Tag Archives: inversamente

Tutti i movimenti della Terra

27 Giu

Proprio ieri, una nostra cara lettrice ci ha fatto una domanda molto interessante nella sezione:

Hai domande o dubbi?

Come potete leggere, si chiede se esiste una correlazione tra i moti della Terra e l’insorgere di ere di glaciazione sul nostro pianeta. Rispondendo a questa domanda, mi sono reso conto come, molto spesso, e non è certamente il caso della nostra lettrice, le persone conoscano solo i moti principali di rotazione e rivoluzione. A questo punto, credo sia interessante capire meglio tutti i movimenti che il nostro pianeta compie nel tempo anche per avere un quadro più completo del moto dei pianeti nel Sistema Solare. Questa risposta, ovviamente, ci permetterà di rispondere, anche in questa sede, alla domanda iniziale che è stata posta.

Dunque, andiamo con ordine, come è noto la Terra si muove intorno al Sole su un’orbita ellittica in cui il Sole occupa uno dei due fuochi. Questo non sono io a dirlo, bensì questa frase rappresenta quella che è nota come I legge di Keplero. Non starò qui ad annoiarvi con tutte le leggi, ma ci basta sapere che Keplero fu il primo a descrivere cinematicamente il moto dei pianeti intorno ad un corpo più massivo. Cosa significa “cinematicamente”? Semplice, si tratta di una descrizione completa del moto senza prendere in considerazione il perché il moto avviene. Come sapete, l’orbita è ellittica perché è la legge di Gravitazione Universale a spiegare la tipologia e l’intensità delle forze che avvengono. Bene, detto molto semplicemente, Keplero ci spiega l’orbita e come il moto si evolverà nel tempo, Newton attraverso la sua legge di gravitazione ci dice il perché il fenomeno avviene in questo modo (spiegazione dinamica).

Detto questo, se nel nostro Sistema Solare ci fossero soltanto il Sole e la Terra, quest’ultima si limiterebbe a percorrere la sua orbita ellittica intorno al Sole, moto di rivoluzione, mentre gira contemporaneamente intorno al suo asse, moto di rotazione. Come sappiamo bene, il primo moto è responsabile dell’alternanza delle stagioni, mentre la rotazione è responsabile del ciclo giorno-notte.

Purtroppo, ed è un eufemismo, la Terra non è l’unico pianeta a ruotare intorno al Sole ma ce ne sono altri, vicini, lontani e più o meno massivi, oltre ovviamente alla Luna, che per quanto piccola è molto vicina alla Terra, che “disturbano” questo moto molto ordinato.

Perche questo? Semplice, come anticipato, e come noto, due masse poste ad una certa distanza, esercitano mutamente una forza di attrazione, detta appunto gravitazionale, direttamente proporzionale al prodotto delle masse dei corpi e inversamente proporzionale al quadrato della loro distanza. In altri termini, più i corpi sono massivi, maggiore è la loro attrazione. Più i corpi sono distanti, minore sarà la forza che tende ad avvicinarli. Ora, questo è vero ovviamente per il sistema Terra-Sole ma è altresì vero per ogni coppia di corpi nel nostro Sistema Solare. Se Terra e Sole si attraggono, lo stesso fanno la Terra con la Luna, Marte con Giove, Giove con il Sole, e via dicendo. Come è facile capire, la componente principale delle forze è quella offerta dal Sole sul pianeta, ma tutte queste altre “spintarelle” danno dei contributi minori che influenzano “in qualche modo” il moto di qualsiasi corpo. Bene, questo “in qualche modo” è proprio l’argomento che stiamo affrontando ora, cioè i moti minori, ad esempio, della Terra nel tempo.

Dunque, abbiamo già parlato dei notissimi moti di rotazione e di rivoluzione. Uno dei moti che invece è divenuto famoso grazie, o forse purtroppo, al 2012 è quello di precessione degli equinozi, di cui abbiamo già parlato in questo articolo:

Nexus 2012: bomba a orologeria

Come sapete, l’asse della Terra, cioè la linea immaginaria che congiunge i poli geografici ed intorno al quale avviene il moto di rotazione, è inclinato rispetto al piano dell’orbita. Nel tempo, questo asse non rimane fisso, ma descrive un doppio cono come mostrato in questa figura:

