hydra e del Centauro e avrebbe una massa di circa 5×10^15 masse solari, cioe’ 5 milioni di miliardi di volte il nostro Sole. Questa, come anticipato, e’ soltanto una anomalia dell’espansione dell’universo che ha creato una zona piu’ massiva in cui c’e’ una concentrazione di galassie che, sempre grazie alla gravita’, attraggono quello che hanno intorno.

Discorso diverso e’ invece quello del Dark Flow. Perche’? Prima di tutto, come detto, questo centro di massa si trova talmente lontano da essere al di fuori del nostro universo osservabile. Visto da Terra poi, la zona di spazio che crea il flusso oscuro si trova piu’ o meno nella stessa direzione del Grande Attrattore, ma molto piu’ lontana. Se per il Grande Attrattore possiamo ipotizzare, detto in modo improprio, un grumo di massa nell’universo omogeneo, il flusso oscuro sembrerebbe generato da una massa molto piu’ grande ed in grado anche di attrarre a se lo stesso Grande Attrattore.

Il flusso oscuro venne osservato per la prima volta nel 2000 e descritto poi a partire dal 2008 mediante misure di precisione su galassie lontane. In questo caso, l’identificazione del flusso e’ stata possibile sfruttando il cosiddetto effetto Sunyaev-Zel’dovich cioe’ la modificazione della temperatura dei fotoni della radiazione cosmica di fondo provocata dai raggi X emessi dalle galassie che si spostano. Sembra complicato, ma non lo e’.

Di radiazione di fondo, o CMB, abbiamo parlato in questi articoli:

Il primo vagito dell’universo

E parliamo di questo Big Bang

Come visto, si tratta di una radiazione presente in tutto l’universo residuo del Big Bang iniziale. Bene, lo spostamento coerente delle galassie produce raggi X, questi raggi X disturbano i fotoni della radiazione di fondo e noi da terra osservando queste variazioni ricostruiamo mappe dei movimenti delle Galassie. Proprio grazie a queste misure, a partire dal 2000, e’ stato osservato per la prima volta questo movimento coerente verso un punto al di fuori dell’universo osservabile.

Cosa potrebbe provocare il Flusso Oscuro? Bella domanda, la risposta non la sappiamo proprio perche’ questo punto, se esiste, come discuteremo tra un po’, e’ al di fuori del nostro universo osservabile. Di ipotesi a riguardo ne sono ovviamente state fatte una miriade a partire gia’ dalle prime osservazioni.

Inizialmente si era ipotizzato che il movimento potrebbe essere causato da un ammasso di materia oscura o energia oscura. Concetti di cui abbiamo parlato in questi post:

La materia oscura

Materia oscura intorno alla Terra?

Se il vuoto non e’ vuoto

Universo: foto da piccolo

Queste ipotesi sono pero’ state rigettate perche’ non si osserva la presenza di materia oscura nella direzione del Dark Flow e, come gia’ discusso, per l’energia oscura il modello prevede una distribuzione uniforme in tutto l’universo.

Cosi’ come per il Grande Attrattore, si potrebbe trattare di un qualche ammasso molto massivo in una zona non osservabile da Terra. Sulla base di questo, qualcuno, non tra gli scienziati, aveva ipotizzato che questo effetto fosse dovuto ad un altro universo confinante con il nostro e che provoca l’attrazione. Questa ipotesi non e’ realistica perche’ prima di tutto, la gravitazione e’ frutto dello spazio tempo proprio del nostro universo. Se anche prendessimo in considerazione la teoria dei Multiversi, cioe’ universi confinanti, l’evoluzione di questi sarebbe completamente diversa. Il flusso oscuro provoca effetti gravitazionali propri del nostro universo e dovuti all’attrazione gravitazionale. Il fatto che sia fuori dalla nostra sfera osservabile e’ solo dovuto ai concetti citati in precedenza figli dell’accelerazione dell’espansione.

Prima di tutto pero’, siamo cosi’ sicuri che questo Flusso Oscuro esista veramente?

Come anticipato, non c’e’ assolutamente la certezza e gli scienziati sono ancora fortemente divisi non solo sulle ipotesi, ma sull’esistenza stessa del Flusso Oscuro.

Per farvi capire la diatriba in corso, questo e’ il link all’articolo originale con cui si ipotizzava l’esistenza del Flusso Oscuro:

Dark Flow

Subito dopo pero’, e’ stato pubblicato un altro articolo che criticava questo sostenendo che i metodi di misura applicati non erano corretti:

Wright risposta al Dark Flow

Dopo di che, una lunga serie di articoli, conferme e smentite, sono stati pubblicati da tantissimi cosmologi. Questo per mostrare quanto controversa sia l’esistenza o meno di questo flusso oscuro di Galassie verso un determinato punto dell’universo.

Venendo ai giorni nostri, nel 2013 e’ stato pubblicato un articolo di analisi degli ultimi dati raccolti dal telescopio Planck. In questo paper viene nuovamente smentita l’esistenza del dark flow sulla base delle misure delle velocita’ effettuate nella regione di spazio in esame:

Planck, 2013

Dunque? Dark Flow definitivamente archiviato? Neanche per sogno. Un altro gruppo di cosmologi ha pubblicato questo ulteriore articolo:

Smentita alla smentita

in cui attacca i metodi statistici utilizzati nel primo articolo e propone un’analisi diversa dei dati da cui si mostra l’assoluta compatibilita’ di questi dati con quelli di un altro satellite, WMAP, da cui venne evidenziata l’esistenza del dark flow.

Credo che a questo punto, sia chiaro a tutti la forte discussione ancora in corso sull’esistenza o meno di questo Dark Flow. Come potete capire, e’ importante prima di tutto continuare le analisi dei dati e determinare se questo flusso sia o meno una realta’ del nostro universo. Fatto questo, e se il movimento venisse confermato, allora potremmo fare delle ipotesi sulla natura di questo punto di attrazione molto massivo e cercare di capire di cosa potrebbe trattarsi. Ovviamente, sempre che venisse confermata la sua esistenza, stiamo ragionando su qualcosa talmente lontano da noi da essere al di fuori della nostra sfera osservabile. Trattare questo argomento ci ha permesso prima di tutto di aprire una finestra scientifica su un argomento di forte e continua attualita’ per la comunita’ scientifica. Come sappiamo, trattando argomenti di questo tipo, non troviamo risposte certe perche’ gli studi sono ancora in corso e, cosi’ come deve avvenire, ci sono discussioni tra gli scienziati che propongono ipotesi, le smentiscono, ne discutono, ecc, come la vera scienza deve essere. Qualora ci fossero ulteriori novita’ a riguardo, ne parleremo in un futuro articolo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Le forze di marea

13 Ago

Nella sezione:

Hai domande o dubbi?

E’ stata posta una nuova domanda molto interessante e che credo sia il caso di discutere subito. Prima di cominciare, vi ricordo che questa sezione e’ stata appositamente creata per far si che chiunque possa richiedere argomenti specifici che, qualora non ancora trattati, verranno poi affrontati negli articoli al fine di stimolare una discussione costruttiva tra tutti i lettori.

Premesso questo, la domanda riguarda le cosiddette “forze mareali” o “di marea”.

Di cosa si tratta?

Partiamo, al solito, da quello che e’ noto a tutti: i pianeti dell’universo ruotano intorno al Sole grazie alla forza di gravita’ che li tiene uniti. Allo stesso modo, a distanze minori, molti pianeti del sistema solare presentano dei satelliti orbitanti intorno a loro. Ovviamente, anche questi sono tenuti insieme dalla forza di gravita’.

Ecco un primo risultato interessante e che spesso passa inosservato. Lo studio e la formulazione matematica della forza di gravita’, fatta per la prima volta da Newton, prende il nome di “teorie della gravitazione universale”. L’aggettivo “universale” non e’ assolutamente messo li per caso, ma sta ad indicare come la validita’ di questa legge sia vera a scale estremamente diverse tra loro. Se noi rimaniamo attaccati alla Terra e perche’ c’e’ la forza di gravita’. Se la Terra ruota intorno al Sole e’ perche’ c’e’ la forza di gravita’. Allo stesso modo, la rotazione del sistema solare intorno al centro della Galassia, cosi’ come il moto della Galassia stessa e’ possibile grazie alla forza di gravita’. Detto questo, capite bene perche’ viene attribuito l’aggettivo universale a questa legge.

Dal punto di vista fisico, due qualsiasi masse poste ad una certa distanza si attraggono secondo una forza direttamente proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato della loro distanza. Come anticipato questo e’ vero per due qualsiasi masse estese nello spazio.

Per andare avanti, concentriamoci pero’ sulla domanda fatta e dunque parliamo di forze di marea. Come e’ noto, l’innalzamento e l’abbassamento del livello delle acque sulla Terra e’ dovuto alla Luna, anche se, come vedremo, anche il Sole ha il suo contributo.

