Tag Archives: limiti

Aerei: come fanno a volare e sicurezza

13 Nov

Attraverso i commenti del  blog, un nostro caro lettore ci ha fatto una domanda, a suo dire, apparentemente molto semplice ma che, come potete verificare molto facilmente, genera tantissima confusione. In sintesi la domanda e’ questa: perche’ si dice che volare in aereo e’ cosi sicuro?

Per poter rispondere a questa domanda, si devono ovviamente scartabellare i numeri ufficiali degli incidenti aerei. Questo ci consente di poter verificare la probabilita’ di un incidente aereo rapportato, ad esempio, a quelli ben piu’ noti automobilistici. Partendo da questa domanda, mi sono pero’ chiesto qualcosa in piu’: sappiamo veramente perche’ gli aerei riescono a volare? Anche questa potrebbe sembrare una domanda molto semplice. Si tratta di una tecnologia conosciuta da diversi decenni eppure, incredibile ma vero, non tutti sanno perche’ questi enormi oggetti riescono a stare in aria. Facendo un giro su internet, ho scoperto come anche molti siti di divulgazione della scienza fanno delle omissioni o dicono cose formalmente sbagliate.

Detto questo, credo sia interessante affrontare un discorso piu’ ampio prima di poter arrivare a rispondere alla domanda sugli incidenti aerei.

Partiamo dalle basi, come sapete ruolo fondamentale nel volo aereo e’ quello delle ali. Mentre il motore spinge in avanti l’apparecchio, le ali hanno la funzione di far volare l’aereo. Ora, per poter restare in quota, o meglio per salire, senza dover parlare di fisica avanzata, c’e’ bisogno di una forza che spinga l’aereo verso l’alto e che sia maggiore, o al limite uguale per rimanere alle stessa altezza, del peso dell’aereo stesso.

Come fanno le ali ad offrire questa spinta verso l’alto?

Forze agenti sull'ala durante il volo

Forze agenti sull’ala durante il volo

Tutto il gioco sta nel considerare l’aria che scorre intorno all’ala. Vediamo la figura a lato per capire meglio. L’aria arriva con una certa velocita’ sull’ala, attenzione questo non significa che c’e’ vento con questa velocita’ ma, pensando al moto relativo dell’aereo rispetto al suolo, questa e’ in prima approssimazione la velocita’ stessa con cui si sta spostando l’aereo. Abbiamo poi il peso dell’aereo che ovviamente e’ rappresentato da una forza che spinge verso il basso. D e’ invece la resistenza offerta dall’ala. Vettorialmente, si stabilisce una forza L, detta “portanza”, che spinge l’aereo verso l’alto.

Perche’ si ha questa forza?

Come anticipato, il segreto e’ nell’ala, per la precisione nel profilo che viene adottato per questa parte dell’aereo. Se provate a leggere la maggiorparte dei siti divulgativi, troverete scritto che la forza di portanza e’ dovuta al teorema di Bernoulli e alla differenza di velocita’ tra l’aria che scorre sopra e sotto l’ala. Che significa? Semplicemente, l’ala ha una forma diversa nella parte superiore, convessa, e inferiore, quasi piatta. Mentre l’aereo si sposta taglia, come si suole dire, l’aria che verra’ spinta sopra e sotto. La differenza di forma fa si che l’aria scorra piu’ velocemente sopra che sotto. Questo implica una pressione maggiore nella parte inferiore e dunque una spinta verso l’alto. Per farvi capire meglio, vi mostro questa immagine:

Percorso dell'aria lungo il profilo alare

Percorso dell’aria lungo il profilo alare

Come trovate scritto in molti siti, l’aria si divide a causa del passaggio dell’aereo in due parti. Vista la differenza di percorso tra sopra e sotto, affinche’ l’aria possa ricongiungersi alla fine dell’ala, il fluido che scorre nella parte superiore avra’ una velocita’ maggiore. Questo crea, per il teorema di Bernoulli, la differenza di pressione e quindi la forza verso l’alto che fa salire l’aereo.

Spiegazione elegante, semplice, comprensibile ma, purtroppo, fortemente incompleta.

Perche’ dico questo?

Proviamo a ragionare. Tutti sappiamo come vola un aereo. Ora, anche se gli aerei di linea non lo fanno per ovvi motivi, esistono apparecchi acrobatici che possono volare a testa in giu’. Se fosse vero il discorso fatto, il profilo dell’ala in questo caso fornirebbe una spinta verso il basso e sarebbe impossibile rimanere in aria.