Moto di precessione degli equinozi e di nutazione

Moto di precessione degli equinozi e di nutazione

Il moto dell’asse è appunto detto di “precessione degli equinozi”. Si tratta di un moto a più lungo periodo dal momento che per compiere un intero giro occorrono circa 25800 anni. A cosa è dovuto il moto di precessione? In realtà, si tratta del risultato di un duplice effetto: l’attrazione gravitazionale da parte della Luna e il fatto che il nostro pianeta non è perfettamente sferico. Perché si chiama moto di precessione degli equinozi? Se prendiamo la linea degli equinozi, cioè quella linea immaginaria che congiunge i punti dell’orbita in cui avvengono i due equinozi, a causa di questo moto questa linea si sposterà in senso orario appunto facendo “precedere” anno dopo anno gli equinozi. Sempre a causa di questo moto, cambia la costellazione visibile il giorno degli equinozi e questo effetto ha portato alla speculazione delle “ere new age” e al famoso “inizio dell’era dell’acquario” di cui, sempre in ambito 2012, abbiamo già sentito parlare.

Sempre prendendo come riferimento la figura precedente, notiamo che c’è un altro moto visibile. Percorrendo il cono infatti, l’asse della Terra oscilla su e giù come in un moto sinusoidale. Questo è noto come moto di “nutazione”. Perché avviene questo moto? Oltre all’interazione della Luna, molto vicina alla Terra, anche il Sole gioca un ruolo importante in questo moto che proprio grazie alla variazione di posizione relativa del sistema Terra-Luna-Sole determina un moto di precessione non regolare nel tempo. In questo caso, il periodo della nutazione, cioè il tempo impiegato per per compiere un periodo di sinusoide, è di circa 18,6 anni.

Andando avanti, come accennato in precedenza, la presenza degli altri pianeti nel Sistema Solare apporta dei disturbi alla Terra, così come per gli altri pianeti, durante la sua orbita. Un altro moto da prendere in considerazione è la cosiddetta “precessione anomalistica”. Di cosa si tratta? Abbiamo detto che la Terra compie un’orbita ellittica intorno al Sole che occupa uno dei fuochi. In astronomia, si chiama “apside” il punto di massima o minima distanza del corpo che ruota da quello intorno al quale sta ruotando, nel nostro caso il Sole. Se ora immaginiamo di metterci nello spazio e di osservare nel tempo il moto della Terra, vedremo che la linea che congiunge gli apsidi non rimane ferma nel tempo ma a sua volta ruota. La figura seguente ci può aiutare meglio a visualizzare questo effetto:

Moto di precessione anomalistica

Moto di precessione anomalistica

Nel caso specifico di pianeti che ruotano intorno al Sole, questo moto è anche chiamato di “precessione del perielio”. Poiché il perielio rappresenta il punto di massimo avvicinamento di un corpo dal Sole, il perché di questo nome è evidente. A cosa è dovuta la precessioni anomalistica? Come anticipato, questo moto è proprio causato dalle interazioni gravitazionali, sempre presenti anche se con minore intensità rispetto a quelle del Sole, dovute agli altri pianeti. Nel caso della Terra, ed in particolare del nostro Sistema Solare, la componente principale che da luogo alla precessione degli apsidi è l’attrazione gravitazionale provocata da Giove.

Detto questo, per affrontare il prossimo moto millenario, torniamo a parlare di asse terrestre. Come visto studiando la precessione e la nutazione, l’asse terrestre descrive un cono nel tempo (precessione) oscillando (nutazione). A questo livello però, rispetto al piano dell’orbita, l’inclinazione dell’asse rimane costante nel tempo. Secondo voi, con tutte queste interazioni e questi effetti, l’inclinazione dell’asse potrebbe rimanere costante? Assolutamente no. Sempre a causa dell’interazione gravitazionale, Sole e Luna principalmente nel nostro caso, l’asse della Terra presenta una sorta di oscillazione variando da un massimo di 24.5 gradi ad un minimo di 22.1 gradi. Anche questo movimento avviene molto lentamente e ha un periodo di circa 41000 anni. Cosa comporta questo moto? Se ci pensiamo, proprio a causa dell’inclinazione dell’asse, durante il suo moto, uno degli emisferi della Terra sarà più vicino al Sole in un punto e più lontano nel punto opposto dell’orbita. Questo contribuisce notevolmente alle stagioni. L’emisfero più vicino avrà più ore di luce e meno di buio oltre ad avere un’inclinazione diversa per i raggi solari che lo colpiscono. Come è evidente, insieme alla distanza relativa della Terra dal Sole, la variazione dell’asse contribuisce in modo determinante all’alternanza estate-inverno. La variazione dell’angolo di inclinazione dell’asse può dunque, con periodi lunghi, influire sull’intensità delle stagioni.