Alla luce di quanto detto prima, se la Terra attrae la Luna, ed e’ vero il viceversa, come mai i due corpi non vanno uno verso l’altro finendo per scontrarsi?

Il segreto della stabilita’ delle orbite e’ appunto nel moto di rotazione della Luna intorno alla Terra. Questo movimento genera una forza centrifuga diretta verso l’esterno che stabilizza il moto. Questo e’ lo stesso effetto che trovate per qualsiasi corpo in rotazione nell’universo. Per essere precisi, due corpi in rotazione tra loro, ruotano intorno al centro di massa del sistema. Nel caso di Terra e Luna, la differenza tra le masse e’ cosi’ grande che il centro di massa cade molto vicino al centro della Terra.

Detto questo, abbiamo capito perche’ il sistema puo’ ruotare stabilmente, ma ancora non abbiamo capito da dove si originano le maree.

Come anticipato, l’intensita’ della forza di attrazione gravitazionale e’ inversamente proporzionale al quadrato della distanza. Bene, rimaniamo nell’esempio Terra-Luna. L’attrazione subita dal nostro satellite per opera della Terra, non sara’ identica in ogni punto della Luna. Mi spiego meglio, provate a guardare questo disegno:

Forze di marea subite per attrazione gravitazionale

Forze di marea subite per attrazione gravitazionale

Il lato piu’ vicino all’altro pianeta subira’ un’attrazione maggiore dal momento che la distanza tra i due corpi e’ piu’ piccola. Questo e’ vero ogni qual volta siamo in presenza di corpi grandi. Analogamente, prendendo in esame il contributo centrifugo, la forza risultante tendera’ a spingere il lato vicino verso l’altro pianeta e allontare il lato lontano.

Ragioniamo su quanto detto senza perderci. Abbiamo un corpo esteso ad una certa distanza da qualcosa che lo attrae. Questa attrazione dipende dalla distanza tra i due corpi. Dal momento che abbiamo un corpo esteso, il lato che guarda il centro di attrazione sara’ necessariamente piu’ vicino subendo una forza maggiore rispetto al lato lontano.

Bene, questa differenza tra le interazioni tende ad allungare il corpo cioe’ a farlo passare da una sfera ad un elissoide. Queste sono appunto le forze di marea.

Quali effetti possiamo avere?

Nell’immagine riportata prima, si vedevano proprio le forze di marea esercitata dalla Luna sulla Terra. Come vedete, il lato verso la Luna e quello diametralmente opposto tendono ad allungarsi, provocando dunque un innalzamento delle acque. Negli punti perpendicolari al sistema invece, si avra’ uno schiacciamento e dunque un abbassamento del livello delle acque. Ecco spiegato come avvengono le maree. Ovviamente, poiche’ tutto il sistema e’ in movimento, i punti con alta e bassa marea cambieranno nel corso della giornata, presentando due cicli completi nell’arco del giorno.

Domanda lecita: perche’ nel calcolo delle maree consideriamo solo gli effetti della Luna trascurando completamente il Sole? Come sappiamo, la massa del Sole e’ notevolmente maggiore di quella della Luna quindi ci si aspetterebbe un contributo dominante. Come visto, le forze mareali si generano perche’ ci sono differenze significative tra l’attrazione subita da un lato del pianeta rispetto all’altro. Dal momento che la distanza tra la Terra e il Sole e’ molto piu’ elevata di quella Terra-Luna, la differenza di intensita’ dovuta all’attrazione solare e’ molto meno marcata. Detto in altri termini, a distanze maggiori un corpo esteso puo’ essere approssimato come un punto e dunque e’ molto piccola la forza di marea che si genera.

Effetti misurabili si possono avere quando Sole, Terra e Luna sono allineati, come avviene nel novilunio, dal momento che i contributi si sommano. In questo caso si possono dunque avere livelli di marea massimi, anche noti come maree sigiziali, cioe’ in cui la differenza di altezza tra alta e bassa marea raggiunge il picco.

Analogamente a quanto visto, anche la Luna subisce una forza di marea da parte della Terra. Dal momento pero’ che la Luna non e’ ricoperta da oceani, la resistenza meccanica alla distorsione e’ molto maggiore. In questo caso, l’effetto misurabile e’ una differenza di qualche kilometro tra l’asse rivolto verso la Terra e quello perpendicolare, tale da far apparire il nostro satellite come un elissoide.

Altro effetto delle forze di marea tra corpi estesi vicini e’ la sincronizzazione della rotazione. Come tutti sanno, la Luna rivolge sempre la stessa faccia verso la Terra. Detto in altri termini, a meno di “oscillazioni” che si registrano, un osservatore sulla Terra riesce a vedere sempre la stessa porzione di Luna o meglio, un lato della stessa rimane sempre invisibile al nostro sguardo, il cosiddetto “lato oscuro della Luna”.

Perche’ si ha questo comportamento?

Come anticipato, questo e’ dovuto alla rotazione sincrona della Luna intorno alla Terra. Detto molto semplicemente, il periodo di rotazione e di rivoluzione della Luna coincidono tra loro. Se volete, in parole povere, mentre la Luna si sta spostando sulla sua orbita, ruota su se stessa in modo tale da compensare  lo spostamento e mostrare sempre la stessa faccia a Terra. La figura puo’ aiutare meglio a comprendere questo risultato:

Rotazione sincrona tra satellite e pianeta. Fonte: wikipedia.

Rotazione sincrona tra satellite e pianeta. Fonte: wikipedia.

Ovviamente, parlare di stesso periodo di rivoluzione e rotazione non puo’ certo essere un caso. Rotazioni sincrone si hanno come conseguenza delle forze mareali potendo dimostrare che per corpi vicini tra loro, il moto tende ad essere sincrono in tempi astronomicamente brevi.

Parlando di forze di marea, ci siamo limitati a studiare il caso del sistema Terra-Luna. Seguendo la spiegazione data, capite bene come questi effetti possano essere estesi a due qualsiasi corpi in rotazione vicina tra loro. In tal senso, effetti di marea si possono avere in prossimita’ di buchi neri, di stelle di neutroni o anche di galassie, cioe’ corpi in grado di generare un elevato campo gravitazionale. In particolare, nel caso delle galassie le forze di marea tendono, in alcuni casi, ad allungare la forma spostando la posizione di corpi celesti che si allontanano a causa della differenza di attrazione.

Concludendo, abbiamo visto come la Luna possa generare sulla Terra le maree. L’effetto del Sole e’ in realta’ inferiore perche’ molto maggiore e’ la distanza che ci separa dalla nostra stella. Effetti di questo tipo vengono generati a causa della differenza di attrazione gravitazionale che si registra nei diversi punti di un corpo esteso. Queste differenze, generano appunto una forza risultante, detta di marea, che tende ad allungare il corpo. Effetti analoghi si possono avere per corpi piu’ estesi e comunque ogni qual volta si hanno due masse posizionate ad una distanza non troppo maggiore del diametro dei corpi.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Se il vuoto non e’ vuoto

12 Ago

Come nell’articolo precedente, anche in questo caso vorrei parlarvi di un argomento suggerito nella sezione:

Hai domande o dubbi?

Piccola premessa iniziale, il fatto di scrivere articoli “su commissione” e’ qualcosa che mi rende veramente fiero di questo spazio creato sul web. Avere cosi’ tante richieste, significa che le persone sono coinvolte nella discussione, si informano e poi chiedono di poter approfondire gli argomenti insieme sul blog. Questo non puo’ che rendermi felice!

Detto questo, passiamo invece all’argomento della discussione. Come potete leggere, la richiesta e’ apparentemente molto semplice, si chiede di analizzare il discorso circa l’energia di punto zero.

Che significa energia di punto zero?

Ve la metto in modo molto semplice, immaginiamo uno spazio vuoto. Per vuoto non intendo un qualcosa creato con una pompa con la quale portare fuori le particelle del mezzo, ma qualcosa di completamente vuoto. Bene, questo spazio completamente vuoto e senza particelle ha un’energia. Per dirla nella forma “scienza e spettacolo”: il vuoto non e’ vuoto.

Cosa significa?

Mi metto nei panni di un non addetto ai lavori che prova a cercare una spiegazione. Vi faccio questo breve excursus perche’ girando su internet si trovano cose alcquanto curiose. Se andate su wikipedia, ormai punto di riferimento per tante persone curiose che vogliono capire le cose, trovate scritto:

Dal principio di indeterminazione di Heisenberg deriva che il vuoto è permeato da un mare di fluttuazioni quantistiche che creano coppie di particelle e anti-particelle virtuali che si annichiliscono in un tempo inversamente proporzionale alla propria energia. Il contributo complessivo all’energia del vuoto risulta così mediamente diverso da zero e pari a

 \epsilon = \frac{h\nu}{2}

dove h è la costante di Planck e  \nu è la frequenza di un generico modo di vibrazione associabile alla lunghezza d’onda materiale delle particelle virtuali.