Cosa c’e’ di sbagliato?

In realta’ non e’ giusto parlare di spiegazione sbagliata ma piuttosto bisogna dire che quella data e’ fortemente semplificata e presenta, molto banalmente come visto, controesempi in cui non e’ applicabile.

Ripensiamo a quanto detto: l’aria scorre sopra e sotto a velocita’ diversa e crea la differenza di pressione. Chi ci dice pero’ che l’aria passi cosi’ linearmente lungo l’ala? Ma, soprattutto, perche’ l’aria dovrebbe rimanere incollata all’ala lungo tutto il percorso?

La risposta a queste domande ci porta alla reale spiegazione del volo aereo.

L'effetto Coanda sperimentato con un cucchiaino

L’effetto Coanda sperimentato con un cucchiaino

Prima di tutto, per capire perche’ l’aria rimane attaccata si deve considerare il profilo aerodinamico e il cosiddetto effetto Coanda. Senza entrare troppo nella fisica, questo effetto puo’ semplicemente essere visualizzato mettendo un cucchiaino sotto un lieve flusso d’acqua. Come sappiamo bene, si verifica quello che e’ riportato in figura. L’acqua, che cosi’ come l’aria e’ un fluido, scorre fino ad un certo punto lungo il profilo del metallo per poi uscirne. Questo e’ l’effetto Coanda ed e’ quello che fa si che l’aria scorra lungo il profilo alare. Questo pero’ non e’ ancora sufficiente.

Nella spiegazione del volo utilizzando il teorema di Bernoulli, si suppone che il moto dell’aria lungo l’ala sia laminare, cioe’, detto in modo improprio, “lineare” lungo l’ala. In realta’ questo non e’ vero, anzi, un moto turbolento, soprattutto nella parte superiore, consente all’aria di rimanere maggiormente attaccata evitando cosi’ lo stallo, cioe’ il distaccamento e la successiva diminuzione della spinta di portanza verso l’alto.

In realta’, quello che avviene e’ che il moto dell’aria lungo il profilo compie una traiettoria estremamente complicata e che puo’ essere descritta attraverso le cosiddette equazioni di Navier-Stokes. Bene, allora scriviamo queste equazioni, risolviamole e capiamo come si determina la portanza. Semplice a dire, quasi impossibile da fare in molti sistemi.

Cosa significa?

Le equazioni di Navier-Stokes, che determinano il moto dei fluidi, sono estremamente complicate e nella maggior parte dei casi non risolvibili esattamente. Aspettate un attimo, abbiamo appena affermato che un aereo vola grazie a delle equazioni che non sappiamo risolvere? Allora ha ragione il lettore nel chiedere se e’ veramente sicuro viaggiare in aereo, praticamente stiamo dicendo che vola ma non sappiamo il perche’!

Ovviamente le cose non stanno cosi’, se non in parte. Dal punto di vista matematico e’ impossibile risolvere “esattamente” le equazioni di Navier-Stokes ma possiamo fare delle semplificazioni aiutandoci con la pratica. Per poter risolvere anche in modo approssimato queste equazioni e’ necessario disporre di computer molto potenti in grado di implementare approssimazioni successive. Un grande aiuto viene dalla sperimentazione che ci consente di determinare parametri e semplificare cosi’ la trattazione matematica. Proprio in virtu’ di questo, diviene fondamentale la galleria del vento in cui vengono provati i diversi profili alari. Senza queste prove sperimentali, sarebbe impossibile determinare matematicamente il moto dell’aria intorno al profilo scelto.

In soldoni, e senza entrare nella trattazione formale, quello che avviene e’ il cosiddetto “downwash” dell’aria. Quando il fluido passa sotto l’ala, viene spinto verso il basso determinando una forza verso l’alto dell’aereo. Se volete, questo e’ esattamente lo stesso effetto che consente agli elicotteri di volare. In quest’ultimo caso pero’, il downwash e’ determinato direttamente dal moto dell’elica.

