Tag Archives: radiazione

Ma questa crema solare …. come dobbiamo sceglierla?

30 Giu

Sempre alla nostra sezione:

– Hai domande o dubbi?

va il merito, ma ovviamente tutto il merito va a voi che rendete questo blog vivo ed interessante, di aver richiamato da una nostra cara lettrice una nuova interessantissima domanda. Questa volta però, vi preannuncio che l’argomento scelto è molto complesso nella sua apparente semplicità, oltre ad essere assolutamente in linea con il periodo dell’anno. Come potete leggere, la domanda riguarda le creme solari e tutte le leggende che girano, non solo in rete, e che da sempre abbiamo ascoltato.

Come anticipato, non è semplice cercare di trovare la giusta strada nella giungla di informazioni disponibili. Se provate a confrontare dieci fonti, troverete dieci versioni diverse: le creme solari devono essere usate. No, non devo essere usate. Il sole è malato. Il sole provoca il cancro. No, sono le creme che creano il cancro alla pelle. Insomma, di tutto di più, e non pensate di rifuggire nella frase: “mi metto sotto l’ombrellone”, perché, come vedremo, anche questo lascia filtrare alcune componenti dei raggi solari e, sempre scimmiottando quello che trovate in rete, vi può venire il cancro. Allora sapete che c’è? Me ne sto chiuso dentro casa fino a settembre! Va bene così? No, sicuramente non prendi il sole (e quindi non ti viene il cancro), ma non ti si fissa la vitamina D e quindi potresti soffrire di rachitismo.

Insomma, come la mettete la mettete, sbagliate sempre. Cosa fare allora? Sicuramente, in linea con il nostro stile, quello che possiamo fare è “andare con ordine” e provare a verificare quali e quante di queste affermazioni corrispondono al vero. Solo in questo modo potremo capire quale crema solare scegliere, come applicarla e quali sono i rischi che possiamo correre con l’esposizione al Sole.

Prima di tutto, non dobbiamo considerare i raggi solari come un’unica cosa, ma è necessario distinguere la radiazione che ci arriva. Questa suddivisione è essenziale perché l’interazione della nostra pelle con i fotoni emessi dal sole non è sempre uguale, ma dipende dalla lunghezza d’onda. Bene, in tal senso, possiamo distinguere la parte dei raggi solari che ci interessa in tre grandi famiglie, in particolare, per i nostri scopi, ci concentreremo sulla parte ultravioletta dello spettro, che è quella di interesse in questo campo.

La parte cosiddetta ultravioletta è quella con lunghezza d’onda immediatamente inferiore alla parte visibile. Normalmente, questa parte dello spettro viene divisa in UVA, con lunghezza d’onda tra 400 e 315 nanometri, UVB, tra 315 e 280 nanometri e UVC, tra 280 e 100 nanometri. Quando parliamo di tintarella o di danni provocati dalla radiazione solare, dobbiamo riferirci alla parte UV ed in particolare a queste 3 famiglie.

Bene, la componente più pericolosa della radiazione solare è quella degli UVC cioè con lunghezza d’onda minore. Perché? Sono radiazioni utilizzate come germicidi, ad esempio nella potabilizzazione dell’acqua, a causa del loro potere nel modificare il DNA e l’RNA delle cellule. Per nostra fortuna, questa componente della radiazione è completamente bloccata dallo strato di ozono che circonda la Terra. Di questo, e soprattutto dello stato di salute dello strato di ozono, abbiamo parlato in un post specifico:

– Che fine ha fatto il buco dell’ozono?

Per la parte più pericolosa dello spettro, quella degli UVC, possiamo dunque tirare un respiro di sollievo. Vediamo le altre due componenti.

Gli UVA, a causa della lunghezza d’onda maggiore, penetrano più a fondo nella pelle, promuovendo il rilascio di melanina e dunque l’abbronzatura. Che significa? Molto semplice, quando prendiamo il sole, la nostra pelle reagisce cercando di proteggersi autonomamente appunto rilasciando melanina. Questa sostanza serve a far scurire gli strati più superficiali della pelle appunto come protezione dai raggi. Riguardo ala dannosità? Su questo punto, purtroppo, non si ha ancora chiarezza. Per prima cosa, dobbiamo dire che l’esposizione crea meno danni a tempi brevi rispetto, come vedremo, a quella agli UVB. Questa componente però è una delle maggiori sospettate per i danni a lungo termine, connessi anche con l’insorgere di tumori alla pelle, e provoca un invecchiamento veloce della pelle. Gli UVA sono molto conosciuti da coloro che frequentano i centri estetici per sottoporsi alle “lampade”. Questi sistemi infatti hanno sistemi di illuminazione concentrati negli UVA appunto per promuovere un’abbronzatura rapida.

Per quanto riguarda gli UVB invece, si tratta della radiazione più pericolosa nell’immediato. Questa componente dello spettro solare infatti, è responsabile della classica “scottatura”, in alcuni casi vera e propria ustione, provocata da un’esposizione prolungata al Sole. Anche se potenzialmente dannosa, la radiazione UVB è comunque importante per il nostro organismo perché promuove la sintesi della vitamina D. Come è noto, in assenza di questo fondamentale processo possono insorgere casi di rachitismo, soprattutto in soggetti non ancora adulti.

Bene, abbiamo capito come è divisa la radiazione ultravioletta del sole e abbiamo finalmente capito a cosa si riferiscono tutti questi nomi che siamo soliti ascoltare o leggere riguardo la tintarella.

Passiamo dunque a parlare di creme solari. Cosa dobbiamo cercare? Perché? Quali sono i prodotti più indicati?

Ripensando a quanto scritto, viene evidente pensare che una buona crema debba proteggerci dagli UVA e UVB poiché per gli UVC ci pensa lo strato di ozono. Primo pensiero sbagliato! Quando acquistiamo una crema solare, che, come vedremo, offre una certa protezione, questo valore si riferisce alla sola componente B della radiazione. Perché? Semplice, come visto, gli UVB sono responsabili delle scottature immediate. Se ci proteggiamo da questa componente salviamo la pelle garantendo la tintarella. Questo è assolutamente falso, soprattutto pensando ai danni a lungo termine dati da un’esposizione troppo prolungata agli UVA.

Solo negli ultimi anni, sono comparse sul mercato creme con protezioni ad alto spettro. Fate bene attenzione a questa caratteristica prima di acquistare un qualsiasi prodotto. Una buona crema deve avere un fattore di protezione per gli UVA non inferiore ad 1/3 di quello garantito per gli UVB.

Ora però, anche seguendo quanto affermato, parliamo appunto di queste protezioni. Fino a qualche anno fa, ricordo benissimo gli scaffali dei negozi strapieni di creme solari con fattori di protezione, SPF cioè fattore di protezione solare, che andavano da 0 a qualcosa come 100. Già allora mi chiedevo, ma che significa zero? A che cosa serve una crema con protezione 0 e, allo stesso modo, protezione 100 o, come qualcuno scriveva “protezione totale”, significa che è come mettersi all’ombra?

Capite già l’assurdità di queste definizioni create solo ed esclusivamente a scopo commerciale. Fortunatamente, da qualche anno, è stata creata una normativa apposita per questo tipo di cosmetici aiutando il consumatore a comprendere meglio il prodotto in questione. Oggi, per legge, esistono solo 4 intervalli di protezione che sono: basso, medio, alto e molto alto. Questi intervalli, in termini numerici, possono essere compresi utilizzando la seguente tabella:

 

Protezione SPF

Bassa 6 – 10

Media 15 – 20 – 25

Alta 30 – 50

Molto alta 50+

Notiamo subito che sono scomparse quelle orribili, e insensate, definizioni “protezione zero” e “protezione totale”. Ma, in soldoni, cosa significa un certo valore di protezione? Se prendo una crema con SPF 30 è il doppio più efficace di una con SPF 15? In che termini?

Detto molto semplicemente, il valore numerico del fattore di protezione indica il tempo necessario affinché si creino scottature rispetto ad una pelle non protetta. Detto in questo modo, una SPF 15 significa che la vostra pelle si brucerà in un tempo 15 volte maggiore rispetto a quello che impiegherebbe senza quella crema. Dunque, anche con una crema protettiva posso scottarmi? Assolutamente si. In termini di schermo alla radiazione, il potere schermante non è assolutamente proporzionale allo SPF ma, come visto, solo ai tempi necessari per l’insorgere di scottature.

A questo punto, abbiamo capito cosa significa quel numerello che corrisponde al fattore di protezione, ma come fanno le creme a schermare effettivamente dai raggi solari?

Per rispondere a questa domanda, dobbiamo in realtà dividere la protezione in due tipi: fisico e chimico. La protezione fisica avviene in modo pressoché meccanico aumentando il potere riflettente della pelle. Per questo scopo, nelle creme solari sono presenti composti come il biossido di titanio e l’ossido di zinco, sostanze opache che non fanno altro che far riflettere verso l’esterno la radiazione solare che incide sul nostro corpo.

