Tag Archives: riferimento

EMdrive: il motore che va contro i principi della fisica

11 Set

Dopo qualche giorno di pausa, purtroppo non per svago, eccoci di nuovo qui. Per iniziare alla grande, torniamo a parlare di scienza, o almeno di qualcosa che gli somiglia. Come ci ha segnalato un nostro lettore nella sezione:

Hai domande o dubbi?

in questi giorni si è molto parlato di un’invenzione davvero particolare. Di cosa si tratta? Detto “poco chiaramente”, stiamo parlando del “motore quantistico”.

Cosa sarebbe questo motore quantistico?

Cerchiamo di andare con ordine, capendo l’origine di questa storia. Partendo da parole più semplici , il motore quantistico è, appunto, un motore che produrrebbe una spinta senza propellente ma solo usando elettricità.

Una soluzione del genere, potrebbe essere utilizzata come thruster nello spazio, cioè come sistema per far muovere i satelliti o altri veivoli spaziali. Cosa c’è di strano in tutto questo? La risposta è semplice, sapete perchè ci vuole così tanto tempo per girovagare nello spazio? Perchè i velivoli che mandiamo si muovono per inerzia. Praticamente, vengono messi in moto tramite propulsori, poi questi vengono spenti e il mezzo continua a procedere lungo la sua direzione. Tutto questo è frutto di una delle leggi fondamentali della meccanica, cioè il principio di inerzia.

Perchè questo motore quantistico sarebbe così rivoluzionario? Detto semplicemente, per far andare qualcosa nello spazio, abbiamo bisogno di avere una spinta in senso contrario. Questo è noto come principio di conservazione della quantità di moto.

Facciamo un esempio per capire meglio.

Supponete di essere al centro di un lago ghiacciato. La superficie del lago è talmente liscia che, idealmente, non c’è nessun attrito tra voi e il ghiaccio. In questa condizione limite, non potete camminare. Sapete perchè? Il semplice camminare è possibile proprio grazie all’attrito tra i nostri piedi, o le nostre scarpe, e il terreno. Praticamente, camminando, il vostro piede è fermo grazie all’attrito statico tra voi e il terreno.

Se ora vi trovate al centro di questo lago, non potete quindi riuscire a camminare. Come fate a mettervi in salvo e raggiungere la riva?

Una buona soluzione potrebbe essere quella di togliervi un indumento e lanciarlo in una direzione. Come per magia, ma in realtà è fisica, voi vi muovete per reazione nella direzione opposta a quella del lancio.

Bene, nello spazio succede esattamente la stessa cosa. Questo è noto, appunto, come principio di conservazione della quantità di moto. Altra legge fondamentale della fisica. Dunque, se questo motore non spinge nulla, per la fisica non può andare avanti.

Come è possibile?

Per provare a rispondere a questa domanda, vediamo prima di tutto come è fatto questo motore. Ecco a voi una foto di quello che viene chiamato EMdrive:

EM drive

EM drive

Questo motore è stato inventato dallo scienziato inglese Roger Shawyer alcuni anni fa. Come funziona? Il principio di funzionamento, secondo il suo inventore, sarebbe il seguente: si tratta di una cavità asimettrica in cui la radiazione a microonde viene fatta rimbalzare sulle pareti producendo effetti di risonanza. A causa di effetti relativistici, si creerebbe una differenza di pressione tra i due estremi del motore con una conseguente spinta, appunto quella di cui parlavamo per far andare i razzi nello spazio.

A distanza di qualche anno, alcuni ricercatori cinesi decidono di costruire un loro proprio motore quantistico per verificare che quanto detto da Roger Shawyer fosse vero. Cosa riescono ad ottenere? Un motore che funziona secondo lo stesso principio e conferma quanto scoperto anni prima.

Di che spinte parliamo? Più o meno 720 milli Newton secondo i cinesi.

Cosa significa 720 milli Newton? Immaginate di prendere in mano un peso da 1 Kg e di tenerlo fermo. Come sapete questo oggetto è dotato di massa ed esercita una spinta sulla nostra mano, chiamata forza peso, risultato dell’attrazione della Terra verso l’oggetto (e mutuamente dell’oggetto verso la Terra). Con un peso da 1 Kg, la spinta è di circa 10 Newton. Dunque, qui abbiamo una spinta di 720 mN, cioè equivalente a quella che produrrebbe un oggetto da 72 grammi tenuto in mano.

Interessa a qualcuno il valore della spinta? L’importante è che questa ci sia e sia in grado di far andare i nostri satelliti.

In realtà, come vedremo, il valore della spinta non è trascurabile.

A questo punto, potremmo essere di fronte alla solita teoria rivoluzionaria che la scienza cerca di insabbiare perché mette in crisi le basi su cui abbiamo costruito tutti i nostri castelli di carte. Attenzione però, questa storia è leggermente diversa dalle solite. Sapete perché? Vista la possibile applicazione di questo motore, la NASA ha deciso di analizzarlo e di provare a verificare se i risultati sono corretti.

Cosa accade a questo punto?

La NASA fa le sue prove e ottiene un risultato in cui si ha una spinta che per la fisica non dovrebbe esserci! Dunque funziona tutto? Aspettiamo prima di dirlo.