Detto questo, abbiamo capito come un aereo riesce a volare. Come visto, il profilo dell’ala e’ un parametro molto importante e, ovviamente, non viene scelto in base ai gusti personali, ma in base ai parametri fisici del velivolo e del tipo di volo da effettuare. In particolare, per poter mordere meglio l’aria, piccoli velivoli lenti hanno ali perfettamente ortogonali alla fusoliera. Aerei di linea piu’ grandi hanno ali con angoli maggiori. Al contrario, come sappiamo bene, esistono caccia militari pensati per il volo supersonico che possono variare l’angolo dell’ala. Il motivo di questo e’ semplice, durante il decollo, l’atterraggio o a velocita’ minori, un’ala ortogonale offre meno resitenza. Al contrario, in prossimita’ della velocita’ del suono, avere ali piu’ angolate consente di ridurre al minimo l’attrito viscoso del fluido.

Ultimo appunto, i flap e le altre variazioni di superficie dell’ala servono proprio ad aumentare, diminuire o modificare intensita’ e direzione della portanza dell’aereo. Come sappiamo, e come e’ facile immaginare alla luce della spiegazione data, molto importante e’ il ruolo di questi dispositivi nelle fasi di decollo, atterraggio o cambio quota di un aereo.

In soldoni dunque, e senza entrare in inutili quanto disarmanti dettagli matematici, queste sono le basi del volo.

Detto questo, cerchiamo di capire quanto e’ sicuro volare. Sicuramente, e come anticipato all’inizio dell’articolo, avrete gia’ sentito molte volte dire: l’aereo e’ piu’ sicuro della macchina. Questo e’ ovviamente vero, se consideriamo il numero di incidenti aerei all’anno questo e’ infinitamente minore di quello degli incidenti automobilistici. Ovviamente, nel secondo caso mi sto riferendo solo ai casi mortali.

Cerchiamo di dare qualche numero. In questo caso ci viene in aiuto wikipedia con una pagina dedicata proprio alle statistiche degli incidenti aerei:

Wiki, incidenti aerei

Come potete leggere, in media negli ultimi anni ci sono stati circa 25 incidenti aerei all’anno, che corrispondono approssimativamente ad un migliaio di vittime. Questo numero puo’ oscillare anche del 50%, come nel caso del 2005 in cui ci sono state 1454 vittime o nel 2001 in cui gli attentati delle torri gemelle hanno fatto salire il numero. La maggiorparte degli incidenti aerei sono avvenuti in condizioni di meteo molto particolari o in fase di atterraggio. Nel 75% degli incidenti avvenuti in questa fase, gli aerei coinvolti non erano dotati di un sistema GPWS, cioe’ di un sistema di controllo elettronico di prossimita’ al suolo. Cosa significa? Un normale GPS fornisce la posizione in funzione di latitudine e longitudine. Poiche’ siamo nello spazio, manca dunque una coordinata, cioe’ la quota a cui l’oggetto monitorato si trova. Il compito del GPWS e’ proprio quello di fornire un sistema di allarme se la distanza dal suolo scende sotto un certo valore. La statistica del 75% e’ relativa agli incidenti avvenuti tra il 1988 e il 1994. Oggi, la maggior parte degli aerei civili e’ dotato di questo sistema.

Solo per concludere, sempre in termini statistici, e’ interessante ragionare, in caso di incidente, quali siano i posti lungo la fusoliera piu’ sicuri. Attenzione, prendete ovviamente questi numeri con le pinze. Se pensiamo ad un aereo che esplode in volo o che precipita da alta quota, e’ quasi assurdo pensare a posti “piu’ sicuri”. Detto questo, le statistiche sugli incidenti offrono anche una distribuzione delle probabilita’ di sopravvivenza per i vari posti dell’aereo.

Guardiamo questa immagine:

Statistiche della probabilita' di sopravvivenza in caso di incidente aereo

Statistiche della probabilita’ di sopravvivenza in caso di incidente aereo

Come vedete, i posti piu’ sicuri sono quelli a prua, cioe’ quelli piu’ vicini alla cabina di pilotaggio ma esiste anche una distribuzione con picco di sicurezza nelle file centrali vicino alle uscite di emergenza. Dal momento che, ovviamente in modo grottesco, i posti a prua sono quelli della prima classe, il fatto di avere posti sicuri anche dietro consente di offrire una minima ancora di salvataggio anche ad i passeggeri della classe economica.