Primo appunto, secondo alcuni l’ossido di zinco potrebbe essere cancerogeno! Ma come, mi metto la crema per proteggermi dai raggi solari ed evitare tumori alla pelle e la crema crea tumori alla pelle? In realtà, come al solito, su questo punto si è fatta molta confusione, tanto terrorismo e si è corsi, per convenienza, a conclusioni affrettate. Alcune ricerche hanno mostrato come tessuti cosparsi di molecole di ossido di zinco e sottoposti ad irraggiamento UV possano sviluppare radicali liberi che a loro volta reagiscono con le cellule modificandone il DNA. Questo processo può portare alla formazione di melanomi, per la pelle, e di altri tumori, per le altre cellule. Ora, si tratta di studi preliminari basati su valori di irraggiamento più alti rispetto a quelli che normalmente possono derivare da un’esposizione, anche prolungata, anche nelle ore centrali della giornata, al Sole. Detto molto semplicemente, questi studi necessitano di ulteriori ricerche per poter definire margini di errore e valori corretti. Gli stessi autori di queste analisi preliminari si sono raccomandati di non male interpretare il risultato dicendo che le creme solari provocano il cancro alla pelle. In altre parole, si corrono più rischi non proteggendosi dal sole piuttosto che proteggendosi con una crema contenente ossido di zinco. Tra le altre cose, questa molecola è molto nota tra le mamme che utilizzano prodotti all’ossido di zinco per alleviare le ustioni da pannolino nei loro bambini.

Detto questo, abbiamo poi la protezione chimica. Come potete facilmente immaginare, in questo caso si tratta di una serie di molecole (oxibenzone, fenilbenzilimidazolo, acido sulfonico, butil metoxidibenzoilmetano, etilexil metoxicinnamato, ecc.) che hanno il compito di assorbire la radiazione solare e di cedere parte di questa energia sotto forma di calore. Perché possiamo trovare così tante molecole in una crema solare? Semplice, ognuna di queste è specifica per una piccola parte dello spettro di radiazione, sia UVA che UVB. Anche su queste singole molecole, ogni tanto qualcuno inventa storie nuove atte solo a fare terrorismo, molto spesso verso case farmaceutiche. Singolarmente, come nel caso dell’ossido di titanio, ci possono essere studi più o meno avanzati, più o meno veritieri, sulla pericolosità delle molecole. Anche qui però, molto spesso si tratta di effetti amplificati, ben oltre la normale assunzione attraverso la cute e, ripeto per l’ennesima volta, si rischia molto di più esponendosi al sole piuttosto che utilizzando creme solari.

Ennesima cavolata in voga fino a qualche anno fa e ora vietata: creme solari “water proof”, cioè creme resistenti completamente all’acqua. Ve le mettete una volta, fate quanti bagni volete e siete a posto. Ma secondo voi, è possibile qualcosa del genere? Pensate di spalmarvi una crema o di farvi un tatuaggio indelebile? Oggi, per legge, la dicitura water proof è illegale e ha lasciato spazio, al massimo, a “water resistant”, cioè resistente all’acqua. Una qualsiasi crema solare, a causa del bagno, del sudore, del contatto con il telo, tende a rimuoversi e, proprio per questo motivo, si consiglia di riapplicare la crema ogni 2-3 ore circa per garantire la massima protezione possibile.

Riassumendo, abbiamo capito che conviene, sempre ed in tutti i casi, utilizzare una crema solare protettiva, ma quale scegliere?

Molto brevemente, in questo caso, si deve valutare quello che è definito il proprio fenotipo. Come potete immaginare, si tratta di una serie di caratteristiche fisiche che determinano, in linea di principio, l’effetto dell’esposizione la Sole. Per poter determinare il proprio fenotipo, possiamo fare riferimento a questa tabella:

fenotipo

Ovviamente, per i valori più bassi (I e II) è consigliabile utilizzare una crema ad alto SPF, valore che può diminuire qualora fossimo meno soggetti a scottature ed ustioni.

Credo che a questo punto abbiamo un quadro molto più chiaro riguardo alla creme solari ed alla loro utilità. Ripeto, per l’ennesima volta, in ogni caso, proteggersi è sempre meglio che esporsi al sole senza nessuna protezione. Ultimo appunto, che vuole sfatare un mito molto diffuso, sotto l’ombrellone siamo comunque esposti alla radiazione solare. In primis, il tessuto di molti ombrelloni lascia passare buona parte dello spettro solare ma, soprattutto, la riflessione dei raggi solari, ad esempio ad opera della sabbia, raggiunge comunque un soggetto tranquillo e (falsamente) riparato sotto l’ombrellone. In genere, la riflessione dei raggi solari può incrementare, e anche molto, la quantità di radiazione a cui siamo esposti. Stando nell’acqua, ad esempio, abbiamo sia un’esposizione diretta ai raggi solari sia una indiretta dovuta ai raggi riflessi dalla superficie. Come potete immaginare questo amplifica molto l’esposizione.

Concludendo, utilizzate le creme solari ma, soprattutto, leggete bene le etichette prima di acquistare o, peggio ancora utilizzare, un qualsiasi prodotto. Ovviamente, qualsiasi prodotto diventa non efficace se unito alla nostra incoscienza. Se pensate di potervi spalmare una crema e stare come lucertole sotto il Sole dalle 10 del mattino al tramonto … forse questa spiegazione è stata inutile.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Pubblicità

Buon appetito Sagitarius A*

5 Mag

Un nostro caro lettore, nella sezione:

Hai domande o dubbi?

ci ha segnalato delle pagine davvero molto interessanti, dal nostro punto di vista, riguardanti un evento cosmico molto affascinante che sta iniziando proprio in questi mesi e durera’ per almeno una decina di anni.

Di cosa si tratta?

Molto probabilmente, se siete appassionati di astronomia e eventi cosmici, avrete sentito parlare di G2, una nube di gas che si sta avvicinando verso il centro della nostra galassia. Cosa c’e’ di speciale in questo movimento? In alcuni articoli abbiamo gia’ parlato del centro della Galassia e soprattutto di Sagitarius A*, il buco nero super massivo che si trova in questo punto:

Nube assassina dallo spazio

Meteorite anche a Cuba e dark rift

Nuova sconvolgente Teoria

Come visto, non c’e’ assolutamente nulla di anormale nella presenza di questo buco nella nostra galassia anzi, per dirla tutta, si pensa che oggetti di questo tipo siano presenti nel centro di molte galassie.

Ora, cosa sarebbe G2? Anche in questo caso, dietro questo nome misterioso, non c’e’ nulla di sorprendente. Si tratta di una nube di gas con una massa circa 3 volte quella della Terra che pero’ si trova molto vicina a Sagitarius. Come e’ ormai noto, parlando cosmologicamente di “molto vicino”, intendiamo comunque dimensioni molto elevate. Nel caso di G2, la sua orbita prevede un passaggio ravvicinato con una minima distanza dal buco nero di circa 260 unita’ astronomiche. Come visto in questo articolo:

I buchi neri che … evaporano

questa distanza corrisponde pero’ a circa 3000 volte il raggio dell’orizzonte degli eventi del buco nero. Come potete facilmente immaginare, ad una distanza cosi’ “piccola”, la nube sara’ attratta dalla gravita’ del buco nero per cui gli effetti di questa forza saranno molto intensi per il gas.

G2 e’ stata scoperta nel 2002, ma solo nel 2012 si e’ iniziato a studiarla in dettaglio proprio quando si e’ ricostruita con maggiore precisione la sua orbita. Il passaggio ravvicinato con Sagitarius A*, rappresenta un evento cosmico molto importante dal punto di vista dell’astrofisica. Durante questo incontro, sara’ infatti possibile studiare in dettaglio diverse caratteristiche dei buchi neri, ancora poco noti, come, ad esempio, il processo di accrescimento, la gravita’, l’orizzonte degli eventi, ecc..

Perche’ questo evento viene richiamato da alcuni siti catastrofisti? La motivazione e’ sempre, purtroppo, la stessa: speculare su eventi assolutamente non pericolosi pur di aumentare le visite ai propri siti. Come visto negli articoli precedenti, la Terra si trova a circa 26000 anni luce dal centro della Galassia. Questo significa che, anche volendo, qualunque cosa, radiazione o materia, sparata da Sagitarius A verso la Terra impieghera’ al minimo 26000 anni per raggiungerci. Detto questo, non credo sia il caso di preoccuparci ne’ di questo incontro, ne’ di qualunque altro evento cosmico che possa interessare il centro della nostra galassia.

Oltre a questa speculazione “scontata”, come sottolineato nel commento iniziale da cui siamo partiti, ci sono alcuni siti, apparentemente camuffati da siti scientifici, che propongono teorie “alternative” per G2 e per il suo passaggio ravvicinato. La prima ipotesi che salta agli occhi e’ che si vorrebbe far credere che G2 non sia in realta’ una nube di gas ma una stella. E’ possibile questo? In realta’ si, ma questa ipotesi, prima che su questi siti, e’ stata discussa a livello scientifico. Esistono infatti diverse ipotesi sull’origine e sulla struttura di G2. Come detto all’inizio, si pensa con maggiore probabilita’ che questa sia una nube di gas. Da dove proviene? Ipotesi possibili potrebbero essere che si tratti di una nube di gas cosmico isolata oppure che si tratti dell’atmosfera di una qualche stella strappata da eventi cosmici. Un’idea alternativa prevede invece, da studi sull’orbita, che non si tratti esclusivamente di gas, ma che, all’interno della nube osservata, ci sia un corpo massivo come una stella nelle fasi finali della propria esistenza. Altre ipotesi alternative prevedono che G2 sia un proto-pianeta, cioe’ quello che rappresentava un disco di accrescimento di un corpo massivo che pero’ non e’ riuscito a formarsi a causa della temperatura troppo alta dei gas. Tutte ipotesi possibili scientifiche e su cui ancora oggi si dibatte.