Come visto, la spinta misurata era di 720 mN. I tecnici della NASA hanno ottenuto una spinta tra 30 e 50 micro Newton, dunque, circa un fattore 10000 in meno.

Come detto prima, ma chi se ne frega, l’importante è che la spinta ci sia!

Come potete immaginare, molti giornali internazionali hanno dato ampio risalto alla notizia, salvo però non dire tutto fino in fondo.

Cosa significa?

La NASA, dopo aver effettuato questi test, ha pubblicato un conference paper sulla questione. Ecco a voi il link dove leggere il lavoro:

NASA, EMdrive test

Come potete vedere, l’articolo sembra confermare quanto affermato. Attenzione però, leggete tutto fino in fondo. Verso la fine, gli autori scrivono una frase che tanti hanno fatto finta di non leggere. Questa:

Thrust was observed on both test articles, even though one of the test articles was designed with the expectation that it would not produce thrust. Specifically, one test article contained internal physical modifications that were designed to produce thrust, while the other did not (with the latter being referred to as the “null” test article).
Cosa significa? Nel test i tecnici hanno utilizzato anche un motore di controllo realizzato per non avere nessuna spinta. Durante il test però, quando hanno utilizzato questo motore, hanno osservato nuovamente questa spinta. Cioè? Dovete fare un test che porterà valori misurati molto piccoli. Come normale, costruite qualcosa che non dovrebbe invece funzionare. Poi ottenete che tutti e due misurano qualcosa paragonabile. Come concludere? E’ sbagliata la misura su quello buono o su quello che non dovrebbe funzionare?
Personalmente, come mia natura, voglio essere propositivo e, come si dice, “open mind”. Ad oggi, i risultati mostrano valori discordanti. Molto probabilmene, i valori della spinta che si vuole misurare sono troppo bassi per le incertezze derivanti dal metodo di misura stesso. Detto in modo statistico, il risultato ottenuto è compatibile con zero Newton di spinta ma anche con qualcosa diverso da zero.
Ovviamente, non voglio precludere nulla ma, allo stato attuale, questo motore non ha dato risultati che confermano quanto affermato. Visto l’interesse sulla cosa, sono sicuro che ci saranno ulteriori sviluppi nei prossimi mesi. Se così fosse, torneremo sull’argomento proprio per vedere se quanto affermato corrisponde al vero e, in tal caso, ragioneremo su effetti non considerati dalla fisica.
Annunci

Tutti i movimenti della Terra

27 Giu

Proprio ieri, una nostra cara lettrice ci ha fatto una domanda molto interessante nella sezione:

Hai domande o dubbi?

Come potete leggere, si chiede se esiste una correlazione tra i moti della Terra e l’insorgere di ere di glaciazione sul nostro pianeta. Rispondendo a questa domanda, mi sono reso conto come, molto spesso, e non è certamente il caso della nostra lettrice, le persone conoscano solo i moti principali di rotazione e rivoluzione. A questo punto, credo sia interessante capire meglio tutti i movimenti che il nostro pianeta compie nel tempo anche per avere un quadro più completo del moto dei pianeti nel Sistema Solare. Questa risposta, ovviamente, ci permetterà di rispondere, anche in questa sede, alla domanda iniziale che è stata posta.

Dunque, andiamo con ordine, come è noto la Terra si muove intorno al Sole su un’orbita ellittica in cui il Sole occupa uno dei due fuochi. Questo non sono io a dirlo, bensì questa frase rappresenta quella che è nota come I legge di Keplero. Non starò qui ad annoiarvi con tutte le leggi, ma ci basta sapere che Keplero fu il primo a descrivere cinematicamente il moto dei pianeti intorno ad un corpo più massivo. Cosa significa “cinematicamente”? Semplice, si tratta di una descrizione completa del moto senza prendere in considerazione il perché il moto avviene. Come sapete, l’orbita è ellittica perché è la legge di Gravitazione Universale a spiegare la tipologia e l’intensità delle forze che avvengono. Bene, detto molto semplicemente, Keplero ci spiega l’orbita e come il moto si evolverà nel tempo, Newton attraverso la sua legge di gravitazione ci dice il perché il fenomeno avviene in questo modo (spiegazione dinamica).

Detto questo, se nel nostro Sistema Solare ci fossero soltanto il Sole e la Terra, quest’ultima si limiterebbe a percorrere la sua orbita ellittica intorno al Sole, moto di rivoluzione, mentre gira contemporaneamente intorno al suo asse, moto di rotazione. Come sappiamo bene, il primo moto è responsabile dell’alternanza delle stagioni, mentre la rotazione è responsabile del ciclo giorno-notte.

Purtroppo, ed è un eufemismo, la Terra non è l’unico pianeta a ruotare intorno al Sole ma ce ne sono altri, vicini, lontani e più o meno massivi, oltre ovviamente alla Luna, che per quanto piccola è molto vicina alla Terra, che “disturbano” questo moto molto ordinato.