Finito qui? Non ancora. Come detto e ridetto, la Terra si muove su un orbita ellittica intorno al Sole. Uno dei parametri matematici che si usa per descrivere un’ellisse è l’eccentricità, cioè una stima, detto molto semplicemente, dello schiacciamento dell’ellisse rispetto alla circonferenza. Che significa? Senza richiamare formule, e per non appesantire il discorso, immaginate di avere una circonferenza. Se adesso “stirate” la circonferenza prendendo due punti simmetrici ottenete un’ellisse. Bene, l’eccentricità rappresenta proprio una stima di quanto avete tirato la circonferenza. Ovviamente, eccentricità zero significa avere una circonferenza. Più è alta l’eccentricità, maggiore sarà l’allungamento dell’ellisse.

Tornando alla Terra, poiché l’orbita è un’ellisse, possiamo descrivere la sua forma utilizzando l’eccentricità. Questo valore però non è costante nel tempo, ma oscilla tra un massimo e un minimo che, per essere precisi, valgono 0,0018 e 0,06. Semplificando molto il discorso, nel tempo l’orbita della Terra oscilla tra qualcosa più o meno simile ad una circonferenza. Anche in questo caso, si tratta di moti millenari a lungo periodo ed infatti il moto di variazione dell’eccentricità (massimo-minimo-massimo) avviene in circa 92000 anni. Cosa comporta questo? Beh, se teniamo conto che il Sole occupa uno dei fuochi e questi coincidono nella circonferenza con il centro, ci rendiamo subito conto che a causa di questa variazione, la distanza Terra-Sole, e dunque l’irraggiamento, varia nel tempo seguendo questo movimento.

A questo punto, abbiamo analizzato tutti i movimenti principali che la Terra compie nel tempo. Per affrontare questo discorso, siamo partiti dalla domanda iniziale che riguardava l’ipotetica connessione tra periodi di glaciazione sulla Terra e i moti a lungo periodo. Come sappiamo, nel corso delle ere geologiche si sono susseguiti diversi periodi di glaciazione sul nostro pianeta, che hanno portato allo scioglimento dei ghiacci perenni e all’innalzamento del livello dei mari. Studiando i reperti e la quantità di CO2 negli strati di ghiaccio, si può notare una certa regolarità dei periodi di glaciazione, indicati anche nella pagina specifica di wikipedia:

Wiki, cronologia delle glaciazioni

Come è facile pensare, molto probabilmente ci sarà una correlazione tra i diversi movimenti della Terra e l’arrivo di periodi di glaciazione più o meno intensi, effetto noto come “Cicli di Milanković”. Perché dico “probabilmente”? Come visto nell’articolo, i movimenti in questione sono diversi e con periodi più o meno lunghi. In questo contesto, è difficile identificare con precisione il singolo contributo ma quello che si osserva è una sovrapposizione degli effetti che producono eventi più o meno intensi.

Se confrontiamo i moti appena studiati con l’alternanza delle glaciazioni, otteniamo un grafico di questo tipo:

Relazione tra i periodi dei movimenti della Terra e le glaciazioni conosciute

Relazione tra i periodi dei movimenti della Terra e le glaciazioni conosciute

Come si vede, è possibile identificare una certa regolarità negli eventi ma, quando sovrapponiamo effetti con periodi molto lunghi e diversi, otteniamo sistematicamente qualcosa con periodo ancora più lungo. Effetto dovuto proprio alle diverse configurazioni temporali che si possono ottenere. Ora, cercare di trovare un modello matematico che prenda nell’insieme tutti i moti e li correli con le variazioni climatiche non è cosa banale e, anche se sembra strano da pensare, gli eventi che abbiamo non rappresentano un campione significativo sul quale ragionare statisticamente. Detto questo, e per rispondere alla domanda iniziale, c’è una relazione tra i movimenti della Terra e le variazioni climatiche ma un modello preciso che tenga conto di ogni causa e la pesi in modo adeguato in relazione alle altre, non è ancora stato definito. Questo ovviamente non esclude in futuro di poter avere una teoria formalizzata basata anche su future osservazioni e sull’incremento della precisione di quello che già conosciamo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Le forze di marea

13 Ago

Nella sezione:

Hai domande o dubbi?

E’ stata posta una nuova domanda molto interessante e che credo sia il caso di discutere subito. Prima di cominciare, vi ricordo che questa sezione e’ stata appositamente creata per far si che chiunque possa richiedere argomenti specifici che, qualora non ancora trattati, verranno poi affrontati negli articoli al fine di stimolare una discussione costruttiva tra tutti i lettori.