Dal punto di vista del passaggio ravvicinato, cosa comporterebbe una struttura diversa di G2?

Ovviamente, la reale natura della nube, continuiamo a chiamarla cosi’, determinera’ uno “spettacolo” diverso durante il passaggio. Per essere precisi, e per smentire alcuni siti e giornali che hanno usato titoli pomposi, questo passaggio non rappresentera’ un lauto pasto per Sagitarius A*, ma piu’ che altro uno spuntino. La minima distanza di passaggio sara’ tale da far avvertire l’attrazione gravitazionale da parte del buco nero ma, molto probabilmente, G2 sopravvivera’ all’incontro perche’ troppo distante dall’orizzonte degli eventi.

Diverse simulazioni condotte in questi mesi hanno mostrato scenari possibili in cui G2 sopravvivera’ anche se la sua orbita e la sua struttura saranno fortemente modificati. In particolare, dopo l’incontro, la nube di gas potrebbe essere talmente diffusa da non apparire piu’ come compatta. Inoltre, se G2 fosse composta solo ed esclusivamente di gas, durante l’assorbimento da parte di Sagitarius A*, verranno emessi brillamenti di radiazione soprattutto nei raggi X. Al contrario, se all’interno fosse presente un corpo massivo, questo effetto sarebbe notevolmente ridimensionato. Come potete capire molto bene, dall’emissione di radiazione nel passaggio, sara’ dunque possibile capire anche la struttura intima di G2.

Vi mostro anche una simulazione di uno degli scenari possibili dell’attrazione di G2 da parte del buco nero:

Simulazione dell'attrazione di G2 da parte di Sagitarius A*

Simulazione dell’attrazione di G2 da parte di Sagitarius A*

Come vedete, l’orbita seguita dalla nube viene deviata verso la parte centrale a causa dell’attrazione gravitazionale esercitata da Sagitarius A*.

Concludendo, a partire dal 2013 e’ iniziato il passaggio ravvicinato di una nube di gas, G2, in prossimita’ del buco nero che occupa il centro della nostra galassia, Sagitarius A*. Questo evento cosmico durera’ uan decina di anni che rappresentano comunque un intervallo molto breve sulle scale del nostro universo. A parte le speculazioni sempre presenti per eventi di questo tipo, si tratta di un evento assolutamente non pericoloso, ma estremamente affascinante dal punto di vista scientifico. Come visto nell’articolo, osservando questo passaggio, sara’ possibile ottenere informazioni molto importanti sulla nube di gas, sulla sua struttura interna ma, soprattutto, sara’ possibile carpire informazioni molto importanti per comprendere meglio i buchi neri e i processi che ne regolano il loro accrescimento.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’espansione metrica dell’universo

8 Apr

In questo blog, abbiamo dedicato diversi articoli al nostro universo, alla sua storia, al suo destino, alla tipologia di materia o non materia di cui e’ formato, cercando, come e’ ovvio, ogni volta di mettere il tutto in una forma quanto piu’ possibile comprensibile e divulgativa. Per chi avesse perso questi articoli, o solo come semplice ripasso, vi riporto qualche link riassuntivo:

E parliamo di questo Big Bang

Il primo vagito dell’universo

Universo: foto da piccolo

La materia oscura

Materia oscura intorno alla Terra?

Due parole sull’antimateria

Flusso oscuro e grandi attrattori

Ascoltate finalmente le onde gravitazionali?

Come e’ ovvio, rendere questi concetti fruibili a fini divulgativi non e’ semplice. Per prima cosa, si deve evitare di mettere formule matematiche e, soprattutto, si deve sempre riflettere molto bene su ogni singola frase. Un concetto che potrebbe sembrare scontato e banale per un addetto ai lavori, potrebbe essere del tutto sconosciuto a chi, non avendo basi scientifiche solide, prova ad informarsi su argomenti di questo tipo.

Perche’ faccio questo preambolo?

Pochi giorni fa, un nostro lettore mi ha contatto via mail per chiedermi di spiegare meglio il discorso dell’espansione dell’universo. Per essere precisi, la domanda era relativa non all’espansione in se, ma a quella che viene appunto definita “espansione metrica” dell’universo. Cosa significa? Come visto varie volte, l’idea comunemente accettata e’ che l’universo sia nato da un Big Bang e durante questa espansione si sono prima formate le forze, il tempo, le particelle, poi i pianeti, le galassie e via dicendo. Ci sono prove di questo? Assolutamente si e ne abbiamo parlato, anche in questo caso, piu’ volte: la radiazione cosmica di fondo, lo spostamento verso il rosso delle galassie lontane, le conclusioni stesse portate dalla scoperta del bosone di Higgs e via dicendo. Dunque? Che significa espansione metrica dell’universo? In parole povere, noi diciamo che l’universo si sta espandendo, e che sta anche accelerando, ma come possiamo essere certi di questo? Che forma ha l’universo? Per quanto ancora si espandera’? Poi cosa succedera’? Sempre nella domanda iniziale, veniva posto anche un quesito molto interessante: ma se non fosse l’universo ad espandersi ma la materia a contrarsi? L’effetto sarebbe lo stesso perche’ la mutua distanza tra due corpi aumenterebbe nel tempo dando esattamente lo stesso effetto apparente che vediamo oggi.

Come potete capire, di domande ne abbiamo fin troppe a cui rispondere. Purtroppo, e lo dico in tutta sincerita’, rendere in forma divulgativa questi concetti non e’ molto semplice. Come potete verificare, raccontare a parole che il tutto sia nato da un Big Bang, che ci sia stata l’inflazione e si sia formata la radiazione di fondo e’ cosa abbastanza fattibile, parlare invece di forma dell’universo e metrica non e’ assolutamente semplice soprattutto senza poter citare formule matematiche che per essere comprese richiedono delle solide basi scientifiche su cui ragionare.

Cerchiamo dunque di andare con ordine e parlare dei vari quesiti aperti.

Come visto in altri articoli, si dice che il Big Bang non e’ avvenuto in un punto preciso ma ovunque e l’effetto dell’espansione e’ visibile perche’ ogni coppia di punti si allontana come se ciascun punto dell’universo fosse centro dell’espansione. Cosa significa? L’esempio classico che viene fatto e’ quello del palloncino su cui vengono disegnati dei punti:

Esempio del palloncino per spiegare l'espansione dell'universo

Esempio del palloncino per spiegare l’espansione dell’universo

Quando gonfiate il palloncino, i punti presenti sulla superficie si allontanano tra loro e questo e’ vero per qualsiasi coppia di punti. Se immaginiamo di essere su un punto della superficie, vedremo tutti gli altri punti che si allontanano da noi. Bene, questo e’ l’esempio del Big Bang.

Ci sono prove di questo? Assolutamente si. La presenza della CMB e’ proprio un’evidenza che ci sia stato un Big Bang iniziale. Poi c’e’ lo spostamento verso il rosso, come viene definito, delle galassie lontane. Cosa significa questo? Siamo sulla Terra e osserviamo le galassie lontane. La radiazione che ci arriva, non necessariamente con una lunghezza d’onda nel visibile, e’ caratteristica del corpo che la emette. Misurando questa radiazione ci accorgiamo pero’ che la frequenza, o la lunghezza d’onda, sono spostate verso il rosso, cioe’ la lunghezza d’onda e’ maggiore di quella che ci aspetteremmo. Perche’ avviene questo? Questo effetto e’ prodotto proprio dal fatto che la sorgente che emette la radiazione e’ in moto rispetto a noi e poiche’ lo spostamento e’ verso il rosso, questa sorgente si sta allontanando. A questo punto sorge pero’ un quesito molto semplice e comune a molti. Come sapete, per quanto grande rapportata alle nostre scale, la velocita’ della luce non e’ infinita ma ha un valore ben preciso. Questo significa che la radiazione emessa dal corpo lontano impiega un tempo non nullo per raggiungere la Terra. Come spesso si dice, quando osserviamo stelle lontane non guardiamo la stella come e’ oggi, ma come appariva quando la radiazione e’ stata emessa. Facciamo l’esempio classico e facile del Sole. La luce emessa dal Sole impiega 8 minuti per arrivare sulla Terra. Se noi guardiamo ora il Sole lo vediamo come era 8 minuti fa. Se, per assurdo, il sole dovesse scomparire improvvisamente da un momento all’altro, noi ce ne accorgeremmo dopo 8 minuti. Ora, se pensiamo ad una stella lontana 100 anni luce da noi, quella che vediamo e’ la stella non come e’ oggi, ma come era 100 anni fa. Tornando allo spostamento verso il rosso, poiche’ parliamo di galassie lontane, la radiazione che ci arriva e’ stata emessa moltissimo tempo fa. Domanda: osservando la luce notiamo uno spostamento verso il rosso ma questa luce e’ stata emessa, supponiamo, mille anni fa. Da quanto detto si potrebbe concludere che l’universo magari era in espansione 1000 anni fa, come da esempio, mentre oggi non lo e’ piu’. In realta’, non e’ cosi’. Lo spostamento verso il rosso avviene a causa del movimento odierno tra i corpi e dunque utilizzare galassie lontane ci consente di osservare fotoni che hanno viaggiato piu’ a lungo e da cui si ottengono misure piu’ precise. Dunque, da queste misure, l’universo e’ in espansione e’ lo e’ adesso. Queste misurazioni sono quelle che hanno portato Hubble a formulare la sua famosa legge da cui si e’ ricavata per la prima volta l’evidenza di un universo in espansione.