Che dire, mi sembra chiarissimo. Ovviamente, la mia e’ un’affermazione sarcastica. Quanto trovate non mi sembra assolutamente in una forma divulgativa comprensibile ai piu’.

Cerchiamo dunque di fare un po’ di chiarezza e di capire cosa significa la frase: il vuoto non e’ vuoto.

Come anticipato, immaginiamo di poter disporre di un vuoto, cioe’ di uno spazio in cui sono state eliminate tutte le particelle. Ovviamente, uno spazio di questo tipo e’ impossibile da creare. Se anche ci mettessimo nello spazio, ci sarebbe comunque una certa densita’ di particelle che “sporcherebbero” il nostro vuoto, non rendendolo piu’ tale.

Rimaniamo pero’ nell’ambito dell’immaginazione e costruiamo il nostro esperimento mentale.

In fisica, per poter trattare il vuoto, e’ necessario tenere conto di alcune leggi molto importanti che ci vengono date dalla quantistica. Tra queste c’e’ ovviamente il principio di indeterminazione di Heisenberg che molti conoscono. Detto in modo molto divulgativo, e’ impossibile conoscere con precisione assoluta la posizione e la velocita’ di una particella. In realta’, questo principio e’ scritto in forma di disuguaglianza, cioe’ all’aumentare della precisione nella determinazione di una grandezza, aumenta l’incertezza sulla misura dell’altra variabile.

Premesso questo, osservando il vuoto ad una scala molto grande, vedremmo qualcosa di stabile e fermo nel tempo. Andando pero’ a scale sempre piu’ piccole,dove se vogliamo la fisica quantistica detta le regole, vedremmo una situazione molto caotica con coppie di particelle e antiparticelle che vengono create e distrutte in continuazione. Piu’ l’energia delle particelle e’ alta, minore e’ il tempo in cui vivono.

Per farvi capire, immaginate di osservare il mare da un aereo a quota molto alta. Da questa posizione, vedreste il mare immobile sotto di voi, come se fosse dipinto su una tela. Se ora vi avvicinate verso il basso, man mano che scendete, comincereste ad osservare le onde, i movimenti dell’acqua, ecc. Arrivati ad una distanza molto piccola, potreste anche accorgervi che quella situazione cosi’ stabile vista dall’alto, nascondeva in realta’ un mare in tempesta.

Tornado al nostro vuoto quantistico, questa continua creazione di particelle impica dunque che il vuoto non e’ assolutamente vuoto. L’energia associata a questo stato, e’ proprio quella dovuta a queste particelle, o meglio alle onde a loro associate.

Possibile che questo continuo creare particelle non provochi effetti?

In realta’, gli effetti li provoca e come, e anche sotto diversi aspetti. Prima di tutto, se non esistesse l’energia di punto zero, il principio di indeterminazione potrebbe essere violato ponendo una singola particella nello spazio.

Per vedere invece un caso comprensibile a tutti, immaginate il nostro universo. Come sapete, il nostro universo e’ oggi in espansione come venne dimostrato per la prima volta da Hubble. Successivamente pero’, ci siamo accorti non solo che il nostro universo e’ in espansione, ma che sta anche accelerando rispetto al passato.

Come possiamo spiegare questo? Se il tutto dipendesse dal Big Bang, cioe’ il motore dell’espansione fosse il botto iniziale, ci si aspetterebbe un universo, forse anche in espansione, ma che pero’ sta diminuendo sempre di piu’ la sua spinta iniziale. In questa formulazione, sarebbe impossibile vedere un unverso che ad un certo punto accelera.

Questa apparente incongruenza viene appunto spiegata chiamando in causa l’energia del vuoto. Le particelle virtuali create nel vuoto, sono in relazione con l’energia oscura che provoca l’accelerazione che abbiamo misurato nell’espansione. Come sapete, dal punto di vista fisico, stiamo entrando in un terreno poco conosciuto. Parlare di energia oscura e’, allo stato attuale, ammettere grosse lacune nella nostra comprensione dei meccanismo dell’universo.

Esistono altre prove dell’esistenza dell’energia del vuoto?

Ovviamente si! La prova piu’ immediata a sostegno dell’esistenza dell’energia del vuoto e’ stata la dimostrazione dell’effetto Casimir.

Cerchiamo di spiegare in modo semplice di cosa si tratta.

Effetto Casimir: a causa delle fluttuazioni del vuoto si crea una forza di attrazione tra le lastre

Effetto Casimir: a causa delle fluttuazioni del vuoto si crea una forza di attrazione tra le lastre

Immaginate di porre due lastre metalliche piane e parallele ad una distanza molto piccola tra loro, dell’ordine dei micron o meno. Questo sistema viene posizionato in una regione di spazio in cui e’ stato creato il vuoto assoluto. Ora, come visto, in questa condizione si creeranno comunque tantissime coppie particella-antiparticella generate nel vuoto. Come anticipato, esiste pero’ il dualismo particella-onda, per cui ad ogni particella possiamo attribuire uno stato ondulatorio. Detto in altri termini, per ciascuna particella, ci sono casi in cui si comportera’ come una particella, altri come un’onda.

Benissimo. Guardate la figura a lato. Le coppie di particelle si produrranno ovunque, nella zona esterna, cosi’ come tra le lastre. Ora pero’, in virtu’ del dualismo particella onda, nello spazio interno avremmo a disposizione solo pochi micron di spazio. Questo significa che tra le lastre potremmo avere solo particelle con lunghezza d’onda molto piccola. Dal momento che l’energia di una particella e’ direttamente proporzionale alla sua lunghezza d’onda, l’energia generata tra le lastre e’ inferiore a quella sviluppata all’esterno. Effetto netto di questo squilibrio sara’ una forza che tende ad avvicinare tra loro le piastre.

Fantastico. E’ mai stato dimostrato questo effetto? Assolutamente si. La prima prova venne tentata nei laboratori Philips nel 1958 ma i risultati, anche se non escludevano la presenza dell’effetto Casimir, erano inficiati da errori sperimentali troppo grandi. Per una verifica diretta di questo effetto, si dovette aspettare fino al 1997 quando nell’universita’ di Washington venne dimostrato l’effetto Casimir utilizzando superfici sferiche in luogo di quelle piane. Questa soluzione venne adottata per eliminare i problemi di allineamento tra le piastre.

La dimostrazione dell’effetto cosi’ come ipotizzato da Casimir, cioe’ con lastre piane e parallele, arrivo’ solo nel 2001 quando nell’universita’ di Padova si pote’ realizzare un allineamento submicrometrico con risonatori.

Concludendo, se andiamo a scale molto piccole, la meccanica quantistica ci predice uno stato di vuoto densamente popolato da coppie di particelle e antiparticelle che continuamente vengono create e distrutte. Il tempo in cui ciascuna particella vive e’ inversamente proporzionale alla sua energia. In questa condizione, le coppie prodotte contribuiscono ad un livello non nullo di energia del vuoto. Effetti indiretti dell’energia del vuoto arrivano, tra l’altro, dell’espansione accelerata dell’universo, riconducibile all’esistenza di un’energia oscura. Oltre a questo, una dimostrazione pratica dell’esistenza dell’energia del vuoto arriva dall’effetto Casimir. In questo caso, non solo si dimostra l’esistenza di coppie di particelle virtuali, ma si evidenzia anche come queste particelle possano dare effetti tangibili.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

E parliamo di questo Big Bang

9 Apr

Dal momento che, in questo post:

Il primo vagito dell’universo

e in molti altri ancora, abbiamo parlato di nascita ed evoluzione del nostro universo, credo sia giunto il momento di dedicare un articolo apposito su questi concetti. Premetto, che cerchero’ di matenere un profilo piu’ semplice e divulgativo possibile, anche se ci stiamo addentrando in teorie, e spesso anche supposizioni, fisiche non del tutto banali. In questo senso, cerchero’ il piu’ possibile di utilizzare esempi anche volutamente forzati proprio per rendere il tutto maggiormente accessibile a tutti.

Partiamo dalle basi. Allo stato attuale della nostra conoscenza, la teoria maggiormente accettata all’orgine dell’universo e’ quella per cui il tutto si sarebbe formato da un’esplosione iniziale chiamata appunto Big Bang. Come visto nell’articolo precedentemente riportato, non dobbiamo immaginare questo evento come un classico boato, da cui tutti si sarebbe formato, bensi’ come un processo di espansione, anche non costante e molto veloce in alcuni istanti, ma che dura tutt’ora.

Perche’ e’ avvenuto il Big Bang?