Concudendo, abbiamo visto come un aereo riesce a volare. Parlare solo ed esclusivamente di Bernoulli e’ molto riduttivo anche se consente di capire intuitivamente il principio del volo. Questa assunzione pero’, presenta dei casi molto comuni in cui non e’ applicabile. Per quanto riguarda le statistiche degli incidenti, l’aereo resta uno dei mezzi piu’ sicuri soprattutto se viene confrontato con l’automobile. Come visto, ci sono poi dei posti che, per via della struttura ingegneristica dell’aereo, risultano statisticamente piu’ sicuri con una maggiore probabilita’ di sopravvivena in caso di incidente.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Esopianeti che non dovrebbero esserci

17 Giu

Nell’ambito della ricerca della vita fuori dal sistema solare, diverse volte abbiamo parlato di esopianeti:

A caccia di vita sugli Esopianeti

Nuovi esopianeti. Questa volta ci siamo?

Come visto, questi corpi, orbitanti intorno ad una stella centrale, cosi’ come avviene nel nostro Sistema Solare, sono molto studiati perche’ consentono di aprire una finestra nell’universo a noi vicino. Lo studio di questi corpi e la loro posizione, consente dunque di determinare quali e quanti pianeti potrebbero esserci in grado di ospitare la vita. Come sottolineato diverse volte, dire che un pianeta e’ in grado di ospitare la vita, non significa assolutamente affermare che questa si sia veramente formata. In questi casi, parliamo di “fascia di abitabilita’”, appunto per indicare la presenza di pianeti ad una distanza tale dalla loro stella, adatta a creare le condzioni minime per lo sviluppo della vita. Molto lavoro e’ in corso su questi esopianeti, prima di tutto per studiare la tipologia dei corpi, ma soprattutto perche’ questi sistemi planetari offrono un laboratorio eccezionale per capire l’origine del nostro stesso sistema Solare.

Immagine pittorica del sistema Hydrae

Immagine pittorica del sistema Hydrae

In tal senso, il sistema TW Hydrae, e’ uno dei principali, trovandosi ad appena 180 anni luce da noi ma soprattutto perche’ e’ un sistema molto giovane. Il sistema planetario e’ costituito da una nana rossa centrale, con una massa solo di poco inferiore a quella del nostro sole (circa il 70%). Come detto, si tratta di un sistema molto giovane che si e’ formato “appena” 8 milioni di anni fa e proprio per questo motivo, i processi di formazione e aggregazione di materia sono ancora in corso.

Solo pochi giorni fa, e’ stato pubblicato un importante articolo che riguarda l’osservazione di un piccolo pianeta nel sistema TW Hydrae con una massa compresa tra le 6 e le 28 masse terrestri. Cosa ha di tanto speciale questo pianeta? La particolarita’ e’ che questo pianeta orbita ad una distanza di circa 12 milioni di kilometri dalla stella centrale, cioe’ in una zona dove, secondo gli attuali modelli, questo pianeta non dovrebbe esistere.

Da dove nasce questa affermazione?

Prima di tutto, come discusso in altri articoli, i pianeti vengono formati per aggregazione di materia dal disco orbitante intorno alla stella centrale. Per circa 3 milioni di kilometri prima del piccolo pianeta, non c’e’ materiale utile per l’accrescimento del corpo. Inoltre, dai modelli conosciuti, un corpo del genere avrebbe impiegato un tempo lunghissimo, molto piu’ lungo dell’intera vita del sistema planetario, per formarsi.

Per fare un esempio, Giove si e’ formato in un tempo di circa 10 milioni di anni. Il piccolo pianeta avrebbe richiesto un periodo circa 200 volte piu’ lungo per aggregare il materiale, contro una stima dell’eta’ del sistema planetario di soli 8 milioni di anni.

Capite dunque l’importanza di questa osservazione. Ovviamente, il tutto dovra’ poi essere verificato con ulteriori misurazioni. Ad oggi, l’osservazione in questione e’ stata possibile grazie all’uso della camera sensibile al vicino infrarosso e allo spettrometro presenti sul telescopio Hubble.

Per farvi capire l’importanza delle successive misurazioni, ad oggi, gli strumenti utilizzati non consentono, ad esempio, di visualizzare il disco di materiale intorno alla stella centrale. Il motivo di questo e’ di facile comprensione, le emissioni da parte dell’idrogeno vengono automatiamente riassorbite all’interno del disco non apparendo visibili all’esterno.

Esistono ovviamente teorie alternative gia’ formulate e che potrebbero in qualche modo spiegare la presenza del pianeta in quella posizione. Una delle piu’ discusse e’ quella che vorrebbe la possibilita’ che il disco di accrescimento diventi instabile in alcuni casi, portando dunque materiale in zone piu’ lontane dalla stella centrale e consentendo la formazione di pianeti molto periferici.