Bene, l’universo e’ in espansione, ma se ci pensate questo risultato e’ in apparente paradosso se pensiamo alla forza di gravita’. Perche’? Negli articoli precedentemente citati, abbiamo piu’ volte parlato della gravita’ citando la teoria della gravitazione universale di Newton. Come e’ noto, due masse poste a distanza r si attraggono con una forza che dipende dal prodotto delle masse ed e’ inversamente proporzionale al quadrato della loro distanza. Ora, nel nostro universo ci sono masse distribuite qui a la in modo piu’ o meno uniforme. Se pensiamo solo alla forza di gravita’, una coppia qualunque di queste masse si attrae e quindi le due masse tenderanno ad avvicinarsi. Se anche pensiamo ad una spinta iniziale data dal Big Bang, ad un certo punto questa spinta dovra’ terminare controbilanciata dalla somma delle forze di attrazione gravitazionale. In altre parole, non e’ possibile pensare ad un universo che si espande sempre se abbiamo solo forze attrattive che lo governano.

Questo problema ha angosciato l’esistenza di molti scienziati a partire dai primi anni del ‘900. Lo stesso Einstein, per cercare di risolvere questo problema dovette introdurre nella Relativita’ Generale quella che defini’ una costante cosmologica, a suo avviso, un artificio di calcolo che serviva per bilanciare in qualche modo l’attrazione gravitazionale. L’introduzione di questa costante venne definita dallo stesso Einstein il piu’ grande errore della sua vita. Oggi sappiamo che non e’ cosi’, e che la costante cosmologica e’ necessaria nelle equazioni non come artificio di calcolo ma, in ultima analisi, proprio per giustificare la presenza di componenti non barioniche, energia oscura in primis, che consentono di spiegare l’espansione dell’universo. Se vogliamo essere precisi, Einstein introdusse la costante non per avere un universo in espansione bensi’ un universo statico nel tempo. In altre parole, la sua costante serviva proprio a bilanciare esattamente l’attrazione e rendere il tutto fermo. Solo osservazioni successive, tra cui quella gia’ citata dello stesso Hubble, confermarono che l’universo non era assolutamente statico bensi’ in espansione.

Ora, a questo punto, potremmo decidere insieme di suicidarci dal punto di vista divulgativo e parlare della metrica dell’universo, di coordinate comoventi, ecc. Ma questo, ovviamente, implicherebbe fogli di calcoli e basi scientifiche non banali. Abbiamo le prove che l’universo e’ in espansione, dunque, ad esempio, guardando dalla Terra vediamo gli altri corpi che si allontanano da noi. Come si allontanano? O meglio, di nuovo, che forma avrebbe questo universo?

L’esempio del palloncino fatto prima per spiegare l’espansione dell’universo, e’ molto utile per far capire questi concetti, ma assolutamente fuoriviante se non ci si riflette abbstanza. Molto spesso, si confonde questo esempio affermando che l’universo sia rappresentato dall’intero palloncino compreso il suo volume interno. Questo e’ concettualmente sbagliato. Come detto in precedenza, i punti si trovano solo ed esclusivamente sulla superficie esterna del palloncino che rappresenta il nostro universo.

A complicare, o a confondere, ancora di piu’ le idee c’e’ l’esempio del pane con l’uvetta che viene usato per spiegare l’espansione dell’universo. Anche su wikipedia trovate questo esempio rappresentato con una bella animazione:

Esempio del pane dell'uvetta utilizzato per spiegare l'aumento della distanza tra i punti

Esempio del pane dell’uvetta utilizzato per spiegare l’aumento della distanza tra i punti

Come vedete, durante l’espansione la distanza tra i punti cresce perche’ i punti stessi, cioe’ i corpi presenti nell’universo, vengono trascinati dall’espansione. Tornado alla domanda iniziale da cui siamo partiti, potremmo penare che in realta’ lo spazio resti a volume costante e quello che diminuisce e’ il volume della materia. Il lettore che ci ha fatto la domanda, mi ha anche inviato una figura esplicativa per spiegare meglio il concetto:

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Come vedete, pensando ad una contrazione della materia, avremmo esattamente lo stesso effetto con la distanza mutua tra i corpi che aumenta mentre il volume occupato dall’universo resta costante.

Ragioniamo pero’ su questo concetto. Come detto, a supporto dell’espansione dell’universo, abbiamo la legge di Hubble, e anche altre prove, che ci permettono di dire che l’universo si sta espandendo. In particolare, lo spostamento verso il rosso della radiazione emessa ci conferma che e’ aumentato lo spazio tra i corpi considerati, sorgente di radiazione e bersaglio. Inoltre, la presenza dell’energia oscura serve proprio a spiegare questa evoluzione dell’universo. Se la condizione fosse quella riportata nell’immagine, cioe’ con la materia che si contrae, non ci sarebbe lo spostamento verso il rosso, e anche quello che viene definito Modello Standard del Cosmo, di cui abbiamo verifiche sperimentali, non sarebbe utilizzabile.

Resta pero’ da capire, e ritorno nuovamente su questo punto, che forma dovrebbe avere il nostro universo. Non sto cercando di volta in volta di scappare a questa domanda, semplicemente, stiamo cercando di costruire delle basi, divulgative, che ci possano consentire di capire questi ulteriori concetti.

Come detto, parlando del palloncino, non dobbiamo fare l’errore di considerare tutto il volume, ma solo la sua superificie. In particolare, come si dice in fisica, per capire la forma dell’universo dobbiamo capire che tipo di geometria assegnare allo spazio-tempo. Purtroppo, come imparato a scuola, siamo abituati a pensare alla geometria Euclidea, cioe’ quella che viene costruita su una superifice piana. In altre parole, siamo abituati a pensare che la somma degli angoli interni di un traiangolo sia di 180 gradi. Questo pero’ e’ vero solo per un triangolo disegnato su un piano. Non e’ assolutamente detto a priori che il nostro universo abbia una geometria Euclidea, cioe’ che sia piano.

Cosa significa?

Come e’ possibile dimostrare, la forma dell’universo dipende dalla densita’ di materia in esso contenuta. Come visto in precedenza, dipende dunque, come e’ ovvio pensare, dall’intensita’ della forza di attrazione gravitazionale presente. In particolare possiamo definire 3 curvature possibili in funzione del rapporto tra la densita’ di materia e quella che viene definita “densita’ critica”, cioe’ la quantita’ di materia che a causa dell’attrazione sarebbe in grado di fermare l’espasione. Graficamente, le tre curvature possibili vengono rappresentate con tre forme ben distinte:

Curvature possibili per l'universo in base al rapporto tra densita' di materia e densita' critica

Curvature possibili per l’universo in base al rapporto tra densita’ di materia e densita’ critica

Cosa significa? Se il rapporto e’ minore di uno, cioe’ non c’e’ massa a sufficienza per fermare l’espansione, questa continuera’ per un tempo infinito senza arrestarsi. In questo caso si parla di spazio a forma di sella. Se invece la curvatura e’ positiva, cioe’ la massa presente e’ maggiore del valore critico, l’espansione e’ destinata ad arrestarsi e l’universo iniziera’ ad un certo punto a contrarsi arrivando ad un Big Crunch, opposto al Big Bang. In questo caso la geometria dell’universo e’ rappresentata dalla sfera. Se invece la densita’ di materia presente e’ esattamente identica alla densita’ critica, in questo caso abbiamo una superficie piatta, cioe’ Euclidea, e l’espansione si arrestera’ ma solo dopo un tempo infinito.

Come potete capire, la densita’ di materia contenuta nell’universo determina non solo la forma di quest’ultimo, ma anche il suo destino ultimo in termini di espansione o contrazione. Fate pero’ attenzione ad un altro aspetto importante e molto spesso dimenticato. Se misuriamo questo rapporto di densita’, sappiamo automaticamente che forma ha il nostro universo? E’ vero il discorso sul suo destino ultimo, ma le rappresentazioni grafiche mostrate sono solo esplicative e non rappresentanti la realta’.

Perche’?

Semplice, per disegnare queste superifici, ripeto utilizzate solo per mostrare graficamente le diverse forme, come si e’ proceduto? Si e’ presa una superficie bidimensionale, l’equivalente di un foglio, e lo si e’ piegato seguendo le indicazioni date dal valore del rapporto di densita’. In realta’, lo spazio tempo e’ quadrimensionale, cioe’ ha 3 dimensioni spaziali e una temporale. Come potete capire molto facilmente, e’ impossibile sia disegnare che immaginare una superificie in uno spazio a 4 dimensioni! Questo significa che le forme rappresentate sono esplicative per far capire le differenze di forma, ma non rappresentano assolutamnete la reale forma dell’universo dal momento che sono ottenute eliminando una coordinata spaziale.