Perche questo? Semplice, come anticipato, e come noto, due masse poste ad una certa distanza, esercitano mutamente una forza di attrazione, detta appunto gravitazionale, direttamente proporzionale al prodotto delle masse dei corpi e inversamente proporzionale al quadrato della loro distanza. In altri termini, più i corpi sono massivi, maggiore è la loro attrazione. Più i corpi sono distanti, minore sarà la forza che tende ad avvicinarli. Ora, questo è vero ovviamente per il sistema Terra-Sole ma è altresì vero per ogni coppia di corpi nel nostro Sistema Solare. Se Terra e Sole si attraggono, lo stesso fanno la Terra con la Luna, Marte con Giove, Giove con il Sole, e via dicendo. Come è facile capire, la componente principale delle forze è quella offerta dal Sole sul pianeta, ma tutte queste altre “spintarelle” danno dei contributi minori che influenzano “in qualche modo” il moto di qualsiasi corpo. Bene, questo “in qualche modo” è proprio l’argomento che stiamo affrontando ora, cioè i moti minori, ad esempio, della Terra nel tempo.

Dunque, abbiamo già parlato dei notissimi moti di rotazione e di rivoluzione. Uno dei moti che invece è divenuto famoso grazie, o forse purtroppo, al 2012 è quello di precessione degli equinozi, di cui abbiamo già parlato in questo articolo:

Nexus 2012: bomba a orologeria

Come sapete, l’asse della Terra, cioè la linea immaginaria che congiunge i poli geografici ed intorno al quale avviene il moto di rotazione, è inclinato rispetto al piano dell’orbita. Nel tempo, questo asse non rimane fisso, ma descrive un doppio cono come mostrato in questa figura:

Moto di precessione degli equinozi e di nutazione

Moto di precessione degli equinozi e di nutazione

Il moto dell’asse è appunto detto di “precessione degli equinozi”. Si tratta di un moto a più lungo periodo dal momento che per compiere un intero giro occorrono circa 25800 anni. A cosa è dovuto il moto di precessione? In realtà, si tratta del risultato di un duplice effetto: l’attrazione gravitazionale da parte della Luna e il fatto che il nostro pianeta non è perfettamente sferico. Perché si chiama moto di precessione degli equinozi? Se prendiamo la linea degli equinozi, cioè quella linea immaginaria che congiunge i punti dell’orbita in cui avvengono i due equinozi, a causa di questo moto questa linea si sposterà in senso orario appunto facendo “precedere” anno dopo anno gli equinozi. Sempre a causa di questo moto, cambia la costellazione visibile il giorno degli equinozi e questo effetto ha portato alla speculazione delle “ere new age” e al famoso “inizio dell’era dell’acquario” di cui, sempre in ambito 2012, abbiamo già sentito parlare.

Sempre prendendo come riferimento la figura precedente, notiamo che c’è un altro moto visibile. Percorrendo il cono infatti, l’asse della Terra oscilla su e giù come in un moto sinusoidale. Questo è noto come moto di “nutazione”. Perché avviene questo moto? Oltre all’interazione della Luna, molto vicina alla Terra, anche il Sole gioca un ruolo importante in questo moto che proprio grazie alla variazione di posizione relativa del sistema Terra-Luna-Sole determina un moto di precessione non regolare nel tempo. In questo caso, il periodo della nutazione, cioè il tempo impiegato per per compiere un periodo di sinusoide, è di circa 18,6 anni.

Andando avanti, come accennato in precedenza, la presenza degli altri pianeti nel Sistema Solare apporta dei disturbi alla Terra, così come per gli altri pianeti, durante la sua orbita. Un altro moto da prendere in considerazione è la cosiddetta “precessione anomalistica”. Di cosa si tratta? Abbiamo detto che la Terra compie un’orbita ellittica intorno al Sole che occupa uno dei fuochi. In astronomia, si chiama “apside” il punto di massima o minima distanza del corpo che ruota da quello intorno al quale sta ruotando, nel nostro caso il Sole. Se ora immaginiamo di metterci nello spazio e di osservare nel tempo il moto della Terra, vedremo che la linea che congiunge gli apsidi non rimane ferma nel tempo ma a sua volta ruota. La figura seguente ci può aiutare meglio a visualizzare questo effetto:

Moto di precessione anomalistica

Moto di precessione anomalistica

Nel caso specifico di pianeti che ruotano intorno al Sole, questo moto è anche chiamato di “precessione del perielio”. Poiché il perielio rappresenta il punto di massimo avvicinamento di un corpo dal Sole, il perché di questo nome è evidente. A cosa è dovuta la precessioni anomalistica? Come anticipato, questo moto è proprio causato dalle interazioni gravitazionali, sempre presenti anche se con minore intensità rispetto a quelle del Sole, dovute agli altri pianeti. Nel caso della Terra, ed in particolare del nostro Sistema Solare, la componente principale che da luogo alla precessione degli apsidi è l’attrazione gravitazionale provocata da Giove.

Detto questo, per affrontare il prossimo moto millenario, torniamo a parlare di asse terrestre. Come visto studiando la precessione e la nutazione, l’asse terrestre descrive un cono nel tempo (precessione) oscillando (nutazione). A questo livello però, rispetto al piano dell’orbita, l’inclinazione dell’asse rimane costante nel tempo. Secondo voi, con tutte queste interazioni e questi effetti, l’inclinazione dell’asse potrebbe rimanere costante? Assolutamente no. Sempre a causa dell’interazione gravitazionale, Sole e Luna principalmente nel nostro caso, l’asse della Terra presenta una sorta di oscillazione variando da un massimo di 24.5 gradi ad un minimo di 22.1 gradi. Anche questo movimento avviene molto lentamente e ha un periodo di circa 41000 anni. Cosa comporta questo moto? Se ci pensiamo, proprio a causa dell’inclinazione dell’asse, durante il suo moto, uno degli emisferi della Terra sarà più vicino al Sole in un punto e più lontano nel punto opposto dell’orbita. Questo contribuisce notevolmente alle stagioni. L’emisfero più vicino avrà più ore di luce e meno di buio oltre ad avere un’inclinazione diversa per i raggi solari che lo colpiscono. Come è evidente, insieme alla distanza relativa della Terra dal Sole, la variazione dell’asse contribuisce in modo determinante all’alternanza estate-inverno. La variazione dell’angolo di inclinazione dell’asse può dunque, con periodi lunghi, influire sull’intensità delle stagioni.