Concludendo, la presenza di questo piccolo esopianeta orbitante a distanza cosi’ elevata dalla stella centrale, non sarebbe spiegabile con i modelli attualmente accettati. Questa scoperta implica dunque una ridiscussione di alcuni meccanismi di formazione, appunto per capire come sia possibile formare oggetti massivi a distanza cosi’ elevata dal corpo centrale. Ovviamente, questo non significa assolutamente che i precedenti modelli siano da buttare. Cosi’ come avviene nelle scienze, l’osservazione di un fenomeno non aspettato, spinge ad una ridefinizione di alcuni modelli, dal momento che si potrebbero essere raggiunti i limiti di validita’ di quelli attualmente utilizzati. Sicuramente, per la sua piccola distanza e la giovane eta’, il sistema TW Hydrae ci offre un laboratorio senza eguali per comprendere e studiare i meccanismi di formazione dei pianeti del nostro universo, e, duqnue, anche del nostro sistema solare. Come vedete, il bello della scienza e’ anche questo; trovare qualcosa che non ci si aspettava e spingersi oltre per aumentare la conoscenza e la comprensione della natura.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Bosone di Higgs … ma che sarebbe?

25 Mar

In tanti mi avete chiesto informazioni circa la scoperta del bosone di Higgs. Come sapete bene, negli ultimi mesi, molto si e’ parlato di questa probabile scoperta, dando ampio spazio su giornali e telegiornali al CERN, all’acceleratore LHC e agli esperimenti principali, Atlas e CMS, che hanno lavorato alla ricerca di questa particella.

La scoperta, ripeto probabile come vedremo in seguito, del bosone di Higgs e’ stata fondamentale per la fisica e per la nostra conoscenza della materia e, lasciatemelo dire, mi ha riempito di gioia avendo lavorato per circa quattro anni alla costruzione proprio dell’esperimento Atlas.

Quello che pero’ molti mi chiedono e’: si parla tanto di questo bosone di Higgs, tutti ne parlano dicendo che e’ “quello che spiega la massa delle particelle”, ma, in soldoni, di cosa si tratta? Perche’ spiegherebbe la massa delle particelle?

Purtroppo le domande sono ben poste, dal momento che spesso, girando per la rete, non si trovano risposte semplicissime a questi quesiti. Cerchiamo dunque, per quanto possibile, di rispondere a queste domande, mantenendo sempre un profilo divulgativo e accessibile a tutti.

Detto nel linguaggio della fisica, la spiegazione sarebbe piu’ o meno questa:

L’universo e’ permeato da un campo a spin zero, detto campo di Higgs, doppietto in SU(2) e con ipercarica U(1), ma privo di colore. I bosoni di gauge e i fermioni interagiscono con questo campo acquisendo massa.

Chiaro? Ovviamente no.

Cerchiamo di capirci qualcosa di piu’.

In questi post:

Piccolo approfondimento sulla materia strana

Due parole sull’antimateria

Abbiamo parlato del “Modello Standard” delle particelle. Come visto, la materia ordinaria, anche se apparentemente sembrerebbe molto variegata, e’ in realta’ composta di pochi ingredienti fondamentali: i quark, i leptoni e i bosoni messaggeri. Niente di difficile, andiamo con ordine.

Le particelle del Modello Standard

Le particelle del Modello Standard

Protoni e neutroni, ad esempio, non sono particelle fondamentali, ma sono composti da 3 quark. Tra i leptoni, sicuramente il piu’ conosciuto e’ l’elettrone, quello che orbita intorno ai nuclei per formare gli atomi. E i bosoni messaggeri? In fisica esistono delle interazioni, chiamiamole anche forze, che sono: la forza gravitazionale, la forza elettromagnetica, la forza forte e la forza debole. La forza forte, ad esempio, che viene scambiata mediante gluoni, e’ quella che tiene insieme i quark nelle particelle. Il fotone invece e’ quello che trasporta la forza elettromagnetica, responsabile, in ultima analisi, delle interazioni chimiche e delle forze meccaniche che osserviamo tutti i giorni.

Bene, fin qui sembra tutto semplice. L’insieme di queste particelle forma il Modello Standard. Ci sono gli ingredienti per formare tutte le particelle ordinarie e ci sono i bosoni messaggeri che ci permettono di capire le forze che avvengono. Dunque? Con il Modello Standard abbiamo capito tutto? Assolutamente no.