Premesso questo, la domanda riguarda le cosiddette “forze mareali” o “di marea”.

Di cosa si tratta?

Partiamo, al solito, da quello che e’ noto a tutti: i pianeti dell’universo ruotano intorno al Sole grazie alla forza di gravita’ che li tiene uniti. Allo stesso modo, a distanze minori, molti pianeti del sistema solare presentano dei satelliti orbitanti intorno a loro. Ovviamente, anche questi sono tenuti insieme dalla forza di gravita’.

Ecco un primo risultato interessante e che spesso passa inosservato. Lo studio e la formulazione matematica della forza di gravita’, fatta per la prima volta da Newton, prende il nome di “teorie della gravitazione universale”. L’aggettivo “universale” non e’ assolutamente messo li per caso, ma sta ad indicare come la validita’ di questa legge sia vera a scale estremamente diverse tra loro. Se noi rimaniamo attaccati alla Terra e perche’ c’e’ la forza di gravita’. Se la Terra ruota intorno al Sole e’ perche’ c’e’ la forza di gravita’. Allo stesso modo, la rotazione del sistema solare intorno al centro della Galassia, cosi’ come il moto della Galassia stessa e’ possibile grazie alla forza di gravita’. Detto questo, capite bene perche’ viene attribuito l’aggettivo universale a questa legge.

Dal punto di vista fisico, due qualsiasi masse poste ad una certa distanza si attraggono secondo una forza direttamente proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato della loro distanza. Come anticipato questo e’ vero per due qualsiasi masse estese nello spazio.

Per andare avanti, concentriamoci pero’ sulla domanda fatta e dunque parliamo di forze di marea. Come e’ noto, l’innalzamento e l’abbassamento del livello delle acque sulla Terra e’ dovuto alla Luna, anche se, come vedremo, anche il Sole ha il suo contributo.

Alla luce di quanto detto prima, se la Terra attrae la Luna, ed e’ vero il viceversa, come mai i due corpi non vanno uno verso l’altro finendo per scontrarsi?

Il segreto della stabilita’ delle orbite e’ appunto nel moto di rotazione della Luna intorno alla Terra. Questo movimento genera una forza centrifuga diretta verso l’esterno che stabilizza il moto. Questo e’ lo stesso effetto che trovate per qualsiasi corpo in rotazione nell’universo. Per essere precisi, due corpi in rotazione tra loro, ruotano intorno al centro di massa del sistema. Nel caso di Terra e Luna, la differenza tra le masse e’ cosi’ grande che il centro di massa cade molto vicino al centro della Terra.

Detto questo, abbiamo capito perche’ il sistema puo’ ruotare stabilmente, ma ancora non abbiamo capito da dove si originano le maree.

Come anticipato, l’intensita’ della forza di attrazione gravitazionale e’ inversamente proporzionale al quadrato della distanza. Bene, rimaniamo nell’esempio Terra-Luna. L’attrazione subita dal nostro satellite per opera della Terra, non sara’ identica in ogni punto della Luna. Mi spiego meglio, provate a guardare questo disegno:

Forze di marea subite per attrazione gravitazionale

Forze di marea subite per attrazione gravitazionale

Il lato piu’ vicino all’altro pianeta subira’ un’attrazione maggiore dal momento che la distanza tra i due corpi e’ piu’ piccola. Questo e’ vero ogni qual volta siamo in presenza di corpi grandi. Analogamente, prendendo in esame il contributo centrifugo, la forza risultante tendera’ a spingere il lato vicino verso l’altro pianeta e allontare il lato lontano.

Ragioniamo su quanto detto senza perderci. Abbiamo un corpo esteso ad una certa distanza da qualcosa che lo attrae. Questa attrazione dipende dalla distanza tra i due corpi. Dal momento che abbiamo un corpo esteso, il lato che guarda il centro di attrazione sara’ necessariamente piu’ vicino subendo una forza maggiore rispetto al lato lontano.

Bene, questa differenza tra le interazioni tende ad allungare il corpo cioe’ a farlo passare da una sfera ad un elissoide. Queste sono appunto le forze di marea.

Quali effetti possiamo avere?