Finito qui? Non ancora. Come detto e ridetto, la Terra si muove su un orbita ellittica intorno al Sole. Uno dei parametri matematici che si usa per descrivere un’ellisse è l’eccentricità, cioè una stima, detto molto semplicemente, dello schiacciamento dell’ellisse rispetto alla circonferenza. Che significa? Senza richiamare formule, e per non appesantire il discorso, immaginate di avere una circonferenza. Se adesso “stirate” la circonferenza prendendo due punti simmetrici ottenete un’ellisse. Bene, l’eccentricità rappresenta proprio una stima di quanto avete tirato la circonferenza. Ovviamente, eccentricità zero significa avere una circonferenza. Più è alta l’eccentricità, maggiore sarà l’allungamento dell’ellisse.

Tornando alla Terra, poiché l’orbita è un’ellisse, possiamo descrivere la sua forma utilizzando l’eccentricità. Questo valore però non è costante nel tempo, ma oscilla tra un massimo e un minimo che, per essere precisi, valgono 0,0018 e 0,06. Semplificando molto il discorso, nel tempo l’orbita della Terra oscilla tra qualcosa più o meno simile ad una circonferenza. Anche in questo caso, si tratta di moti millenari a lungo periodo ed infatti il moto di variazione dell’eccentricità (massimo-minimo-massimo) avviene in circa 92000 anni. Cosa comporta questo? Beh, se teniamo conto che il Sole occupa uno dei fuochi e questi coincidono nella circonferenza con il centro, ci rendiamo subito conto che a causa di questa variazione, la distanza Terra-Sole, e dunque l’irraggiamento, varia nel tempo seguendo questo movimento.

A questo punto, abbiamo analizzato tutti i movimenti principali che la Terra compie nel tempo. Per affrontare questo discorso, siamo partiti dalla domanda iniziale che riguardava l’ipotetica connessione tra periodi di glaciazione sulla Terra e i moti a lungo periodo. Come sappiamo, nel corso delle ere geologiche si sono susseguiti diversi periodi di glaciazione sul nostro pianeta, che hanno portato allo scioglimento dei ghiacci perenni e all’innalzamento del livello dei mari. Studiando i reperti e la quantità di CO2 negli strati di ghiaccio, si può notare una certa regolarità dei periodi di glaciazione, indicati anche nella pagina specifica di wikipedia:

Wiki, cronologia delle glaciazioni

Come è facile pensare, molto probabilmente ci sarà una correlazione tra i diversi movimenti della Terra e l’arrivo di periodi di glaciazione più o meno intensi, effetto noto come “Cicli di Milanković”. Perché dico “probabilmente”? Come visto nell’articolo, i movimenti in questione sono diversi e con periodi più o meno lunghi. In questo contesto, è difficile identificare con precisione il singolo contributo ma quello che si osserva è una sovrapposizione degli effetti che producono eventi più o meno intensi.

Se confrontiamo i moti appena studiati con l’alternanza delle glaciazioni, otteniamo un grafico di questo tipo:

Relazione tra i periodi dei movimenti della Terra e le glaciazioni conosciute

Relazione tra i periodi dei movimenti della Terra e le glaciazioni conosciute

Come si vede, è possibile identificare una certa regolarità negli eventi ma, quando sovrapponiamo effetti con periodi molto lunghi e diversi, otteniamo sistematicamente qualcosa con periodo ancora più lungo. Effetto dovuto proprio alle diverse configurazioni temporali che si possono ottenere. Ora, cercare di trovare un modello matematico che prenda nell’insieme tutti i moti e li correli con le variazioni climatiche non è cosa banale e, anche se sembra strano da pensare, gli eventi che abbiamo non rappresentano un campione significativo sul quale ragionare statisticamente. Detto questo, e per rispondere alla domanda iniziale, c’è una relazione tra i movimenti della Terra e le variazioni climatiche ma un modello preciso che tenga conto di ogni causa e la pesi in modo adeguato in relazione alle altre, non è ancora stato definito. Questo ovviamente non esclude in futuro di poter avere una teoria formalizzata basata anche su future osservazioni e sull’incremento della precisione di quello che già conosciamo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’espansione metrica dell’universo

8 Apr

In questo blog, abbiamo dedicato diversi articoli al nostro universo, alla sua storia, al suo destino, alla tipologia di materia o non materia di cui e’ formato, cercando, come e’ ovvio, ogni volta di mettere il tutto in una forma quanto piu’ possibile comprensibile e divulgativa. Per chi avesse perso questi articoli, o solo come semplice ripasso, vi riporto qualche link riassuntivo:

E parliamo di questo Big Bang

Il primo vagito dell’universo

Universo: foto da piccolo

La materia oscura

Materia oscura intorno alla Terra?