Qual e’ oggi il valore di questo rapporto di densita’? Come e’ ovvio, questo valore deve essere estrapolato basandosi sui dati raccolti da misure osservative nello spazio. Dal momento che sarebbe impossibile “contare” tutta la materia, questi valori vengono utilizzati per estrapolare poi il numero di barioni prodotti nel Big Bang. I migliori valori ottenuti oggi danno rapporti che sembrerebbero a cavallo di 1 anche se con incertezze ancora troppo elevate per avere una risposta definitiva.

Concludendo, affrontare queste tematiche in chiave divulgativa non e’ assolutamente semplice. Per quanto possibile, e nel limite delle mie possibilita’, spero di essere riuscito a farvi capire prima di tutto quali sono le verifiche sperimentali di cui disponiamo oggi e che sostengono le teorie di cui tanto sentiamo parlare. Queste misure, dirette o indirette che siano, ci permettono di capire che il nostro universo e’ con buona probabilita’ nato da un Big Bang, che sta attualmente espandendosi e questa espansione, almeno allo stato attuale, e’ destinata a fermarsi solo dopo un tempo infinito. Sicuramente, qualunque sia il destino ultimo del nostro universo, questo avverra’ in un tempo assolutamente molto piu’ grande della scala umana e solo la ricerca e la continua osservazione del cosmo ci possono permettere di fare chiarezza un poco alla volta.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Ascoltate finalmente le onde gravitazionali?

19 Mar

Sicuramente, io non posso attaccare o denigrare la divulgazione della scienza e il voler diffondere la conoscenza, sempre troppo scarsa, e le ultime scoperte alle, cosiddette, persone di strada. Per poter fare questo pero’, mia opinione personale, si deve fare un lavoro immenso di modellamento delle informazioni e si deve essere in grado di immedesimarsi in colui che legge quello che scriviamo. Questo non significa assolutamente dire cose false ma solo fare in modo che le informazioni che passano possano appassionare ed essere comprese da coloro che non hanno una base scientifica di supporto. Credetemi, a volte questo lavoro non e’ semplice. Senza voler essere presuntuosi, molte volte un ricercatore abituato a lavorare su delle tematiche, tende a dare per scontate molte cose quando si interfaccia con qualcuno. Il risultato di questo e’, ovviamente, una impossibilita’ di comprensione da chi non ha la stessa base di chi parla.

Perche’ faccio questo preambolo?

La notizia di questi giorni, che sicuramente avrete letto su siti, blog, forum e giornali, e’ quella della conferenza stampa fatta dall’universita’ di Harvard per mostrare i dati raccolti dall’esperimento americano Bicep-2 che si trova in Antartide.

Bene, sulla maggior parte dei giornali che ho letto, e ci metto dentro anche i siti internet, ho visto una quantita’ di cavolate tali da far rabbrividire. Ovviamente, non faccio di tutte l’erba un fascio, ma, da una mia stima, circa il 10% delle notizie aveva senso, il restante era pieno di una quantita’ di idiozie che mai avrei pensato di leggere. Questa volta abbiamo superato di gran lunga gli articoli sulla scoperta del bosone di Higgs. L’unica cosa vera letta e’ che la notizia era attesa ed ha avuto un grandissimo risalto nella comunita’ scientifica, il resto lo potete buttare nel secchio.

Apro e chiudo parentesi: perche’ dobbiamo procedere in tal senso? Cari giornalisti che vi cimentate a scrivere di scienza, chiedete lumi, intervistate addetti ai lavori, non scrivete assurdita’ che non fanno altro che creare confusione su confusione in chi legge.

Detto questo, cerchiamo di capire di cosa si sta parlando.

Dunque, di Big Bang, nascita dell’universo, radiazione di fondo, ecc., abbiamo parlato in questi articoli:

E parliamo diquesto Big Bang

Il primo vagito dell’universo

Universo: foto da piccolo

La materia oscura

Materia oscura intorno alla Terra?

Due parole sull’antimateria

Flusso oscuro e grandi attrattori

Ipotizziamo che l’universo sia nato da un Big Bang, che ad un certo punto materia e antimateria si siano separate, poi, circa 380000 anni dopo il botto, si sono separate materia e radiazione ed e’ nata la Radiazione Cosmica di Fondo, o CMB. Proprio questa radiazione, di cui abbiamo parlato, e’ la prova sperimentale a supporto del Big Bang. Come scritto altre volte, possiamo vedere la CMB come una radiazione fossile di un preciso momento dell’universo. Prima di questo istante, c’e’ il buio perche’ la radiazione non riusciva a “scappare” e rimaneva intrappolata con la materia.

Primo punto fondamentale, la Radiazione Cosmica di Fondo esiste e l’abbiamo gia’ trovata. La prima osservazione della CMB risale al 1964 ad opera di Arno Penzias e Robert Wilson che vinsero poi il nobel nel 1978. Questo per rispondere alle notizie false che girano secondo le quali Bicep-2 avrebbe “scoperto” l’essitenza della radiazione di fondo.

Bene, l’esperimento Bicep-2 serve invece per “rilevare” con altissima precisione la CMB. Perche’ allora si parla di onde gravitazionali?

Non voglio neanche commentare le notizie i cui autori si lanciano a parlare di tensori e modi B perche’ il mio punto di vista e’ stato espresso all’inizio dell’articolo parlando di come, a mio avviso, si deve fare divuilgazione.

Cosa sono le onde gravitazionali?

Come giustamente detto da alcune fonti, questa tipologia di onde e’ stata predetta da Einstein nella sua relativita’ generale anche se queste non sono mai state osservate in maniera “diretta”. Dunque, ad Harvard hanno osservato le onde gravitazionali? Assolutamente no. Le hanno “scoperte” come qualcuno sostiene? Assolutamente no, anche in questo caso.

Per cercare di capire cosa sono le onde gravitazionali, proviamo a fare un esempio molto semplice. Immaginate lo spazio-tempo, concetto di per se molto vago ma supponete, sempre per semplicita’ , che si tratti dell’universo, come un materasso. Si, avete capito bene, un materasso come quello che avete in casa e su cui andate a dormire. Non sono impazzito, vorrei solo farvi capire questo importante concetto in modo semi-intuitivo. Dunque, ora immaginate di mettere un corpo molto pesante, ad esempio una palla da bowling, sul materasso. Cosa succede? Semplice, il materasso si “curva” in prossimita’ del corpo pesante. Bene, il materasso e’ lo spazio tempo, la palla da bowling e’ un pianeta, una galassia, ecc.. Parlando scientificamente, lo spazio tempo quadri-dimensionale e’ curvato dalla massa.

Ora, immaginate di far rotolore o togliere la vostra massa. Cosa succede? La curvatura si sposta insieme alla massa oppure, nel secondo caso, lo spazio tempo torna al suo posto. Le “piegature” dello spazio-tempo che fine fanno? Semplice, succede esattamente quello che avviene se tirate un sassolino dentro uno stagno. Queste “increspature” si propagano partendo dalla sorgente, nel nostro caso la massa, verso l’esterno.

Finalmente ci siamo. Il movimento delle masse, l’esplosione delle Supermovae, lo scontro tra Galassie, sono tutti fenomeni che deformano lo spazio tempo. Effetto di queste deformazioni, cosi’ come avviene per il sasso nello stagno, e’ la formazione di onde che si propagano liberamente nello spazio. Come potete immaginare, queste sono le cosiddette onde gravitazionali.

Ora, la teoria e’ compresa. Le abbiamo viste sperimentalmente? Purtroppo ancora no. Rimanendo ad un approccio divulgativo, lo spazio tempo e’ molto rigido e dunque le onde che si creano hanno intensita’ molto molto piccole. Questo rende le onde gravitazionali estremamente difficili da essere “ascoltate”. In termini di ricerca scientifica, a partire dagli anni ’50 del secolo scorso, diversi esperimenti sono stati realizzati per cercare di captare queste onde. Dapprima, e sono ancora in funzione, si costruivano antenne risonanti, cioe’ una sorta di elemento in grado di vibrare al passaggio dell’onda, ora si procede con interferometri, strumenti che segnano il passaggio dell’onda osservando le minime variazioni meccaniche su strutture molto lunghe in cui vengono fatti passare dei laser. In un modo o nell’altro pero’, queste onde non sono mai state osservate in modo “diretto”.

Perche’ continuo a scrivere insistentemente “in modo diretto”? Semplice, perche’ sappiamo, con buona certezza, che queste onde esistono dal momento che sono state osservate in vari casi in modo “indiretto” cioe’ attraverso gli effetti che queste onde producono. La prima osservazione indiretta, fatta mediante l’osservazione di una pulsar binaria con il radio-telescopio di Arecibo, e’ valsa agli astronomi Taylor e Hulse il premio nobel nel 1993.