Il Modello Standard funziona molto bene, ma presenta un problema molto importante. Nella trattazione vista, non e’ possibile inserire la massa delle particelle. Se non c’e’ la massa, non c’e’ peso. Se un pezzo di ferro e’ composto di atomi di ferro e se gli atomi di ferro sono fatti di elettroni, protoni e neutroni, le particelle “devono” avere massa.

Dunque? Basta inserire la massa nel modello standard. Facile a dirsi ma non a farsi. Se aggiungiamo a mano la massa nelle equazioni del modello standard, le equazioni non funzionano piu’. I fisici amano dire che l’invarianza di Gauge non e’ rispettata, ma e’ solo un modo complicato per spiegare che le equazioni non funzionano piu’.

Se non possiamo inserire la massa, e noi sappiamo che la massa c’e’ perche’ la testiamo tutti i giorni, il modello standard non puo’ essere utilizzato.

A risolvere il problema ci ha pensato Peter Higgs negli anni ’60. Ora la spiegazione di Higgs e’ quella che ho riportato sopra, ma cerchiamo di capirla in modo semplice. Supponiamo che effettivamente le particelle non abbiano massa. Hanno carica elettrica, spin, momento angolare, ma non hanno massa intrinseca. L’universo e’ pero’ permeato da un campo, vedetelo come una sorta di gelatina, che e’ ovunque. Quando le particelle passano attraverso questa gelatina, vengono frenate, ognuna in modo diverso. Proprio questo frenamento sarebbe responsabile della massa che le particelle acquisiscono.

Tradotto in equazioni, questo ragionamento, noto come “meccanismo di Higgs”, funzionerebbe benissimo e il modello standard sarebbe salvo. Perche’ dico funzionerebbe? Come facciamo a dimostrare che esiste il campo di Higgs?

Il campo di Higgs, se esiste, deve possedere un quanto, cioe’ un nuovo bosone la cui esistenza non era predetta nel modello standard, detto appunto “bosone di Higgs”. Detto proprio in termini semplici, riprendendo l’esempio del campo di Higgs come la gelatina di frenamento, questa gelatina ogni tanto si dovrebbe aggrumare formando una nuova particella, appunto il bosone di Higgs.

Dunque, se esiste il bosone di Higgs, allora esite il campo di Higgs e dunque possiamo spiegare la massa delle particelle.

Capite dunque l’importanza della ricerca di questa particella. La sua scoperta significherebbe un notevole passo avanti nella comprensione dell’infinitamente piccolo, cioe’ dei meccanismi che regolano l’esistenza e la combinazione di quei mattoncini fondamentali che formano la materia che conosciamo.

Oltre a questi punti, il bosone di Higgs e’ stato messo in relazione anche con la materia oscura di cui abbiamo parlato in questo post:

La materia oscura

In questo caso, la scoperta e lo studio di questa particella potrebbe portare notevoli passi avanti ad esempio nello studio delle WIMP, come visto uno dei candidati della materia oscura.

Dunque? Cosa e’ successo al CERN? E’ stato trovato o no questo bosone di Higgs?

In realta’ si e no. Nella prima conferenza stampa del CERN si parlava di evidenza di una particella che poteva essere il bosone di Higgs. In questo caso, le affermazioni non sono dovute al voler essere cauti dei fisici, semplicemente, l’evidenza statistica della particella non era ancora sufficiente per parlare di scoperta.

L’ultimo annuncio, solo di pochi giorni fa, ha invece confermato che si trattava proprio di “un” bosone di Higgs. Perche’ dico “un” bosone? In realta’, potrebbero esistere diverse tipologie di bosoni di Higgs. Ad oggi, quello trovato e’ sicuramente uno di questi, ma non sappiamo ancora se e’ proprio quello di cui stiamo parlando per il modello standard.

Anche se tutte le indicazioni fanno pensare di aver fatto centro, ci vorranno ancora diversi anni di presa dati per avere tutte le conferme e magari anche per evidenziare l’esistenza di altri bosoni di Higgs. Sicuramente, la scoperta di questa particella apre nuovi orizzonti nel campo della fisica delle particelle e prepara il campo per una nuova ricchissima stagione di misure e di scoperte.