Due parole sull’antimateria

Flusso oscuro e grandi attrattori

Ascoltate finalmente le onde gravitazionali?

Come e’ ovvio, rendere questi concetti fruibili a fini divulgativi non e’ semplice. Per prima cosa, si deve evitare di mettere formule matematiche e, soprattutto, si deve sempre riflettere molto bene su ogni singola frase. Un concetto che potrebbe sembrare scontato e banale per un addetto ai lavori, potrebbe essere del tutto sconosciuto a chi, non avendo basi scientifiche solide, prova ad informarsi su argomenti di questo tipo.

Perche’ faccio questo preambolo?

Pochi giorni fa, un nostro lettore mi ha contatto via mail per chiedermi di spiegare meglio il discorso dell’espansione dell’universo. Per essere precisi, la domanda era relativa non all’espansione in se, ma a quella che viene appunto definita “espansione metrica” dell’universo. Cosa significa? Come visto varie volte, l’idea comunemente accettata e’ che l’universo sia nato da un Big Bang e durante questa espansione si sono prima formate le forze, il tempo, le particelle, poi i pianeti, le galassie e via dicendo. Ci sono prove di questo? Assolutamente si e ne abbiamo parlato, anche in questo caso, piu’ volte: la radiazione cosmica di fondo, lo spostamento verso il rosso delle galassie lontane, le conclusioni stesse portate dalla scoperta del bosone di Higgs e via dicendo. Dunque? Che significa espansione metrica dell’universo? In parole povere, noi diciamo che l’universo si sta espandendo, e che sta anche accelerando, ma come possiamo essere certi di questo? Che forma ha l’universo? Per quanto ancora si espandera’? Poi cosa succedera’? Sempre nella domanda iniziale, veniva posto anche un quesito molto interessante: ma se non fosse l’universo ad espandersi ma la materia a contrarsi? L’effetto sarebbe lo stesso perche’ la mutua distanza tra due corpi aumenterebbe nel tempo dando esattamente lo stesso effetto apparente che vediamo oggi.

Come potete capire, di domande ne abbiamo fin troppe a cui rispondere. Purtroppo, e lo dico in tutta sincerita’, rendere in forma divulgativa questi concetti non e’ molto semplice. Come potete verificare, raccontare a parole che il tutto sia nato da un Big Bang, che ci sia stata l’inflazione e si sia formata la radiazione di fondo e’ cosa abbastanza fattibile, parlare invece di forma dell’universo e metrica non e’ assolutamente semplice soprattutto senza poter citare formule matematiche che per essere comprese richiedono delle solide basi scientifiche su cui ragionare.

Cerchiamo dunque di andare con ordine e parlare dei vari quesiti aperti.

Come visto in altri articoli, si dice che il Big Bang non e’ avvenuto in un punto preciso ma ovunque e l’effetto dell’espansione e’ visibile perche’ ogni coppia di punti si allontana come se ciascun punto dell’universo fosse centro dell’espansione. Cosa significa? L’esempio classico che viene fatto e’ quello del palloncino su cui vengono disegnati dei punti:

Esempio del palloncino per spiegare l'espansione dell'universo

Esempio del palloncino per spiegare l’espansione dell’universo

Quando gonfiate il palloncino, i punti presenti sulla superficie si allontanano tra loro e questo e’ vero per qualsiasi coppia di punti. Se immaginiamo di essere su un punto della superficie, vedremo tutti gli altri punti che si allontanano da noi. Bene, questo e’ l’esempio del Big Bang.

Ci sono prove di questo? Assolutamente si. La presenza della CMB e’ proprio un’evidenza che ci sia stato un Big Bang iniziale. Poi c’e’ lo spostamento verso il rosso, come viene definito, delle galassie lontane. Cosa significa questo? Siamo sulla Terra e osserviamo le galassie lontane. La radiazione che ci arriva, non necessariamente con una lunghezza d’onda nel visibile, e’ caratteristica del corpo che la emette. Misurando questa radiazione ci accorgiamo pero’ che la frequenza, o la lunghezza d’onda, sono spostate verso il rosso, cioe’ la lunghezza d’onda e’ maggiore di quella che ci aspetteremmo. Perche’ avviene questo? Questo effetto e’ prodotto proprio dal fatto che la sorgente che emette la radiazione e’ in moto rispetto a noi e poiche’ lo spostamento e’ verso il rosso, questa sorgente si sta allontanando. A questo punto sorge pero’ un quesito molto semplice e comune a molti. Come sapete, per quanto grande rapportata alle nostre scale, la velocita’ della luce non e’ infinita ma ha un valore ben preciso. Questo significa che la radiazione emessa dal corpo lontano impiega un tempo non nullo per raggiungere la Terra. Come spesso si dice, quando osserviamo stelle lontane non guardiamo la stella come e’ oggi, ma come appariva quando la radiazione e’ stata emessa. Facciamo l’esempio classico e facile del Sole. La luce emessa dal Sole impiega 8 minuti per arrivare sulla Terra. Se noi guardiamo ora il Sole lo vediamo come era 8 minuti fa. Se, per assurdo, il sole dovesse scomparire improvvisamente da un momento all’altro, noi ce ne accorgeremmo dopo 8 minuti. Ora, se pensiamo ad una stella lontana 100 anni luce da noi, quella che vediamo e’ la stella non come e’ oggi, ma come era 100 anni fa. Tornando allo spostamento verso il rosso, poiche’ parliamo di galassie lontane, la radiazione che ci arriva e’ stata emessa moltissimo tempo fa. Domanda: osservando la luce notiamo uno spostamento verso il rosso ma questa luce e’ stata emessa, supponiamo, mille anni fa. Da quanto detto si potrebbe concludere che l’universo magari era in espansione 1000 anni fa, come da esempio, mentre oggi non lo e’ piu’. In realta’, non e’ cosi’. Lo spostamento verso il rosso avviene a causa del movimento odierno tra i corpi e dunque utilizzare galassie lontane ci consente di osservare fotoni che hanno viaggiato piu’ a lungo e da cui si ottengono misure piu’ precise. Dunque, da queste misure, l’universo e’ in espansione e’ lo e’ adesso. Queste misurazioni sono quelle che hanno portato Hubble a formulare la sua famosa legge da cui si e’ ricavata per la prima volta l’evidenza di un universo in espansione.