Immaginiamo di fissare una scala temporale all’istante iniziale, cioe’ nel momento stesso in cui e’ iniziato il Big Bang. Per dirlo con parole semplici, immaginate di avere un cronometro e di farlo partire nel mometo in cui inizia questa espansione. Secondo la teoria, prima che iniziasse il big bang, materia e antimateria convivevano insieme in una singolarita’, cioe’ costituivano un volume, al limite occupante un punto, estremamemente denso e a temperatura elevatissima. Nella concezione fisica, in questa fase non esistevano le particelle, il tempo e le forze.

Poi cosa e’ successo?

Quando il sistema e’ divenuto instabile, dopo un tempo pari a 10^(-43) secondi, e’ avvenuta quella che si chiama la prima transizione di fase. Cosa significa? Le particelle si sono formate da questo plasma iniziale e ognuna di loro aveva un’energia molto elevata detta “energia di Planck”. In questa fase, detta di Grande Unificazione, tutte le forze, compresa quella gravitazionale, erano unificate, cioe’ si manifestavano come un’unica interazione.

Bene, fermiamoci un attimo e cerchiamo di capire meglio. Al punto in cui siamo arrivati, il big bang e’ gia iniziato. Le particelle cosi’ come le forze, anche se ancora unificate, si sono formate. Riprendiamo dall’inizio. Al tempo iniziale, cioe’ prima che iniziasse l’espansione, materia e antimateria convivano insieme. Dopo un tempo brevissimo, quando si formano le particelle, dopo 10^(-43) secondi, ci sono ancora materia e antimateria, appena 10^(-6) secondi dopo l’inizio, rimane solo materia.

Dove e’ finita l’antimateria?

Per chi lo avesse perso, abbiamo parlato in dettaglio di antimateria in questo post:

Due parole sull’antimateria

Il nostro attuale universo e’ formato solo da materia. L’antimateria e’ scomparsa. Perche’? Affiche’ questo sia possibile, e dunque sia iniziato il big bang, la fisica ci dice che devono essere state verificate le 3 condizioni di Sakharov. Senza entrare troppo nel dettaglio, in questa ipotesi, ci deve essere stata un’asimmetria tra materia e antimateria, che ha portato allo squilibrio che vediamo oggi. In particolare, in questo contesto si parla appunto di violazione di CP, cioe’ proprio di squilibrio della simmetria materia-antimateria nell’universo.

E’ possibile che siano rimaste delle sacche di antimateria da qualche parte oppure che l’universo sia formato da due distinte zone, una di materia ed una di antimateria?

La risposta e’ no. Capiamo il perche’. Quando entrano in contatto, materia e antimateria si annichilano, cioe’ ineragiscono distruggendosi a vicenda, e producendo radiazione gamma, cioe’, in linea di principio forzando l’esempio, luce. Se esistessero zone ben delimitate di materia e antimateria, nel punto di separazione tra di esse, si avrebbe annichilazione con la conseguente produzione di raggi gamma. Di questa radiazione non vi e’ nessuna evidenza ne’ dagli osservatori a Terra, ne’ dai satelliti, ne’ tantomeno dalle missioni esplorative che abbiamo mandato nello spazio.

Le condizioni di Sakharov offrono dunque un modello teorico in grado di spiegare perche’ potrebbe essere avvenuto questo squilibrio e quindi sia iniziato il big bang. Dico “potrebbe” perche’ al momento non tutte le condizioni sono state verificate e grande aiuto in questo senso dovrebbe venire dallo studio della fisica delle particelle agli acceleratori. Aprendo una piccola parentesi, quando in un acceleratore facciamo scontrare due fasci, questi interagiscono tra loro ad altissima energia. Man mano che aumentiamo l’energia, utilizzando sistemi sempre piu’ potenti, e’ come se andassimo indietro nel tempo tendendo verso il big bang. Ovviamente le energie oggi disponibili sono ancora molto lontane da quella iniziale, ma questo genere di studi ci consentono di comprendere molte cose importanti sul mondo delle particelle elementari.

Dunque, ricapitolando, abbiamo un sistema iniziale materia-antimateria, intervengono le condizioni di Sakharov e il sistema inizia ad espandersi facendo scomparire l’antimateria. Inizialmente le forze erano tutte unificate e le particelle si scontravano tra loro ad altissima energia.

Dopo, cosa e’ successo?

Man mano che il tempo scorreva, si passo’ attraverso varie fasi, ognuna caratterizzata da una rottura di simmetria di qualche tipo. In tal senso, le forza si divisero tra loro, lasciando quelle che oggi indichiamo come forze fondamentali: forte, debole, elettromagnetica e gravitazionale. In particolare, quest’ultima fu la prima a separarsi non appena la temperatura inizio’ a scendere e le onde gravitazionali poterono propagarsi liberamente.

Qualche minuto dopo l’istante iniziale, le particelle, cioe’ protoni e neutroni, poterono iniziare a combianrsi formando nuclei di Deuterio ed Elio. Questa importante fase viene chiamata “nucleosintesi”.

La temperatura dell’universo era pero’ ancora troppo elevata. Per osservare la formazione dei primi atomi, si dovette aspettare ancora circa 379000 anni, quando materia e radiazione finalmente si separarono e quest’ultima pote’ viaggiare libera nel cosmo. Di questo preciso istante, abbiamo anche parlato in questo post:

Universo: foto da piccolo

in cui, come visto, si ebbe la formazione della radiazione di fondo che oggi, alla temperatura attuale, e’ di 2.7K con uno spettro nelle microonde.

Dopo questa fase, gli addensamenti di materia cominciarono ad attrarsi gravitazionalmente, formando poi le galassie, le stelle, i pianeti, ecc, cioe’ , quello che vediamo oggi osservando l’universo.

Ma esistono delle prove di tutto questo? E se in realta’ il big bang non fosse mai avvenuto?

Come visto in altri post, ma anche come comprensibile da quanto detto, proprio la radiazione di fondo costituisce una prova del big bang. Detto in altri termini, la CMB non sarebbe altro che un’eco di quanto avvenuto, cioe’ un reperto fossile dell’esplosione iniziale.

Inoltre, la velocita’ di espansione delle Galassie, misurata per la prima volta da Hubble, costituisce un’altra prova a sostegno di questa teoria.

Partendo da quest’ultimo concetto, una domanda lecita che chiunque potrebbe farsi e’: “dove e’ avvenuto il Big Bang?”

Modello dell'espansione dal Big Bang

Modello dell’espansione dal Big Bang

In tal senso, se inizialmente si aveva un punto da cui poi tutto si e’ espanso, immaginando un rewind dovremmo essere in grado di identificare il punto iniziale del big bang. In realta’, non e’ cosi’. I fisici sono soliti dire che il Big Bang e’ avvenuto ovunque o anche che ogni punto dell’universo e’ un centro di espansione.

Che significa?

L’espansione dello spazio tempo avviene in piu’ di tre dimesioni, per cui non e’ facile immaginare a mente cosa sia avvenuto. Per capire questo concetto, immaginate l’universo come un palloncino inizialmente sgonfio. Ora, prendendo un pennarello, fate dei puntini sulla superificie. Se le pareti del palloncino sono l’universo che si espande, mentre gonfiate il palloncino, ciascun punto, tra quelli che avete disegnato, vedra’ gli altri allontarsi da lui. In questo contesto, ciascun punto e’ centro dell’espansione, cioe’ ogni punto vede gli altri punti allontarsi da lui in tutte le direzioni. L’animazione riportata potra’ aiutarvi a capire meglio questo discorso. Fissando un punto, tutti gli altri si allontanano da questo, indipendentemente da quello che scegliete come vostro centro. Dunque, se osservate l’universo dalla Terra, vedrete tutti gli altri corpi allontarsi da noi, come se la Terra fosse il centro dell’espansione.

Concludendo, esistono diverse prove sperimentali a sostegno del Big Bang, cioe’ di questa esplosione iniziale da cui, partendo da uno stato di equilibrio materia-antimateria, tutto si e’ formato passando attraverso diverse rotture di simmetrie. Ad oggi, o forse mai, nessuno potra’ spiegare perche’ questa materia e antimateria erano li o cosa c’era prima di questo equilibrio. Se volete, ognuno, con il suo pensiero e la sua convinzione, puo’ dare la sua spiegazione. I processi di evoluzione dal tempo zero, sono ipotizzati, ma ancora molto lavoro resta da fare per verificare queste teorie e capire a fondo perche’, come e con che intensita’ sino avvenuti determinati meccanismi. Insomma, di lavoro da fare ce n’e’ ancora molto.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

 

Universo: foto da piccolo

24 Mar

In questi ultimi giorni, tutti i giornali, i telegiornali, i siti internet specializzati, sono stati invasi da articoli scientifici riguardanti le ultime scoperte fatte con il telescopio Planck. I dati di questo telescopio, gestito interamente dalla nostra Agenzia Spaziale Europea, hanno mostrato una foto dell’universo quando aveva solo 380000 anni. Ecco la foto che sicuramente vi sara’ capitato di vedere:

L'universo alla tenera eta' di 380000 anni

L’universo alla tenera eta’ di 380000 anni

Si parla anche di risultati sconvolgenti: l’universo e’ piu’ vecchio di quello che si pensava fino ad oggi. Inoltre, la radiazione cosmica di fondo presenta delle differenze tra i due emisferi oltre a mostrare una regione fredda piu’ estesa di quella che si pensava.