Onde evitare commenti del tipo: “serviva spendere tutti questi soldi per una particella?”, vi segnalo due post molto interessanti proprio per rispondere a queste, lasciatemi dire lecite, domande:

Perche’ la ricerca: scienza e tecnologia

Perche’ la ricerca: economia

In realta’, LHC ed i suoi esperimenti, oltre a portare tantissime innovazioni tecnologiche che non possiamo ancora immaginare, sono state un importante volano per l’economia dei paesi europei. Investendo nel CERN, l’Italia, e soprattutto le nostre aziende, hanno avuto un ritorno economico molto elevato e sicuramente superiore a quanto investito.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Elezioni, promesse verdi e protocollo di Kyoto

6 Feb

Come tutti sanno, qui in Italia, siamo nel pieno della campagna elettorale per le elezioni politiche. Non passa un giorno senza che i nostri candidati premier promettano questo o quest’altro, facendo a gara tra loro a chi riesce a fare la “sparata”, perche’ in genere solo di questo si parla, piu’ grossa in TV o sui giornali.

Ovviamente, lungi da me fare un discorso politico su questo blog. La premessa fatta, e su questo credo che nessuno possa dire il contrario, e’ indipendente da destra, sinistra, centro, sopra e sotto.

Oggi pero’, leggendo il giornale, vedo una serie di notizie che mi hanno fatto riflettere. Tutti hanno cominciato a parlare di ambiente e si sono resi conto che nei programmi elettorali non poteva certo mancare anche la promessa su queste tematiche. In particolare, proprio oggi, ci sono state una serie di dichiarazioni riguardanti proprio la politica delle rinnovabili e lo sfruttamento o meno di determinate risorse italiane.

A cosa mi riferisco?

7252Cominciamo proprio dal discorso sfruttamento. Nel canale di Sicilia sta facendo molto discutere la scelta di installare piattaforme per l’estrazione petrolifera. Prima di tutto, su molte fonti si e’ iniziato a parlare di tecniche di fracking, di pericolo terremoti o anche della possibilita’ che attivita’ di questo tipo possano creare tsunami nei nostri mari.

Di fracking abbiamo parlato piu’ volte, ad esempio, in questi post:

Fratturazione idraulica

Una prova del fracking in Emilia?

Innalzamento dei pozzi in Emilia prima del sisma

Come sappiamo, queste tecniche sfruttano l’inserimento nel terreno di fluidi ad alta pressione i quali, mediante un azione corrosiva, riescono a facilitare l’estrazione di idrocarburi, ma principalmente di gas. Come visto nei post precedenti, questo genere di attivita’ ha veramente mostrato la possibilita’ di innescare terremoti di intensita’ molto lieve anche a distanza di alcni giorni dall’immisione dei fluidi nel sottosuolo. Ci tengo a sottolineare che stiamo parlando di lievi scosse, non esiste nessun caso al mondo, documentato, in cui il fracking abbia creato terremoti di magnitudo elevata.

Dell’utilizzo del fracking ne abbiamo parlato nel caso del terremoto dell’Emilia del 2012. Come visto, questa relazione era in realta’ completamente campata in aria e questa attivita’ assolutamente non documentata prima ancora che connessa con il terremoto.

Tornando al caso dello stretto di Sicilia, i timori principali vengono dal fatto che questa e’ una zona da sempre considerata a rischio terremoti, vista anche la presenza di strutture del terreno molto diversificate, in grado di provocare l’amplificazione delle onde sismiche, ma anche grazie alla presenza di linee di faglia proprio nello stretto.

Diciamo subito che l’estrazione del petrolio nello stretto non prevede assolutamente l’utilizzo del fracking e non c’e’ assolutamente nessun pericolo terremoto in queste attivita’.

Queste considerazioni rispondono da sole alle accuse mosse in questa direzione, anche se la cosa principale da valutare e’ in realta’ l’utilita’ di queste trivellazioni. La nostra penisola, e ovviamente i mari che la circondano, sono molto poveri di giacimenti di idrocarburi e lo stretto di Sicilia non e’ assolutamente da meno. Il problema principale non e’ nemmeno l’utilizzo del fracking o delle trivellazioni, ma semplicemente la poverta’ dei giacimenti che sarebbero in grado di fornire una quantita’ di petrolio assolutamente non elevata. Per darvi un’idea, se anche si estraesse di colpo tutto il petrolio presente nel giacimento, questo sarebbe sufficiente alla nostra nazione solo per 2-3 mesi. Dunque? Forse la spesa non vale l’impresa, come si dice dalle mie parti.