Bene, l’universo e’ in espansione, ma se ci pensate questo risultato e’ in apparente paradosso se pensiamo alla forza di gravita’. Perche’? Negli articoli precedentemente citati, abbiamo piu’ volte parlato della gravita’ citando la teoria della gravitazione universale di Newton. Come e’ noto, due masse poste a distanza r si attraggono con una forza che dipende dal prodotto delle masse ed e’ inversamente proporzionale al quadrato della loro distanza. Ora, nel nostro universo ci sono masse distribuite qui a la in modo piu’ o meno uniforme. Se pensiamo solo alla forza di gravita’, una coppia qualunque di queste masse si attrae e quindi le due masse tenderanno ad avvicinarsi. Se anche pensiamo ad una spinta iniziale data dal Big Bang, ad un certo punto questa spinta dovra’ terminare controbilanciata dalla somma delle forze di attrazione gravitazionale. In altre parole, non e’ possibile pensare ad un universo che si espande sempre se abbiamo solo forze attrattive che lo governano.

Questo problema ha angosciato l’esistenza di molti scienziati a partire dai primi anni del ‘900. Lo stesso Einstein, per cercare di risolvere questo problema dovette introdurre nella Relativita’ Generale quella che defini’ una costante cosmologica, a suo avviso, un artificio di calcolo che serviva per bilanciare in qualche modo l’attrazione gravitazionale. L’introduzione di questa costante venne definita dallo stesso Einstein il piu’ grande errore della sua vita. Oggi sappiamo che non e’ cosi’, e che la costante cosmologica e’ necessaria nelle equazioni non come artificio di calcolo ma, in ultima analisi, proprio per giustificare la presenza di componenti non barioniche, energia oscura in primis, che consentono di spiegare l’espansione dell’universo. Se vogliamo essere precisi, Einstein introdusse la costante non per avere un universo in espansione bensi’ un universo statico nel tempo. In altre parole, la sua costante serviva proprio a bilanciare esattamente l’attrazione e rendere il tutto fermo. Solo osservazioni successive, tra cui quella gia’ citata dello stesso Hubble, confermarono che l’universo non era assolutamente statico bensi’ in espansione.

Ora, a questo punto, potremmo decidere insieme di suicidarci dal punto di vista divulgativo e parlare della metrica dell’universo, di coordinate comoventi, ecc. Ma questo, ovviamente, implicherebbe fogli di calcoli e basi scientifiche non banali. Abbiamo le prove che l’universo e’ in espansione, dunque, ad esempio, guardando dalla Terra vediamo gli altri corpi che si allontanano da noi. Come si allontanano? O meglio, di nuovo, che forma avrebbe questo universo?

L’esempio del palloncino fatto prima per spiegare l’espansione dell’universo, e’ molto utile per far capire questi concetti, ma assolutamente fuoriviante se non ci si riflette abbstanza. Molto spesso, si confonde questo esempio affermando che l’universo sia rappresentato dall’intero palloncino compreso il suo volume interno. Questo e’ concettualmente sbagliato. Come detto in precedenza, i punti si trovano solo ed esclusivamente sulla superficie esterna del palloncino che rappresenta il nostro universo.

A complicare, o a confondere, ancora di piu’ le idee c’e’ l’esempio del pane con l’uvetta che viene usato per spiegare l’espansione dell’universo. Anche su wikipedia trovate questo esempio rappresentato con una bella animazione:

Esempio del pane dell'uvetta utilizzato per spiegare l'aumento della distanza tra i punti

Esempio del pane dell’uvetta utilizzato per spiegare l’aumento della distanza tra i punti

Come vedete, durante l’espansione la distanza tra i punti cresce perche’ i punti stessi, cioe’ i corpi presenti nell’universo, vengono trascinati dall’espansione. Tornado alla domanda iniziale da cui siamo partiti, potremmo penare che in realta’ lo spazio resti a volume costante e quello che diminuisce e’ il volume della materia. Il lettore che ci ha fatto la domanda, mi ha anche inviato una figura esplicativa per spiegare meglio il concetto:

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Come vedete, pensando ad una contrazione della materia, avremmo esattamente lo stesso effetto con la distanza mutua tra i corpi che aumenta mentre il volume occupato dall’universo resta costante.