Fantastico, direi io, questi risultati mi hanno veramente impressionato. Ora pero’, la domanda che mi sono posto e’ molto semplice, anche su giornali nazionali, ho visto articoli che commentavano questa foto parlando di CMB, anisotropie, fase inflazionistica. In pochissimi pero’, si sono degnati di spiegare in modo semplice il significato di questi termini. Purtroppo, spesso vedo molti articoli che ripetono a pappagallo le notizie senza neanche chiedersi cosa significano quei termini che stanno riportando.

Cerchiamo, per quanto possibile, di provare a fare un po’ chiarezza spiegando in maniera completamente divulgativa cosa significa: radiazione cosmica di fondo, periodo inflazionistitico, ecc.

Andiamo con ordine. La foto da cui siamo partiti ritrae l’universo quando aveva 380000 anni ed in particolare mostra la mappa della radiazione cosmica di fondo.

Prima cosa, come facciamo a fare una foto dell’universo del passato? In questo caso la risposta e’ molto semplice e tutti noi siamo in grado di sperimentarla facilmente. Quando alziamo lo sguardo e vediamo il cielo stellato, in realta’ e’ come se stessimo facendo un viaggio nel tempo. Se guardiamo una stella distante 100 anni luce da noi, significa che quell’immagine che osserviamo ha impiegato 100 anni per giungere fino a noi. Dunque, quella che vediamo non e’ la stella oggi, bensi’ com’era 100 anni fa. Piu’ le stelle sono lontane, maggiore e’ il salto indietro che facciamo.

Bene, questo e’ il principio che stiamo usando. Quando mandiamo un telescopio in orbita, migliore e’ la sua ottica, piu’ lontano possiamo vedere e dunque, equivalentemente, piu’ indietro nel tempo possiamo andare.

Facciamo dunque un altro piccolo passo avanti. Planck sta osservando l’universo quando aveva solo 380000 anni tramite la CMB o radiazione cosmica a microonde. Cosa sarebbe questa CMB?

Partiamo dall’origine. La teoria accettata sull’origine dell’universo e’ che questo si sia espanso inizialmente da un big bang. Un plasma probabilmente formato da materia e antimateria ad un certo punto e’ esploso, l’antimateria e’ scomparsa lasciando il posto alla materia che ha iniziato ad espandersi e, di conseguenza, si e’ raffreddata. Bene, la CMB sarebbe un po’ come l’eco del big bang e, proprio per questo, e’ considerata una delle prove a sostegno dell’esplosione iniziale.

Come si e’ formata la radiazione di fondo? Soltanto 10^(-37) secondi dopo il big bang ci sarebbe stata una fase detta di inflazione in cui l’espansione dell’universo ha subito una rapida accelerazione. Dopo 10^(-6) secondi, l’universo era ancora costituito da un plasma molto caldo di  fotoni, elettroni e protoni, l’alta energia delle particelle faceva continuamente scontrare i fotoni con gli elettroni che dunque non potevano espandersi liberamente. Quando poi la temperatura dell’universo e’ scesa intorno ai 3000 gradi, elettroni e protoni hanno cominciato a combianrsi formando atomi di idrogeno e i fotoni hanno potuto fuoriuscire formando una radiazione piu’ o meno uniforme. Bene, questo e’ avvenuto, piu’ o meno, quando l’universo aveva gia’ 380000 anni.

Capiamo subito due cose: la foto da cui siamo partiti e’ dunque relativa a questo periodo, cioe’ quando la materia (elettroni e protoni) hanno potuto separarsi dalla radiazione (fotoni). Stando a questo meccanismo, capite anche perche’ sui giornali trovate che questa e’ la piu’ vecchia foto che potrebbe essere scattata. Prima di questo momento infatti, la radiazione non poteva fuoriuscire e non esisteva questo fondo di fotoni.

Bene, dopo la separazione tra materia e radiazione, l’universo ha continuato ad espandersi, dunque a raffreddarsi e quindi la temperatura della CMB e’ diminuita. A 380000 anni di eta’ dell’universo, la CMB aveva una temperatura di circa 3000 gradi, oggi la CMB e’ nota come fondo cosmico di microonde con una temperatura media di 2,7 gradi Kelvin. Per completezza, e’ detta di microonde perche’ oggi la temperatura della radiazione sposta lo spettro appunto su queste lunghezze d’onda.

Capite bene come l’evidenza della CMB, osservata per la prima volta nel 1964, sia stata una conferma proprio del modello del big bang sull’origine del nostro universo.

E’ interessante spendere due parole proprio sulla scoperta della CMB. L’esistenza di questa radiazione di fondo venne predetta per la prima volta nel 1948 da Gamow, Alpher e Herman ipotizzando una CMB a 5 Kelvin. Successivamente, questo valore venne piu’ volte corretto a seconda dei modelli che venivano utilizzati e dai nuovi calcoli fatti. Dapprima, a questa ipotesi non venne dato molto peso tra la comunita’ astronomica, fino a quando a partire dal 1960 l’ipotesi della CMB venne riproposta e messa in relazione con la teoria del Big Bang. Da questo momento, inizio’ una vera e propria corsa tra vari gruppi per cercare di individuare per primi la CMB.

Penzias e Wilson davanti all'antenna dei Bell Laboratories

Penzias e Wilson davanti all’antenna dei Bell Laboratories

Con grande sorpresa pero’ la CMB non venne individuata da nessuno di questi gruppi, tra cui i principali concorrenti erano gli Stati Uniti e la Russia, bensi’ da due ingegneri, Penzias e Wilson, con un radiotelescopio pensato per tutt’altre applicazioni. Nel 1965 infatti Penzias e Wilson stavano lavorando al loro radiotelescopio ai Bell Laboratories per lo studio della trasmissione dei segnali attraverso il satellite. Osservando i dati, i due si accorsero di un rumore di fondo a circa 3 Kelvin che non comprendenvano. Diversi tentativi furono fatti per eliminare quello che pensavano essere un rumore elettronico del telescopio. Solo per darvi un’idea, pensarono che questo fondo potesse essere dovuto al guano dei piccioni sull’antenna e per questo motivo salirono sull’antenna per ripulirla a fondo. Nonostante questo, il rumore di fondo rimaneva nei dati. Il punto di svolta si ebbe quando l’astronomo Dicke venne a conoscenza di questo “problema” dell’antenna di Penzias e Wilson e capi’ che in realta’ erano riusciti ad osservare per la prima volta la CMB. Celebre divenne la frase di Dicke quando apprese la notizia: “Boys, we’ve been scooped”, cioe’ “Ragazzi ci hanno rubato lo scoop”. Penzias e Wilson ricevettero il premio Nobel nel 1978 lasciando a bocca asciutta tutti gli astronomi intenti a cercare la CMB.

Da quanto detto, capite bene l’importanza di questa scoperta. La CMB e’ considerata una delle conferme sperimentali al modello del Big Bang e quindi sull’origine del nostro universo. Proprio questa connessione, rende la radiazione di fondo un importante strumento per capire quanto avvenuto dopo il Big Bang, cioe’ il perche’, raffreddandosi, l’universo ha formato aggreggati di materia come stelle e pianeti, lasciando uno spazio quasi vuoto a separazione.

Le osservazioni del telescopio Planck, e dunque ancora la foto da cui siamo partiti, hanno permesso di scoprire nuove importanti dinamiche del nostro universo.

Prima di tutto, la mappa della radiazione trovata mostra delle differenze, o meglio delle anisotropie. In particolare, i due emisferi presentano delle piccole differenze ed inoltre e’ stata individuata una regione piu’ fredda delle altre, anche detta “cold region”. Queste differenze furono osservate anche con la precedente missione WMAP della NASA, ma in questo caso si penso’ ad un’incertezza strumentale del telescopio. Nel caso di Plack, la tecnologia e le performance del telescopio confermano invece l’esistenza di regioni “diverse” rispetto alle altre.

Anche se puo’ sembrare insignificante, l’evidenza di queste regioni mette in dubbio uno dei capisaldi dell’astronomia, cioe’ che l’universo sia isotropo a grande distanza. Secondo i modelli attualmente utilizzati, a seguito dell’espansione, l’universo dovrebbe apparire isotropo, cioe’ “uniforme”, in qualsiasi direzione. Le differenze mostrate da Planck aprono dunque lo scenario a nuovi modelli cosmologici da validare. Notate come si parli di “grande distanza”, questo perche’ su scale minori esistono anisotropie appunto dovute alla presenza di stelle e pianeti.