Parlando invece di rinnovabili, il discorso sarebbe leggermente piu’ complesso, se non altro per la grande diversificazione delle fonti sfruttabili, ognuna con le proprie caratteristiche e i propri limiti. Rimanendo sul punto di vista elettorale, oggi tutti si dicono convinti nel sostenere l’utilizzo delle rinnovabili , dimenticando pero’ di fare un discorso a lungo termine.

Le rinnovabili, quali Sole e vento in primis, sono ampiamente disponibili in Italia e, ad oggi, ancora poco sfruttate. Quello che pero’ i nostri politicanti dimenticano di considerare, come sempre avviene non solo su questo tema, e’ la prospettiva ad ampio respiro. Di anno in anno, gli incentivi per l’installazione, ad esempio, di un impianto fotovoltaico sono diminuiti e hanno raggiunto un minimo con il quinto conto energia del 2012. Ovviamente ancora oggi conviene installare un impianto domestico per l’autosostentamento, ma questo principalmente grazie alla riduzione del costo dei pannelli e al leggero incremento in termini di rendimento dell’impianto stesso.

Ho preso come esempio il caso solare perche’ e’ quello piu’ noto e piu’ comune nei discorsi abitativi privati. Questo esempio e’ importante per capire la prospettiva futura. Lo sfruttamento delle rinnovabili ora non potra’ essere lo stesso tra 20 o 30 anni. Se pensiamo che anno dopo anno, il consumo medio di energia elettrica aumenta nel mondo vertiginosamente, e’ impensabile dare corrente a tutti questi paesi semplicemente con dei pannelli sopra il tetto o con qualche pala nel mare. Quello che i nostri politicanti dovrebbero capire e’ che investire nelle rinnovabili significa investire nella ricerca in questo settore. Per darvi qualche esempio, in campo solare vi sono molte soluzioni futuribili su cui si sta lavorando: solare termodinamico, ricerca su nuovi materiali, specchi, nanopraticelle, ecc. Tutte soluzioni che potrebbero incrementare la produzione di corrente elettrica per superficie occupata.

Abbandonando un attimo il discorso rinnovabili, si dovrebbe investire, ad esempio, nel campo della fusione nucleare. Questo settore e’ assolutamente appetibile e riesce a mettere d’accordo praticamente tutti: pro e contro nucleare, ambientalisti e imprenditori. La fusione nucleare consentirebbe di ottenere energia molto facilmente, con impianti puliti, senza emissioni e senza scorie radioattive. Cosa si potrebbe desiderare di meglio? Ovviamente siamo ancora lontani, ad oggi, dal pensare una centrale civile per la produzione di corrente che funzioni a fusione, ma per poter arrivare a questo e’ necessario investire in questo settore.

Concludendo questa parte, e’ inutile parlare di green economy se non si parla di investire nella ricerca, sia essa scientifica o tecnologica. Quando sentiamo dire che la scienza puo’ aiutarci a vivere meglio, stiamo parlando di questo, cioe’ di soluzioni in grado di farci vivere meglio, in un ambiente meno inquinato e non sfruttando come virus le risorse del nostro pianeta attaccandole fino all’ultima goccia.

Prima di chiudere, vorrei uscire un secondo dai nostri confini ma sempre rimanendo in tema ambientale. Proprio di questi giorni e’ la notizia che gli Stati Uniti hanno finalmente deciso di sottoscrivere il protocollo di Kyoto. Come sapete, in questo trattato gli stati si sono ripromessi di ridurre notevolmente l’emissione di gas serra nell’ambiente mediante una migliore politica ambientale ed industriale. Pensate che gli USA per anni hanno rifiutato di sottoscrivere il trattato anche se da soli producono circa il 36% dei gas serra a livello mondiale. Questo potrebbe forse essere un primo vero passo in avanti nelle politiche green degli Stati Uniti.

In questa breve discussione, abbiamo dunque cercato di analizzare il punto di vista scientifico nella produzione di energia da fonti rinnovabili. Anche in questo settore, la vera prospettiva futura e’ quella di un investimento reale nella ricerca al fine di poter migliorare la tipologia e la qualita’ delle fonti rinnovabili (e non) utilizzate. Questo messaggio e’ estremamente importante ed e’ quello che i futuri governanti, di qualsiasi colore, dovrebbero sempre tenere a mente.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.