Ragioniamo pero’ su questo concetto. Come detto, a supporto dell’espansione dell’universo, abbiamo la legge di Hubble, e anche altre prove, che ci permettono di dire che l’universo si sta espandendo. In particolare, lo spostamento verso il rosso della radiazione emessa ci conferma che e’ aumentato lo spazio tra i corpi considerati, sorgente di radiazione e bersaglio. Inoltre, la presenza dell’energia oscura serve proprio a spiegare questa evoluzione dell’universo. Se la condizione fosse quella riportata nell’immagine, cioe’ con la materia che si contrae, non ci sarebbe lo spostamento verso il rosso, e anche quello che viene definito Modello Standard del Cosmo, di cui abbiamo verifiche sperimentali, non sarebbe utilizzabile.

Resta pero’ da capire, e ritorno nuovamente su questo punto, che forma dovrebbe avere il nostro universo. Non sto cercando di volta in volta di scappare a questa domanda, semplicemente, stiamo cercando di costruire delle basi, divulgative, che ci possano consentire di capire questi ulteriori concetti.

Come detto, parlando del palloncino, non dobbiamo fare l’errore di considerare tutto il volume, ma solo la sua superificie. In particolare, come si dice in fisica, per capire la forma dell’universo dobbiamo capire che tipo di geometria assegnare allo spazio-tempo. Purtroppo, come imparato a scuola, siamo abituati a pensare alla geometria Euclidea, cioe’ quella che viene costruita su una superifice piana. In altre parole, siamo abituati a pensare che la somma degli angoli interni di un traiangolo sia di 180 gradi. Questo pero’ e’ vero solo per un triangolo disegnato su un piano. Non e’ assolutamente detto a priori che il nostro universo abbia una geometria Euclidea, cioe’ che sia piano.

Cosa significa?

Come e’ possibile dimostrare, la forma dell’universo dipende dalla densita’ di materia in esso contenuta. Come visto in precedenza, dipende dunque, come e’ ovvio pensare, dall’intensita’ della forza di attrazione gravitazionale presente. In particolare possiamo definire 3 curvature possibili in funzione del rapporto tra la densita’ di materia e quella che viene definita “densita’ critica”, cioe’ la quantita’ di materia che a causa dell’attrazione sarebbe in grado di fermare l’espasione. Graficamente, le tre curvature possibili vengono rappresentate con tre forme ben distinte:

Curvature possibili per l'universo in base al rapporto tra densita' di materia e densita' critica

Curvature possibili per l’universo in base al rapporto tra densita’ di materia e densita’ critica

Cosa significa? Se il rapporto e’ minore di uno, cioe’ non c’e’ massa a sufficienza per fermare l’espansione, questa continuera’ per un tempo infinito senza arrestarsi. In questo caso si parla di spazio a forma di sella. Se invece la curvatura e’ positiva, cioe’ la massa presente e’ maggiore del valore critico, l’espansione e’ destinata ad arrestarsi e l’universo iniziera’ ad un certo punto a contrarsi arrivando ad un Big Crunch, opposto al Big Bang. In questo caso la geometria dell’universo e’ rappresentata dalla sfera. Se invece la densita’ di materia presente e’ esattamente identica alla densita’ critica, in questo caso abbiamo una superficie piatta, cioe’ Euclidea, e l’espansione si arrestera’ ma solo dopo un tempo infinito.

Come potete capire, la densita’ di materia contenuta nell’universo determina non solo la forma di quest’ultimo, ma anche il suo destino ultimo in termini di espansione o contrazione. Fate pero’ attenzione ad un altro aspetto importante e molto spesso dimenticato. Se misuriamo questo rapporto di densita’, sappiamo automaticamente che forma ha il nostro universo? E’ vero il discorso sul suo destino ultimo, ma le rappresentazioni grafiche mostrate sono solo esplicative e non rappresentanti la realta’.

Perche’?

Semplice, per disegnare queste superifici, ripeto utilizzate solo per mostrare graficamente le diverse forme, come si e’ proceduto? Si e’ presa una superficie bidimensionale, l’equivalente di un foglio, e lo si e’ piegato seguendo le indicazioni date dal valore del rapporto di densita’. In realta’, lo spazio tempo e’ quadrimensionale, cioe’ ha 3 dimensioni spaziali e una temporale. Come potete capire molto facilmente, e’ impossibile sia disegnare che immaginare una superificie in uno spazio a 4 dimensioni! Questo significa che le forme rappresentate sono esplicative per far capire le differenze di forma, ma non rappresentano assolutamnete la reale forma dell’universo dal momento che sono ottenute eliminando una coordinata spaziale.

Qual e’ oggi il valore di questo rapporto di densita’? Come e’ ovvio, questo valore deve essere estrapolato basandosi sui dati raccolti da misure osservative nello spazio. Dal momento che sarebbe impossibile “contare” tutta la materia, questi valori vengono utilizzati per estrapolare poi il numero di barioni prodotti nel Big Bang. I migliori valori ottenuti oggi danno rapporti che sembrerebbero a cavallo di 1 anche se con incertezze ancora troppo elevate per avere una risposta definitiva.