Ci sono anche altri importanti risultati che Planck ha permesso di ottenere ma di cui si e’ parlato poco sui giornali. In primis, i dati misurati da Planck hanno permesso di ritoccare il valore della costante di Hubble. Questo parametro indica la velocita’ con cui le galassie si allontanano tra loro e dunque e’ di nuovo collegato all’espansione dell’universo. In particolare, il nuovo valore di questa costante ha permesso di modificare leggermente l’eta’ dell’universo portandola a 13,82 miliardi di anni, circa 100 milioni di anni di piu’ di quanto si pensava. Capite dunque perche’ su alcuni articoli si dice che l’universo e’ piu’ vecchio di quanto si pensava.

Inoltre, sempre grazie ai risultati di Planck e’ stato possibile ritoccare le percentuali di materia, materia oscura e energia oscura che formano il nostro universo. Come saprete, la materia barionica, cioe’ quella di cui siamo composti anche noi, e’ in realta’ l’ingrediente meno abbondante nel nostro universo. Solo il 4,9% del nostro universo e’ formato da materia ordinaria che conosciamo. Il 26,8% dell’universo e’ invece formato da “Materia Oscura”, qualcosa che sappiamo che esiste dal momento che ne vediamo gli effetti gravitazionali, ma che non siamo ancora stati in grado di indentificare. In questo senso, un notevole passo avanti potra’ essere fatto con le future missioni ma anche con gli acceleratori di particelle qui sulla terra.

Una considerazione, 4,9% di materia barionica, 26,8% di materia oscura e il resto? Il 68,3% del nostro universo, proprio l’ingrediente piu’ abbondante, e’ formato da quella che viene detta “Energia Oscura”. Questo misterioso contributo di cui non sappiamo ancora nulla si ritiene essere il responsabile proprio dell’espansione e dell’accelerazione dell’universo.

Da questa ultima considerazione, capite bene quanto ancora abbiamo da imparare. Non possiamo certo pensare di aver carpito i segreti dell’universo conoscendo solo il 5% di quello che lo compone. In tal senso, la ricerca deve andare avanti e chissa’ quante altre cose strabilinati sara’ in grado di mostrarci in futuro.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

La materia oscura

19 Dic

Abbiamo iniziato a parlare di questa “materia oscura”, commentando un articolo catastrofista, e permettemi di dire alquanto bizzarro, apparso oggi su alcuni quotidiani:

Venerdi finisce il mondo!

Come visto, secondo queste fonti, un ammasso di materia oscura, sotto forma di corpo esteso e massivo, sarebbe in rotta di collisione con la Terra per il 21/12.

Nell’articolo citato, abbiamo gia’ discusso delle assurdita’ scientifiche prospettate come ipotesi di partenza, ma per offrire un quadro piu’ chiaro, dobbiamo necessariamente parlare di materia oscura.

Ovviamente, come capite bene, questo articolo e’ solo un corollario a quello citato, ma ho deciso di metterlo come post isolato, vista l’importanza della divulgazione di argomenti come questi.

Prima di iniziare, vorrei fare una premessa importate. Come piu’ volte dichiarato, in questo blog vogliamo fare divulgazione scientifica approfittando delle profezie del 2012. Per questa ragione, cerchiamo di fare una divulgazione semplice e che lasci intendere i concetti fondamentali. Questo punto e’ importante, perche’ vogliamo dare risposte accessibili a tutti. Non sono qui per fare una lezione universitaria, ne tantomeno per fare un esercizio di stile scientifico. Cerchero’ di essere molto chiaro, esplorando solo i concetti fondamentali. Mi scuso da subito con quanti di voi hanno gia’ conoscenza dell’argomento e potrebbero considerare questo post troppo semplice.

Cominciamo dalle cose ovvie.

In questo post:

Piccolo approfondimento sulla materia strana

abbiamo gia’ parlato di modello standard. In particolare, abbiamo visto come le particelle fondamentali, cioe’ non formate da pezzetti piu’ piccoli, siano in realta’ poche e descrivibili attraverso delle famiglie. Mescolando insieme queste particelle, che altro non sono i componenti di quello che chiamiamo “modello standard”, possiamo capire la materia che ci circonda e le interazioni, cioe’ le forze, che questa subisce.

Fin qui tutto chiaro.

Ora, cosa c’entra la materia oscura?

Prima di tutto un po’ di storia. Nel 1933 l’astronomo Zwicky fece il seguente esercizio. Studiando l’ammasso della Chioma, sommo’ tutte le masse galattiche, cioe’ le masse di tutti gli oggetti che componevano l’ammasso, e ottenne in questo modo la massa totale della Chioma. Fin qui, niente di speciale. Ora pero’, e’ possibile ricavare la massa anche in modo indiretto, cioe’ misurando la dispersione delle velocita’ delle galassie che costituivano l’ammasso. In questo secondo modo, ottenne un’altra misura della massa totale, questa volta in modo indiretto. Il problema fu che la seconda stima era maggiore della prima di circa 400 volte. Detto in parole povere, la somma non faceva il totale.

Questa discrepanza venne poi studiata in dettaglio solo negli anni ’70, quando si capi’ che questa differenza non era dovuta ad errori di calcolo, bensi’ era un qualcosa ancora non capito dalla scienza.

Proprio in questo contesto, si comincio’ a parlare di materia oscura, cioe’ materia non visibile dagli strumenti ma dotata di massa, che era in grado di risolvere le discrepanze trovate.

A questo punto, ognuno di noi potrebbe pensare che si sta cercando solo di farsi tornare i conti. In realta’ non e’ cosi’. La materia oscura e’ importante anche per capire e spiegare molte leggi di natura estremamente importanti del nostro universo. Piu’ che un artificio di calcolo e’ qualcosa in grado spiegare il funzionamento stesso di quello che osserviamo.

Cerchiamo di capire meglio con qualche altro esempio.

Una delle evidenze principali della materia oscura e’ nell’osservazione e nella parametrizzazione delle galassie a spirale. Cos’e’ una galassia a spirale? Sono galassie formate da una parte interna, detta bulbo, e d alcune braccia che si avvolgono intorno a questa parte centrale.

Esempio di galassia spirale

Esempio di galassia spirale

Ora, immaginiamo di voler misurare la velocita’ delle stelle che compongono la galassia. In linea di principio, per la terza legge di Keplero, piu’ ci allontaniamo dal centro, minore dovrebbe essere la velocita’ delle stelle. Se immaginate di fare un grafico in cui riportate la velocita’ in funzione della distanza dal centro, cosa vi aspettereste? Se la velocita’ delle stelle periferiche e’ piu’ bassa, dovremmo avere un grafico che decresce all’aumentare della distanza.

Velocita' di rotazione delle stelle in funzione della distanza dal centro. A: aspettato B:osservato

Velocita’ di rotazione delle stelle in funzione della distanza dal centro. A: aspettato B:osservato

In realta’ osservate che la velocita’ delle stelle lontane e’ paragonabile a quelle interne, cioe’ il grafico e’ “piatto”. Perche’ avviene questo? Semplicemente perche’ non possiamo stimare la massa della galassia semplicemente sommando le singole stelle, ma dobbiamo mettere dentro anche la materia oscura. Rifacendo il calcolo considerando la materia oscura ottenete il grafico sperimentale visto in figura. Ma e’ veramente necessaria questa massa aggiuntiva? In realta’ si. Se la massa fosse solo quella delle stelle visibili, le stelle piu’ lontane, e che dunque ruotano piu’ velocemente di quello che ci aspettiamo, sarebbero espulse dalla galassia. Dal momento che vediamo con i nostri occhi che le stelle sono sempre li senza essere espulse, significa che la materia oscura ci deve essere.

Se siete riusciti ad arrivare fino a questo punto, ormai siamo in discesa.

Restano due domande fondamentali a cui rispondere. Quanta materia oscura c’e’ nell’universo? Ma soprattutto, cos’e’ questa materia oscura?

Il “quanta ce n’e'” potrebbe sorprendervi. Dalle stime fatte nel nostro universo, si trova che circa l’85% totale della massa e’ composta da materia oscura. Detto in altri termini abbiamo circa 6 volte piu’ materia oscura che materia barionica. Questa cosa puo’ sorprendere molto. Pensateci bene, parlando di modello standard, abbiamo visto la materia barionica, cioe’ quella che forma la materia che vediamo. Bene, l’85% della massa che compone l’universo e’ fatta di qualcosa di diverso rispetto alla materia che conosciamo.