Bene, la CMB esiste e dimostra qualcosa, le onde gravitazionali sono state predette da Einstein e sono state osservate in modo indiretto, Bicep-2, come detto prima, non le ha osservate in modo diretto, ma, allora, di cosa stiamo parlando? Perche’ si parla di scoperta cosi’ importante?

Torniamo un attimo alla nascita del nostro universo. Abbiamo detto che c’e’ stato il Big Bang e abbiamo parlato di quando, 380000 anni dopo, materia e radiazione si sono separate. Secondo i modelli cosmologici accettati, c’e’ stato un momento nei primi istanti di vista dell’universo, precisamente 10^(-34) secondi dopo il Big Bang, in cui l’universo ha subito una rapidissima accelerazione dell’espansione a cui si da il nome di “inflazione”. Questo e’ un momento del tutto particolare in cui si e’ registrata un’espansione violentissima al punto, come dicono i cosmologi, da andare oltre l’orizzonte degli eventi. Proprio grazie a questo movimento cosi’ brusco si ha un universo cosi’ uniforme ed e’ tanto difficile registrare fluttuazioni nella distribuzione della radiazione di fondo.

Ora, per l’inflazione abbiamo dei modelli che la includono e la spiegano ma manca una prova, anche indiretta, dell’esistenza di questo momento. Come detto, studiando la CMB arriviamo fino ad un preciso istante prima del quale non possiamo andare perche’ materia e radiazione non erano separate. Attenzione, non erano separate ma, ovviamente, erano presenti. Se ripensiamo a quanto detto in precedenza per le onde gravitazionali, sicuramente un’espansione cosi’ violenta come quella dell’inflazione ne ha generate moltissime. Bene, queste onde avrebbero a loro volta interagito con la CMB lasciando una inconfondibile firma del loro pasaggio. Trovare evidenza di questa segnatura sarebbe molto importante e utile per la comprensione del modelli dell’universo che abbiamo sviluppato.

Detto questo, cosa avrebbe trovato Bicep-2?

Ovviamente quello a cui state pensando, l’effetto primordiale lasciato sulla CMB dalle onde gravitazionali dell’inflazione, dunque una misura indiretta dell’esistenza di questo periodo. Capite la portata di una misura di questo tipo? Questa evidenza ci fa capire che i modelli che prevedono un periodo inflazionario durante i primi istanti di vita del nostro universo potrebbero essere corretti. Inoltre, la tipologia dei segnali trovati riesce gia’ ad escludere alcuni dei modelli formulati in questi anni.

Come avrete letto sulle varie fonti, gia’ molti parlano di nobel per questa misura. In realta’, anche in questo caso, si sta esagerando, non per l’importanza di una misura del genere ma, semplicemente, perche’ parliamo di “evidenza”. Dopo tutte le varie storie sentite sul bosone di Higgs, come sapete bene, prima di poter parlare scientificamente di scoperta e’ necessario che il segnale atteso abbia una certa “significanza statistica” che ci faccia affermare che quanto visto corrisponde al vero. In questo caso, statisticamente ripeto, parliamo ancora di “evidenza” non di “scoperta”. Ovviamente, una misura del genere non puo’ che spingere a migliorare e perfezionare una ricerca di questo tipo, anche da parte di altri esperimenti in grado di captare e raccogliere i dati relativi alla radiazione di fondo a microonde.

Concludendo, l’annuncio fatto dall’universita’ di Harvard e’ importantissimo dal punto di vista della fisica. Purtroppo, come spesso avviene, nel raccontare cose di questo tipo si fa molta confusione e si finisce col dire cose non veritiere e che non permettono ai non addetti ai lavori di comprendere la rilevanza di notizie del genere. Come detto, quanto osservato e’ una prova indiretta dell’esistenza dell’inflazione per il nostro universo. Questo e’ un momento assolutamente unico previsto nella teoria dell’esansione dell’universo, in cui quest’ultimo si e’ stirato in modo impensabile anche solo da immaginare. Come spesso avviene, per ogni piccolo passo avanti fatto nella comprensione, si aprono ogni volta decine di nuove domande in cerca di una risposta. Non resta che andare avanti e continuare ad osservare il cosmo consapevoli di quanti misteri ancora ci siano da scoprire.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Flusso oscuro e grandi attrattori

28 Feb

Nella ormai celebre sezione:

Hai domande o dubbi?

in cui sono usciti fuori davvero gli argomenti piu’ disparati ma sempre contraddistinti da curiosita’ e voglia di discutere, una nostra cara lettrice ci ha chiesto maggiori lumi sul cosiddetto “dark flow” o flusso oscuro. Una richiesta del genere non puo’ che farci piacere, dal momento che ci permette di parlare nuovamente di scienza e, in particolare, di universo.

Prima di poterci addentrare in questo argomento scientifico ma, anche a livello di ricerca, poco conosciuto, e’ necessario fare una piccolissima premessa iniziale che serve per riprendere in mano concetti sicuramente conosciuti ma su cui spesso non si riflette abbastanza.

Per iniziare la discussione, voglio mostrarvi una foto:

sir-isaac-newtons-philosophic3a6-naturalis-principia-mathematica

Quello che vedete non e’ un semplice libro, ma uno dei tre volumi che compongono il Philosophiae Naturalis Principia Mathematica o, tradotto in italiano, “I principi naturali della filosofia naturale”. Quest’opera e’ stata pubblicata il 5 luglio 1687 da Isaac Newton.

Perche’ e’ cosi’ importante questa opera?

Questi tre volumi sono considerati l trattato piu’ importante del pensiero scientifico. Prima di tutto, contengono la dinamica formulata da Newton che per primo ha posto le basi per lo studio delle cause del moto ma, soprattutto, perche’ contengono quella che oggi e’ nota come “Teoria della Gravitazione Universale”.

Sicuramente, tutti avrete sentito parlare della gravitazione di Newton riferita al famoso episodio della mela che si stacco’ dall’albero e cadde sulla testa del celebre scienziato. Come racconta la leggenda, da questo insignificante episodio, Newton capi’ l’esistenza della forza di gravita’ e da qui la sua estensione all’universo. Se vogliamo pero’ essere precisi, Newton non venne folgorato sulla via di Damasco dalla mela che cadeva, ma questo episodio fu quello che fece scattare la molla nella testa di un Newton che gia’ da tempo studiava questo tipo di interazioni.

Volendo essere brevi, la teoria della gravitazione di Newton afferma che nello spazio ogni punto materiale attrae ogni altro punto materiale con una forza che e’ proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato della loro distanza. In soldoni, esiste una forza solo attrattiva che si esercita tra ogni coppia di corpi dotati di massa e questa interazione e’ tanto maggiore quanto piu’ grandi sono le masse e diminuisce con il quadrato della loro distanza.

Semplice? Direi proprio di si, sia dal punto di vista fisico che matematico. Perche’ allora chiamare questa legge addirittura con l’aggettivo “universale”?

Se prendete la male di Newton che cade dall’albero, la Luna che ruota intorno alla Terra, la Terra che ruota intorno al Sole, il sistema solare che ruota intorno al centro della Galassia, tutti questi fenomeni, che avvengono su scale completamente diverse, avvengono proprio grazie unicamente alla forza di gravita’. Credo che questo assunto sia sufficiente a far capire l’universalita’ di questa legge.

Bene, sulla base di questo, l’interazione che regola l’equilibrio delle masse nell’universo e’ dunque la forza di gravita’. Tutto quello che vediamo e’ solo una conseguenza della sovrapposizione delle singole forze che avvengono su ciascuna coppia di masse.

Detto questo, torniamo all’argomento principale del post. Cosa sarebbe il “flusso oscuro”? Detto molto semplicemente, si tratta del movimento a grande velocita’ di alcune galassie in una direzione ben precisa, situata tra le costellazioni del Centauro e della Vela. Questo movimento direzionale avviene con velocita’ dell’ordine di 900 Km al secondo e sembrerebbe tirare le galassie in un punto ben preciso al di fuori di quello che definiamo universo osservabile.

Aspettate, che significa che qualcosa tira le galassie fuori dall’universo osservabile?

Per prima cosa, dobbiamo definire cosa significa “universo osservabile”. Come sappiamo, l’universo si sta espandendo e se lo osserviamo da Terra siamo in grado di vedere le immagini che arrivano a noi grazie al moto dei fotoni che, anche se si muovono alla velocita’ della luce, si spostano impiegando un certo tempo per percorrere delle distanze precise. Se sommiamo questi due effetti, dalla nostra posizione di osservazione, cioe’ la Terra, possiamo vedere solo quello che e’ contenuto entro una sfera con un raggio di 93 miliardi anni luce. Come potete capire, l’effetto dell’espansione provoca un aumento di quello che possiamo osservare. Se l’universo ha 14.7 miliardi di anni, ci si potrebbe aspettare di poter vedere dalla terra la luce partita 14.7 miliardi di anni fa, cioe’ fino ad una distanza di 14.7 miliardi di anni luce. In realta’, come detto, il fatto che l’universo sia in continua espansione fa si che quello che vediamo oggi non si trova piu’ in quella posizione, ma si e’ spostato a causa dell’espansione. Altro aspetto importante, la definizione di sfera osservabile e’ vera per ogni punto dell’universo, non solo per quella sfera centrata sulla Terra che rappresenta cquello che noi possiamo vedere.