Concludendo, affrontare queste tematiche in chiave divulgativa non e’ assolutamente semplice. Per quanto possibile, e nel limite delle mie possibilita’, spero di essere riuscito a farvi capire prima di tutto quali sono le verifiche sperimentali di cui disponiamo oggi e che sostengono le teorie di cui tanto sentiamo parlare. Queste misure, dirette o indirette che siano, ci permettono di capire che il nostro universo e’ con buona probabilita’ nato da un Big Bang, che sta attualmente espandendosi e questa espansione, almeno allo stato attuale, e’ destinata a fermarsi solo dopo un tempo infinito. Sicuramente, qualunque sia il destino ultimo del nostro universo, questo avverra’ in un tempo assolutamente molto piu’ grande della scala umana e solo la ricerca e la continua osservazione del cosmo ci possono permettere di fare chiarezza un poco alla volta.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

2012 DA14, ci siamo quasi!

14 Feb

Diversi mesi fa, avevamo gia’ cominciato a parlare dell’asteroide 2012 DA14:

– L’asteroide 2012 DA14

2012 DA14: c.v.d.

vedendo come questo asteroide di circa 50 metri di diametro, dal peso di circa 130000 tonnellate e scoperto piu’ o meno un anno fa in Spagna, non era assolutamente pericoloso per la Terra, anche se sarebbe passato ad una distanza ravvicinata a cui mai erano stati osservati corpi di questo tipo. In effetti, nel corso dei mesi, grazie alle continue osservazioni fatte dalla NASA e dai tanti osservatori in giro per il mondo, 2012 DA14 era stato subito declassato ad oggetto non pericoloso.

Tra poche ore, precisamente nella serata del 15 Febbraio 2013, questo asteroide passera’ ad una distanza che per un tratto sara’ minore di quella dei tanti satelliti geostazionari che utilizziamo per le telecomunicazioni, per guardare la TV o anche per fare le previsioni del tempo.

Ribadiamo ancora che non esiste nessuna probabilita’ di scontro con la Terra per il prossimo venerdi, ne tantomeno per il 2020, quando 2012 DA14 ci fara’ di nuovo visita. Nonostante questo, poiche’ la distanza minima e’ di circa 28000 Km, questo asteroide sara’ ben visibile dalla Terra e anche da noi in Italia, offrendo, sempre che il cielo si sgombro di nuvole, uno spettacolo unico nel suo genere per molti appassionati.

Vista la piccola dimensione, 2012 DA14 avra’ una magnitudo pari ad 8, cioe’ equivalente a quella di una stella di media intensita’. Questo lo rendera’ visibile anche con un binocolo, ovviamente meglio ancora con un telescopio anche di piccole dimensioni.

Vi riporto una cartina stellare in cui e’ stata tracciata la rotta che seguira’ 2012 DA14 visto proprio dall’Italia. In questo modo potrete trovare dei punti di riferimento in cui aspettare il passaggio dell’asteroide:

Il percorso di 2012 DA14 visto dall'Italia

Il percorso di 2012 DA14 visto dall’Italia

Come riportato nella legenda, ogni punto sulla mappa indica un intervallo di 5 minuti. Visto al binocolo, potrete notare una flebile stella ma che si muove molto velocemente nella volta celeste segnando appunto l’orbita riportata.

Solo per darvi qualche numero, 2012 DA14 si sposta in cielo ad una velocita’ di circa 7.8 Km/s, cioe’ circa 40 volte piu’ veloce di un proiettile sparato da una pistola.

A questo punto, avete tutti i riferimenti per godervi lo spettacolo naturale offerto da 2012 DA14. Pensate che secondo la NASA, la probabilita’ che un oggetto ci passi cosi’ vicino e’ solo di 1 su 40. Capite dunque la particolarita’ di un evento del genere e soprattutto l’interesse e l’attesa per questo prossimo passaggio. Unico consiglio, osservate il cielo verso EST con un orizzonte abbastanza libero. Guardando la cartina riportata, trovate una stella o una costellazione ben riconoscibile e usatela come punto di riferimento. A questo scopo, ottimi esempi sono Comae Berenices, Chara o anche l’ammasso MEL111, facilmente individuabili per la loro forma e per la loro luminosita’. Trovato il punto giusto, puntate il binocolo e aspettate il passaggio di 2012 DA14. A questo punto sara’ facile seguirlo nella sua traiettoria o anche scattare foto lungo il percorso.

Per chi avesse difficolta’ nell’osservare dal vivo, vi riporto anche il link del Virtual Telescope che offrira’ una diretta streaming del passaggio dell’asteroide:

Virtual Telescope 2012 DA14

In questo caso potrete gustarvi lo spettacolo anche sopra al divano con il telescopio che passo dopo passo seguira’ l’asteroide a grande angolo, mostrando anche le stelle in prossimita’ del suo passaggio.

Concludendo, quello che ci aspetta tra poche ore e’ senza ombra di dubbio uno spettacolo della natura. Se avete la possibilita’, non perdete questa occasione rara di poter osservare la Terra sfiorata da un “sassolino” di 50 metri di diametro e 130000 tonnellate di peso. Sicuramente, il sapere che non c’e’ nessuna probabilita’ di essere colpiti, aiuta a goderci lo spettacolo in tutto rilassamento.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.