A questo punto, cerchiamo di capire cos’e’ la materia oscura.

In realta’, non posso darvi una risposta certa e definitiva, perche’ in questo caso stiamo esplorando campi ancora aperti della scienza moderna. Esistono ovviamente diverse ipotesi riguardo alla composizione della materia oscura, ma non una certezza sperimentale.

Ragioniamo un secondo. Da quanto detto, la materia oscura ha una massa, produce effetti gravitazionali, come nel caso delle galassie a spirale viste, ma non e’ visibile ad occhio nudo. Fino ad oggi, sappiamo della sua esistenza solo attraverso misure indirette, cioe’ attraverso gli effetti che produce.

Quali sono le ipotesi per la materia oscura?

L’ipotesi principale ‘e che la maggior parte della materia oscura sia composta da materia non barionica molto massiva. Ci si riferisce a questa categoria come WIMP, cioe’ “particelle massive debolmente interagenti”. Cosa significa debolmente interagenti? Semplicemente che questo genere di materia non reagisce facilmente con la materia barionica. Nonostante questo, le WIMP avrebbero una massa molto elevata e dunque una forte interazione gravitazionale.Il fatto che sia poco interagente, rende la sua osservazione molto difficile, dal momento che non emette a nessuna lunghezza d’onda e dunque non e’ visibile neanche fuori dal visibile.

Spesso sentite parlare di WIMP anche come neutralini, neutrini massivi, assioni, ecc. Questi sono solo i nomi di alcune particelle predette nella categoria delle WIMP e su cui si sta incentrando la ricerca. Sotto questo aspetto, si cerca appunto di identificare la materia oscura in diversi modi. I principali sono cercando di produrla negli acceleratori di particelle, oppure cercando di rivelare i prodotti, barionici questa volta, dunque visibili, prodotti nell’interazione tra particelle di materia oscura.

Spero di essere stato abbastanza chiaro nella trattazione, ma soprattutto spero che questi pochi concetti permettano di capire meglio l’articolo che stiamo discutendo sulla presunta scoperta di un pianeta di materia oscura in rotta di collisione con noi.

La divulgazione della scienza passa anche attraverso argomenti come questo. Partire dalle profezie del 2012, ci consente di divulgare la vera scienza e di mostrare argomenti attuali e ancora in corso di investigazione scientifica. Per leggere un libro divulgativo semplice e adatto a tutti, non perdete in libreria ”Psicosi 2012. Le risposte della scienza”.

Venerdi finisce il mondo!

19 Dic

Che dire? Il titolo promette molto bene. In realta’, il titolo cosi’ sensazionalistico non e’ farina del mio sacco, ma quello che un nostro lettore ci ha segnalato e che potevate leggere oggi sul giornale “Notizia Oggi Vercelli”. Trovate la segnalazione nei commenti di questo post:

Scontro Terra-Nibiru a Luglio?

e potete leggere la notizia di cui vi voglio parlare seguendo questo link:

Notizia oggi Vercelli

Ora, dal momento che la visione di questo articolo ha scatenato non pochi sospetti ed ansie, credo sia giusto prendere sul serio la cosa ed analizzare i diversi punti portati come tesi in questo articolo.

Iniziamo proprio la nostra analisi dalla prima riga. “Federico Caldera, consulente scientifico della NASA, bla bla”. Chi e’ Federico Caldera? Assolutamente non lo so! Come potete verificare da soli, non si trova nessun riferimento su web a questo tizio, ne’ tantomeno alla sua professione di consulente scientifico. Anche cercando direttamente sul sito NASA e guardando tra i dipendenti, consulenti, ecc, non vi e’ nessuna traccia di Federico Caldera.

Il telescopio spaziale WISE

Il telescopio spaziale WISE

Gia’ questo ci insospettisce moltissimo. La notizia, che avrebbe come fonte la NASA, viene data da uno che non esiste o che non e’ un consulente NASA.

Nonostante questo, andiamo avanti nelle lettura dell’articolo e vediamo cosa dice.

“Nel lugio 2011, il telescopio della NASA WISE avrebbe rivelato uno sciame di anomalie gravitazionali in rotta di collisione con la Terra”.

Attenzione, WISE e’ veramente un telescopio della NASA che opera nella regione dell’infrarosso, e di cui abbiamo parlato in questi post:

Scontro Terra-Nibiru a Luglio?

Finalmente le foto di Nibiru!

Peccato che WISE sia stata lanciato in orbita nel novembre 2009 e la missione sia durata 10 mesi in tutto. Questo significa che nel 2011, la missione era gia’ conclusa e dunque WISE era spento e senza energia elettrica. Dopo questa, abbiamo gia’ capito che si tratta di una bufala colossale, ma voglio lo stesso andare avanti per mostrare tutto il ragionamento, ma soprattutto perche’ una notizia del genere ci consente di parlare di argomenti scientifici reali, non ancora trattati.

Premesso che WISE era spento nel 2011, leggiamo che si sarebbero osservate una scia di anomalie gravitazionali. Cosa sarebbe una scia di anomalie gravitazionali? Come visto in questi articoli:

Storia astronomica di Nibiru

Nibiru: la prova del trattore gravitazionale

parliamo di anomalie gravitazionali per descrivere l’influenza di un corpo estraneo in un sistema stabile sotto l’effetto dell’attrazione gravitazionale. Mi spiego meglio. Prendiamo come esempio il Sistema Solare. I pianeti orbitano su traiettorie precise dettate dall’interazione gravitazionale con il Sole, principale, ma anche modificate dalla presenza degli altri pianeti. Se ora inserite un corpo nuovo nel Sistema, la massa di questo modifichera’ l’equilibrio gravitazionale, scombussolando la situazione preesistente. Queste sono le anomalie grvitazionali. Capite bene parlare di una scia di anomalie, non significa assolutamente nulla dal punto di vista scientifico. Inoltre, le anomalie, per definizione, non collidono con i pianeti, se proprio vogliamo, e’ il corpo che le provoca ad urtare qualcos’altro.

Proseguendo nella lettura, troviamo la solita trama complottista che vede come protagonista un file segretissimo e di cui si e’ venuti a conoscenza per un motivo che non si puo’ dire, la NASA che lo sa gia’ da tanti mesi, ecc. Ma attenzione perche’ poi arriviamo al piatto forte dell’articolo: “i corpi in rotta di collisione con la Terra sarebbero aggregati di materia oscura”!

Qui, si rasenta veramente la follia anche dal punto di vista fantascientifico.

Parallelamente a questo articolo, ho pubblicato anche quest’altro post:

La materia oscura

in cui ho cercato di spiegare in modo molto semplice cos’e’ la materia oscura e quali sono i punti su cui si sta concentrando la ricerca. Se non lo avete fatto, vi consiglio di leggere questo articolo a questo punto, prima di andare avanti nella lettura.

Cosa sappiamo sulla materia oscura? Sappiamo che, nell’ipotesi piu’ accreditata dalla scienza, esiste perche’ ne vediamo gli effetti. Al momento, non sappiamo di cosa si tratta, abbiamo varie ipotesi ma non una risposta definitiva. Bene, come potrebbe un qualcosa che non conosciamo formare una “palla” di materia oscura?

Capite bene che questo articolo, ripeto comparso su un giornale online, e’ stato scritto o per prendere in giro le profezie del 21/12, o da uno completamente ignorante in astronomia. Come visto nel post riportato, per la materia oscura parliamo di materia molto debolmente interagente. E’ assurdo pensare che particelle di questo tipo possano formare un sistema aggregato che si muove nell’universo.

Perche’ si parla di materia oscura? Semplice, perche’ in questo modo si concentra l’attenzione su un argomento ancora dibattuto dalla scienza e su cui la risposta defiitiva ancora manca. In questo modo si ottengono due risultati importanti. In primis, si alimenta il sospetto sulla scienza e sul complottismo sempre presente che vedrebbe scienza e governi andare a braccetto per salvare una piccola casta di eletti, ma, soprattutto, parlare di materia oscura alimenta il terrore nelle persone che sentono parlare di qualcosa completamente misterioso e di cui si sa veramente poco. Al solito, la non conoscenza di taluni argomenti genera mostri nella testa della gente.

Spero che il breve articolo sulla materia oscura, possa essere utile per dare a tutti un’infarinata su questi concetti e per evitare di cadere in tranelli, come questo articolo, del tutto campati in aria dal punto di vista scientifico.