Nell’immagine riportata prima, si vedevano proprio le forze di marea esercitata dalla Luna sulla Terra. Come vedete, il lato verso la Luna e quello diametralmente opposto tendono ad allungarsi, provocando dunque un innalzamento delle acque. Negli punti perpendicolari al sistema invece, si avra’ uno schiacciamento e dunque un abbassamento del livello delle acque. Ecco spiegato come avvengono le maree. Ovviamente, poiche’ tutto il sistema e’ in movimento, i punti con alta e bassa marea cambieranno nel corso della giornata, presentando due cicli completi nell’arco del giorno.

Domanda lecita: perche’ nel calcolo delle maree consideriamo solo gli effetti della Luna trascurando completamente il Sole? Come sappiamo, la massa del Sole e’ notevolmente maggiore di quella della Luna quindi ci si aspetterebbe un contributo dominante. Come visto, le forze mareali si generano perche’ ci sono differenze significative tra l’attrazione subita da un lato del pianeta rispetto all’altro. Dal momento che la distanza tra la Terra e il Sole e’ molto piu’ elevata di quella Terra-Luna, la differenza di intensita’ dovuta all’attrazione solare e’ molto meno marcata. Detto in altri termini, a distanze maggiori un corpo esteso puo’ essere approssimato come un punto e dunque e’ molto piccola la forza di marea che si genera.

Effetti misurabili si possono avere quando Sole, Terra e Luna sono allineati, come avviene nel novilunio, dal momento che i contributi si sommano. In questo caso si possono dunque avere livelli di marea massimi, anche noti come maree sigiziali, cioe’ in cui la differenza di altezza tra alta e bassa marea raggiunge il picco.

Analogamente a quanto visto, anche la Luna subisce una forza di marea da parte della Terra. Dal momento pero’ che la Luna non e’ ricoperta da oceani, la resistenza meccanica alla distorsione e’ molto maggiore. In questo caso, l’effetto misurabile e’ una differenza di qualche kilometro tra l’asse rivolto verso la Terra e quello perpendicolare, tale da far apparire il nostro satellite come un elissoide.

Altro effetto delle forze di marea tra corpi estesi vicini e’ la sincronizzazione della rotazione. Come tutti sanno, la Luna rivolge sempre la stessa faccia verso la Terra. Detto in altri termini, a meno di “oscillazioni” che si registrano, un osservatore sulla Terra riesce a vedere sempre la stessa porzione di Luna o meglio, un lato della stessa rimane sempre invisibile al nostro sguardo, il cosiddetto “lato oscuro della Luna”.

Perche’ si ha questo comportamento?

Come anticipato, questo e’ dovuto alla rotazione sincrona della Luna intorno alla Terra. Detto molto semplicemente, il periodo di rotazione e di rivoluzione della Luna coincidono tra loro. Se volete, in parole povere, mentre la Luna si sta spostando sulla sua orbita, ruota su se stessa in modo tale da compensare  lo spostamento e mostrare sempre la stessa faccia a Terra. La figura puo’ aiutare meglio a comprendere questo risultato:

Rotazione sincrona tra satellite e pianeta. Fonte: wikipedia.

Rotazione sincrona tra satellite e pianeta. Fonte: wikipedia.

Ovviamente, parlare di stesso periodo di rivoluzione e rotazione non puo’ certo essere un caso. Rotazioni sincrone si hanno come conseguenza delle forze mareali potendo dimostrare che per corpi vicini tra loro, il moto tende ad essere sincrono in tempi astronomicamente brevi.

Parlando di forze di marea, ci siamo limitati a studiare il caso del sistema Terra-Luna. Seguendo la spiegazione data, capite bene come questi effetti possano essere estesi a due qualsiasi corpi in rotazione vicina tra loro. In tal senso, effetti di marea si possono avere in prossimita’ di buchi neri, di stelle di neutroni o anche di galassie, cioe’ corpi in grado di generare un elevato campo gravitazionale. In particolare, nel caso delle galassie le forze di marea tendono, in alcuni casi, ad allungare la forma spostando la posizione di corpi celesti che si allontanano a causa della differenza di attrazione.

Concludendo, abbiamo visto come la Luna possa generare sulla Terra le maree. L’effetto del Sole e’ in realta’ inferiore perche’ molto maggiore e’ la distanza che ci separa dalla nostra stella. Effetti di questo tipo vengono generati a causa della differenza di attrazione gravitazionale che si registra nei diversi punti di un corpo esteso. Queste differenze, generano appunto una forza risultante, detta di marea, che tende ad allungare il corpo. Effetti analoghi si possono avere per corpi piu’ estesi e comunque ogni qual volta si hanno due masse posizionate ad una distanza non troppo maggiore del diametro dei corpi.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.