Bene, dunque si sarebbe osservato un flusso di alcune galassie verso un punto preciso fuori dall’universo osservabile. Proprio dal fatto che questo flusso e’ all’esterno del nostro universo osservabile, si e’ chiamato questo movimento con l’aggettivo oscuro.

Aspettate un attimo pero’, se le galassie sono tirate verso un punto ben preciso, cos’e’ che provoca questo movimento? Riprendendo l’introduzione sulla forza di gravitazione, se le galassie, che sono oggetti massivi, sono tirate verso un punto, significa che c’e’ una massa che sta esercitando una forza. Poiche’ la forza di gravitazione si esercita mutuamente tra i corpi, questo qualcosa deve anche essere molto massivo.

Prima di capire di cosa potrebbe trattarsi, e’ importante spiegare come questo flusso oscuro e’ stato individuato.

Secondo le teorie cosmologiche riconosciute, e come spesso si dice, l’universo sarebbe omogeneo e isotropo cioe’ sarebbe uguale in media in qualsiasi direzione lo guardiamo. Detto in altri termini, non esiste una direzione privilegiata, almeno su grandi scale, in cui ci sarebbero effetti diversi. Sempre su grandi scale, non esisterebbe neanche un movimento preciso verso una direzione ma l’isotropia produrrebbe moti casuali in tutte le direzioni.

Gia’ nel 1973 pero’, si osservo’ un movimento particolare di alcune galassie in una direzione precisa. In altri termini, un’anomalia nell’espansione uniforme dell’universo. In questo caso, il punto di attrazione e’ all’interno del nostro universo osservabile e localizzato in prossimita’ del cosiddetto “ammasso del Regolo”, una zona di spazio dominata da un’alta concentrazione di galassie vecchie e massive. Questa prima anomalia gravitazionale viene chiamata “Grande Attrattore”. In questa immagine si vede appunto una porzione di universo osservabile da Terra ed in basso a destra trovate l’indicazione del Grande Attrattore:

800px-2MASS_LSS_chart-NEW_Nasa

Questa prima anomalia dell’espansione venne osservata tramite quello che e’ definito lo spostamento verso il rosso. Cosa significa? Se osservate un oggetto che e’ in movimento, o meglio se esiste un movimento relativo tra l’osservatore e il bersaglio, la luce che arriva subisce uno spostamento della lunghezza d’onda dovuto al movimento stesso. Questo e’ dovuto all’effetto Doppler valido, ad esempio, anche per le onde sonore e di cui ci accorgiamo facilmente ascoltando il diverso suono di una sirena quando questa si avvicina o si allontana da noi.

220px-Redshift_blueshift.svg

Bene, tornando alle onde luminose, se la sorgente si allontana, si osserva uno spostamento verso lunghezze d’onda piu’ alte, redshift, se si avvicina la lunghezza d’onda diminuisce, blueshift. Mediate questo semplice effetto, si sono potuti osservare molti aspetti del nostro universo e soprattutto i movimenti che avvengono.

Tornando al grnde attrattore, questa zona massiva verso cui si osserva un moto coerente delle galassie del gruppo e’ localizzato a circa 250 milioni di anni luce da noi nella direzione delle costellazioni dell’Hydra e del Centauro e avrebbe una massa di circa 5×10^15 masse solari, cioe’ 5 milioni di miliardi di volte il nostro Sole. Questa, come anticipato, e’ soltanto una anomalia dell’espansione dell’universo che ha creato una zona piu’ massiva in cui c’e’ una concentrazione di galassie che, sempre grazie alla gravita’, attraggono quello che hanno intorno.

Discorso diverso e’ invece quello del Dark Flow. Perche’? Prima di tutto, come detto, questo centro di massa si trova talmente lontano da essere al di fuori del nostro universo osservabile. Visto da Terra poi, la zona di spazio che crea il flusso oscuro si trova piu’ o meno nella stessa direzione del Grande Attrattore, ma molto piu’ lontana. Se per il Grande Attrattore possiamo ipotizzare, detto in modo improprio, un grumo di massa nell’universo omogeneo, il flusso oscuro sembrerebbe generato da una massa molto piu’ grande ed in grado anche di attrarre a se lo stesso Grande Attrattore.

Il flusso oscuro venne osservato per la prima volta nel 2000 e descritto poi a partire dal 2008 mediante misure di precisione su galassie lontane. In questo caso, l’identificazione del flusso e’ stata possibile sfruttando il cosiddetto effetto Sunyaev-Zel’dovich cioe’ la modificazione della temperatura dei fotoni della radiazione cosmica di fondo provocata dai raggi X emessi dalle galassie che si spostano. Sembra complicato, ma non lo e’.

Di radiazione di fondo, o CMB, abbiamo parlato in questi articoli:

Il primo vagito dell’universo

E parliamo di questo Big Bang

Come visto, si tratta di una radiazione presente in tutto l’universo residuo del Big Bang iniziale. Bene, lo spostamento coerente delle galassie produce raggi X, questi raggi X disturbano i fotoni della radiazione di fondo e noi da terra osservando queste variazioni ricostruiamo mappe dei movimenti delle Galassie. Proprio grazie a queste misure, a partire dal 2000, e’ stato osservato per la prima volta questo movimento coerente verso un punto al di fuori dell’universo osservabile.

Cosa potrebbe provocare il Flusso Oscuro? Bella domanda, la risposta non la sappiamo proprio perche’ questo punto, se esiste, come discuteremo tra un po’, e’ al di fuori del nostro universo osservabile. Di ipotesi a riguardo ne sono ovviamente state fatte una miriade a partire gia’ dalle prime osservazioni.

Inizialmente si era ipotizzato che il movimento potrebbe essere causato da un ammasso di materia oscura o energia oscura. Concetti di cui abbiamo parlato in questi post:

La materia oscura

Materia oscura intorno alla Terra?

Se il vuoto non e’ vuoto

Universo: foto da piccolo

Queste ipotesi sono pero’ state rigettate perche’ non si osserva la presenza di materia oscura nella direzione del Dark Flow e, come gia’ discusso, per l’energia oscura il modello prevede una distribuzione uniforme in tutto l’universo.

Cosi’ come per il Grande Attrattore, si potrebbe trattare di un qualche ammasso molto massivo in una zona non osservabile da Terra. Sulla base di questo, qualcuno, non tra gli scienziati, aveva ipotizzato che questo effetto fosse dovuto ad un altro universo confinante con il nostro e che provoca l’attrazione. Questa ipotesi non e’ realistica perche’ prima di tutto, la gravitazione e’ frutto dello spazio tempo proprio del nostro universo. Se anche prendessimo in considerazione la teoria dei Multiversi, cioe’ universi confinanti, l’evoluzione di questi sarebbe completamente diversa. Il flusso oscuro provoca effetti gravitazionali propri del nostro universo e dovuti all’attrazione gravitazionale. Il fatto che sia fuori dalla nostra sfera osservabile e’ solo dovuto ai concetti citati in precedenza figli dell’accelerazione dell’espansione.

Prima di tutto pero’, siamo cosi’ sicuri che questo Flusso Oscuro esista veramente?

Come anticipato, non c’e’ assolutamente la certezza e gli scienziati sono ancora fortemente divisi non solo sulle ipotesi, ma sull’esistenza stessa del Flusso Oscuro.

Per farvi capire la diatriba in corso, questo e’ il link all’articolo originale con cui si ipotizzava l’esistenza del Flusso Oscuro:

Dark Flow

Subito dopo pero’, e’ stato pubblicato un altro articolo che criticava questo sostenendo che i metodi di misura applicati non erano corretti:

Wright risposta al Dark Flow

Dopo di che, una lunga serie di articoli, conferme e smentite, sono stati pubblicati da tantissimi cosmologi. Questo per mostrare quanto controversa sia l’esistenza o meno di questo flusso oscuro di Galassie verso un determinato punto dell’universo.

Venendo ai giorni nostri, nel 2013 e’ stato pubblicato un articolo di analisi degli ultimi dati raccolti dal telescopio Planck. In questo paper viene nuovamente smentita l’esistenza del dark flow sulla base delle misure delle velocita’ effettuate nella regione di spazio in esame:

Planck, 2013

Dunque? Dark Flow definitivamente archiviato? Neanche per sogno. Un altro gruppo di cosmologi ha pubblicato questo ulteriore articolo:

Smentita alla smentita

in cui attacca i metodi statistici utilizzati nel primo articolo e propone un’analisi diversa dei dati da cui si mostra l’assoluta compatibilita’ di questi dati con quelli di un altro satellite, WMAP, da cui venne evidenziata l’esistenza del dark flow.