Solo per completezza, la cosa peggiore dell’articolo e’ scrivere dove dovrebbero impattare questi corpi di materia oscura. Ma ci rendiamo conto di cosa significa? Anche se fosse, sarebbe impossibile calcolare le traiettorie in modo cosi’ preciso. Nell’articolo manca solo l’indirizzo esatto con via e numero civico dove impatteranno. Piu’ volte abbiamo parlato di traiettorie, trattando, ad esempio, di asteroidi:

2012 DA14: c.v.d.

E alla fine Nibiru e’ un asteroide

La cosa piu’ importante che abbiamo capito, e che ora siamo in grado di riconoscere, e’ l’impossibilita’ di fare un calcolo esattamente preciso dell’orbita completa di un corpo. Ogni interazione con un altro corpo, determina una variazione della  traiettoria, e questo rende senza dubbio impossibile calcolare con la precisione profetizzata nell’articolo gli eventuali punti di impatto con la Terra.

Come anticipato qualche giorno fa, pian piano che le idee catastrofiste sul 21/12 cedono il passo al ragionamento scientifico, dobbiamo aspettarci ancora qualche teoria assolutamente campata in aria e messa su internet solo per alimentare il sospetto e, nella peggiore delle ipotesi, la paura delle persone. Prima di credere a qualsiasi teoria, ragionate sempre con la vostra testa. Per un’analisi scientifica e seria di tutte le profezie del 2012, non perdete in libreria ”Psicosi 2012. Le risposte della scienza”.

Nuova sconvolgente teoria?

12 Nov

In questo lasso di tempo che ci separa dalla fatidica data del 21 Dicembre, non c’e’ assolutamente pace. Ogni giorno siamo bombardati da nuovi video sull’esistenza di Nibiru, avvistamenti ufo, asteroidi che ci stanno per colpire e chi piu’ ne ha, piu’ ne metta.

Tra tutto questo materiale che invade la rete, vorrei segnalarvi una nuova teoria veramente fuori dagli schemi e che, se fosse vera, sarebbe una scoperta sensazionale, indipendentemente dal 2012.

Senza anticiparvi niente, vi segnalo un video di giugno di quest’anno, passato inizialmente un po’ in sordina, ma che negli ultimi giorni sta prendendo sempre piu’ piede su diversi siti e blog. Vi consiglio di vedere tutto il video prima di andare avanti nel post.

La Terra non sta girando intorno al Sole? Vi rendete subito conto che l’affermazione e’ quantomeno sconvolgente. Stiamo smentendo niente poco di meno che una delle basi della nostra conoscenza astronomica. Il fatto che la Terra giri intorno al Sole, e non il viceversa, e’ un argomento che ha portato a discussioni molto accese e scontri, anche tragici, con la chiesa cattolica.

Prima di tutto, guardando il video, e l’ho visto due volte per capire meglio, in nessun punto viene dichiarata una cosa del genere. Il titolo del filmato e’ quanto meno fuorviante. Il video non dimostra affatto una cosa del genere. Ci sono due ipotesi, o l’autore non ha capito neanche di cosa stava parlando, oppure ha confuso i contenuti che riportava.

Premesso questo, e’ interessante comunque analizzare le informazioni del video. Come avete avuto modo di constatare, nel video si riporta, stando a quanto affermato, una verita’ comunque sconvolgente: il Sole non e’ il centro della nostra galassia. Per essere precisi, nel video si dice chiaramente che le informazioni contenute nei manuali contengono una menzogna: il sole non e’ il centro della nostra galassia ma ruota intorno ad esso.

Proprio queste affermazioni sono alla base della verita’ dimostrata, dopo 365 giorni la Terra non ritorna nel punto iniziale, ma sara’ leggermente spostata perche’ nel frattempo il Sole si e’ spostato rispetto al centro della Galassia. Come potete vedere nel video, presentato con moltissima enfasi e con una colonna sonora veramente adatta, le orbite dei pianeti non sarebbero ellittiche, come vorrebbero farvi credere, ma delle spirali.

Ora ragioniamo un attimo su queste informazioni.

Forse l’autore del video non conosce veramente nulla di geografia astronomica. In nessun libro o manuale troverete mai scritto che il Sole e’ il centro della nostra Galassia.

Il Sistema Solare e’ in realta’ in una zona molto periferica della nostra galassia, anche detta Via Lattea, che altro non e’ che una galassia a spirale tra le tante che sono presenti nell’universo. Nell’immagine seguente potete vedere la posizione del nostro Sole all’interno della Via Lattea:

La posizione del Sole all’interno della nostra galassia

Premesso dunque che il Sole non e’ il centro della Galassia, resta da capire l’altra affermazione che vorrebbe le orbite dei pianeti come spirali.

Anche in questo caso, nessuna verita’ sconvolgente. Il nostro Sole, e di conseguenze i pianeti che gli girano intorno, non sono fermi ma ruotano rispetto al centro della galassia. In particolare, il nostro Sole ruota intorno al centro della Galassia percorrendo un giro completo ogni 225 milioni di anni.

Dunque, dopo 365 giorni e’ ovvio che la Terra non tornera’ allo stesso punto da cui e’ partita, ma risultera’ spostata perche’ tutto il sistema solare si e’ spostato. Fate attenzione a questo punto. Quando parliamo di fermo o in movimento, dobbiamo sempre indicare rispetto a che cosa. Questi concetti sono alla base dei moti relativi.

Cerchiamo di capire meglio questo argomento dal momento che e’ importante anche per descrivere il moto dei corpi in questione.

Supponete di mettervi sul Sole e di osservare la Terra. Cosa vedete? Noi siamo fermi sul Sole, guardando la Terra vediamo che il pianeta gira intorno a noi. Parte da un punto e dopo 365 giorni ritorna nello stesso punto.

Sempre restando sul Sole, immaginate di osservare il moto del centro della Galassia. Cosa vedreste? La traiettoria che potete osservare non sara’ semplice, ma sara’ molto simile a quella che da Terra potete descrivere per il Sole e che chiamiamo eclittica. Sappiamo bene che apparentemente, visto da Terra, potremmo pensare che la Terra sia ferma e il Sole giri intorno ad essa. In realta’ tracciando la traiettoria del Sole questa assume una forma particolare, che, come anticipato, chiamiamo eclittica. Guardando il centro della galassia dal Sole, avreste un effetto simile.

Ora, continuiamo il nostro esercizio. Mettiamoci ora al centro della galassia e osserviamo il Sole. Cosa vediamo? Vediamo il sole che gira intorno a noi e compie un periodo completo in 225 milioni di anni. Sempre dal centro della galassia, proviamo ad osservare il moto della Terra. Cosa vediamo? Semplicemente un qualcosa che assomiglia ad una spirale.

Per il moto della terra, ci sono due componenti del moto da considerare. La prima e’ quella ellittica rispetto al Sole, la seconda e’ quella del Sole, e dunque della Terra, rispetto al centro galattico. La sovrapposizione di queste due forze, causa il moto spiraleggiante.

Per capire meglio questo ultimo punto, facciamo un esempio facile. Immaginate di prendere una cordicella e di appenderci un piccolo pesetto. Provate ora a far girare, tenendo la corda tra le dita, il pesetto. Cosa succede? Se mantenete una velocita’ costante, il peso compie una traiettoria circolare rispetto alla vostra mano. Ora sempre facendo girare la cordicella, provate ad alzare la mano. Cosa succede? La traiettoria seguita dal peso non e’ piu’ circolare, ma diviene una spirale. Ad ogni passaggio, il corpo non ritorna nella stessa posizione, ma sara’ spostato di un tratto che dipende dalla velocita’ con cui stata alzando o abbassando la mano.

Bene, se vi mettete nel centro della galassia e osservate il moto della Terra, avreste un effetto simile a quello descritto con l’esempio della corda.

Cosa c’e’ di sconvolgente nel video che stiamo discutendo? Assolutamente niente!

Le considerazioni fatte fanno parte della conoscenza astronomica di base, assolutamente niente di nuovo da discutere.

Inoltre, nella parte finale del video si cerca di mettere in relazione queste spirali con fenomeni del tutto diversi, facendo, passatemi il termine, un polpettone di argomenti ed esempi. Solo per fare un esempio, si cita il moto a spirale delle nuvole o delle perturbazioni, ignorando che la spiegazione di questo e’ da ricercarsi proprio nelle forze apparenti dovute al moto della Terra, come la forza centrifuga e la forza di Coriolis.

Concludendo, il video non presenta assolutamente nessuna nuova teoria. Si tratta di concetti noti alla scienza, mescolati tra loro per cercare di far credere ad una nuova verita’, tenuta nascosta non si sa per quale motivo.

Di esempi come questo video ne e’ piena la rete. Cercate sempre di soffermarvi sulle informazioni che vi vengono propinate, senza lasciarvi convincere dall’enfasi come vi vengono proposte. Cercate sempre di confrontare diverse posizioni, ragionando in maniera autonoma.

Per approfondire concetti sempre attuali della scienza moderna, partendo dalle profezie fatte sul 2012, ma affrontando argomenti troppo spesso tralasciati dalla divulgazione scientifica classica, non perdete in libreria “Psicosi 2012. Le risposte della scienza”.