Credo che a questo punto, sia chiaro a tutti la forte discussione ancora in corso sull’esistenza o meno di questo Dark Flow. Come potete capire, e’ importante prima di tutto continuare le analisi dei dati e determinare se questo flusso sia o meno una realta’ del nostro universo. Fatto questo, e se il movimento venisse confermato, allora potremmo fare delle ipotesi sulla natura di questo punto di attrazione molto massivo e cercare di capire di cosa potrebbe trattarsi. Ovviamente, sempre che venisse confermata la sua esistenza, stiamo ragionando su qualcosa talmente lontano da noi da essere al di fuori della nostra sfera osservabile. Trattare questo argomento ci ha permesso prima di tutto di aprire una finestra scientifica su un argomento di forte e continua attualita’ per la comunita’ scientifica. Come sappiamo, trattando argomenti di questo tipo, non troviamo risposte certe perche’ gli studi sono ancora in corso e, cosi’ come deve avvenire, ci sono discussioni tra gli scienziati che propongono ipotesi, le smentiscono, ne discutono, ecc, come la vera scienza deve essere. Qualora ci fossero ulteriori novita’ a riguardo, ne parleremo in un futuro articolo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Fusione, ci siamo quasi?

17 Feb

La chimera della produzione di energia attraverso processi nucleari e’ senza ombra di dubbio la fusione. Come sappiamo, detto in modo improprio, possiamo pensare a questo processo come qualcosa di inverso alla Fissione. Se in quest’ultimo caso, un nucleo atomico viene spezzato in due nuclei piu’ piccoli liberando energia, nella fusione abbiamo due elementi piu’ leggeri che vengono uniti in uno piu’ grande. Anche in questo caso, nel processo c’e’ un eccesso di energia che viene liberato verso l’esterno. Non si tratta di magia ma del bilancio energetico delle reazioni, facilmente calcolabile utilizzando i principi base della fisica nucleare.

Per la fissione, il processo e’ relativamente semplice ed in grado di autosostenersi. Quest’ultimo aspetto e’ fondamentale quando si considerano processi di questo tipo. Detto in altri termini, basta dare il “la” alla reazione per avere qualcosa in grado di autosostenersi autonomamente e continuare cosi’ a produrre energia. Come noto, siamo in grado di utilizzare questo processo molto bene sia con reazioni controllate nei reattori a fissione sia in modo non controllato attraverso la bomba atomica.

E per la fusione?

Qui il discorso e’ diverso. A partire dagli anni ’50, abbiamo iniziato a studiare queste reazioni per cercare di ottenere un bilancio positivo. Cosa significa? Prendete due nuclei leggeri. Per far avvenire la fusione dovete avvicinarli tra loro fino a formare qualcosa di piu’ grande. Semplice ma non scontato. Prendiamo il discorso in modo improprio ma comprensibile. Nei nuclei avete protoni e neutroni. Come ci hanno insegnato a scuola, se proviamo ad avvicinare cariche di uguale segno queste si respingono attraverso la forza coulombiana. Ma allora, perche’ nel nucleo i protoni sono fermi e tutti vicini tra loro? Avvicinando due particelle come i protoni, inizialmente avete la repulsione coulombiana dovuta alle cariche elettriche che tende ad allontanarle. Se resistete opponendovi a questa forza, vi accorgete che sotto una certa distanza interviene un’altra forza, questa volta attrattiva e molto piu’ intesa di quella dovuta alle cariche elettriche, la forza nucleare forte. Si tratta solo di un’altra interazione che pero’ agisce a distanze molto corte tra i nucleoni. La presenza dei neutroni nel nucleo serve proprio a tenere unito il nucleo stesso. Poiche’ i neutroni non hanno carica elettrica, non subiscono repulsione coulombiana mentre esercitano e subiscono l’interazione forte. Detto in altri termini, i neutroni fanno da collante per far si che la forza forte, attrattiva, vinca su quella coulombiana, repulsiva.

Bene, lo scopo del gioco della fusione e’ proprio questo. In qualche modo dobbiamo avvicinare i nuclei spingendoli fino a che la forza forte non diventi piu’ intensa di quella coulombiana. Sotto questo limite, ci sara’ un’attrazione spontanea che portera’ alla formazione di un nucleo piu’ pensate, rilasciando energia.

Qual e’ il limite nella produzione di energia da fusione? Ovviamente, dovete fare in modo che l’energia spesa per avvicinare i nuclei sia minore di quella che viene ceduta dopo la fusione. Questo e’ il famoso bilancio positivo di cui tanti parlano ma, lasciatemi dire, in pochi hanno veramente capito.

Di questi processi abbiamo parlato in diversi articoli mostrando le diverse tecniche che si stanno sperimentando nel mondo:

Sole: quanta confusione!

La stella in laboratorio

Studiare le stelle da casa!

Contrapposti a questi, ci sono poi i diversi esperimenti per creare quella che viene definita “fusione fredda” e su cui tanta speculazione e’ stata fatta negli ultimi anni:

E-cat meraviglia o grande bufala?

Ancora sulla fusione fredda

Come detto e ripetuto piu’ volte, dobbiamo essere aperti di mente nei confronti di questi processi che pongono le loro radici in metodi scientifici conosciuti. Quello che pero’ manca, e’ una dimostrazione oggettiva che questi apparecchi, esempio su tutti l’E-Cat, siano veramente in grado di produrre energia in quantita’ maggiore di quella data in ingresso.

Perche’ torno nuovamente su questi argomenti?

Come forse avrete letto, solo pochi giorni fa e’ stato fatto un nuovo anuncio riguardante la ricerca sulla fusione nucleare. In un articolo pubblicato sulla rivista Nature, il NIF, National Ignition Facility, della California ha annunciato di aver ottenuto un bilancio positivo della reazione di fusione di isotopi di idrogeno in elio.

Del NIF abbiamo gia’ parlato nei precedenti articoli riportati sopra. Come sappiamo, in questo caso si utilizzano quasi 200 fasci laser per comprimere, mediante oro, atomi e isotopi di idrogeno, deuterio e trizio, per formare elio. Nel processo viene rilasciata l’energia della fusione.

Come capite bene, in questo caso il bilancio positivo si ha se l’energia rilasciata e’ maggiore di quella necessaria per far sparare nello stesso istante tutti i laser.

Nei primi anni di vita, il NIF ha rappresentato una grande speranza per la ricerca della fusione, attirando grandi finanziamenti. Finanziamenti che poi sono diminuiti quando i risultati ottenuti erano notevolmente inferiori alle aspettative.

Oggi, il NIF e’ riuscito ad ottenere per la prima volta un bilancio positivo, anche se solo minore dell’1%, rispetto all’energia richiesta per far andare i laser. Se proprio vogliamo dirla tutta, non siamo ancora contenti di questo risultato e saranno necessari tantissimi altri studi prima di poter gridare vittoria e prima di poter vedere la fusione utilizzata per la produzione di energia.

Come detto nell’introduzione, lo scopo di questo gioco e’ quello di tenere in qualche modo gli atomi fermi mentre li comprimiamo fino alla fusione. Nel NIF questo confinamento avviene sfruttando l’inerzia dei nuclei stessi e proprio per questo motivo si parla di “confinamento inerziale”. Diversamente, ad esempio per ITER, si cerchera’ di utilizzare forti campi magnetici per tenere i nuclei uniti, parlando di “confinamento magnetico”. La trattazione di questo aspetto non e’ affatto banale e rappresenta, a questo livello, un contributo assolutamente non trascurabile nel bilancio energetico finale della reazione.

Perche’ dico questo?

I risultati ottenuti dal NIF sono assolutamente ragguardevoli e sono un ordine di grandezza maggiore rispetto ai migliori risultati precedenti. Il bilancio positivo dell’1% non tiene pero’ conto dell’energia spesa per il confinamento. Questo per far capire quanto lavoro e’ ancora necessario.

La comunita’ scientifica della fusione, pone tutte le sue speranze, nel progetto internazionale ITER. Come sapete bene, in questo caso si parla di un vero e proprio reattore prototipale per la produzione di energia per fusione. Anche in questo caso, ci saranno diverse sfide tecnologiche da vincere ma la strada segnata dai successi degli ultimi anni non puo’ che farci ben sperare.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Antichi segreti di Marte

13 Dic

In diversi articoli abbiamo parlato del rover Curiosity e della sua importante missione su Marte:

Curiosity: scoperta sensazionale?

– Curiosity e gli UFO

– Curiosity e gli UFO: dopo le foto, il video. 

Ecco perche’ Curiosity non trova gli alieni!

Ecco la scoperta di Curiosity

Come sappiamo bene, purtroppo, molte di queste volte lo abbiamo dovuto fare per smentire storie fantastiche che si sono rincorse su internet e che parlavano di UFO, resti di civilta’ antiche, ecc. Tutte notizie infondate che non fanno altro che distogliere l’attenzione da questa importante missione e dalle mille soprprese che sta rivelando ai ricercatori coinvolti nel progetto.

Anche questa volta, dobbiamo partire da una notizie distorta che molto sta facendo discutere in rete, per arrivare poi alla scienza vera e propria.

Di cosa si tratta?

Partiamo dalle basi, come sappiamo Curiosity e’ a spasso nel cratere Gale con tutto il suo carico di strumentazione scientifica di tipo geologico. In particolare, lo scopo della missione era quello di fare delle analisi con una sensibilita’ non possibile prima prendendo in esame campioni di terreno e roccia. Cosa vogliamo imparare? Prima di tutto, analisi di questo tipo ci permettono di capire meglio la struttura del pianeta, la sua origine, e avere un’idea della storia geologica che Marte ha attraversato nel corso degli anni. Oltre a questo, un’analisi precisa del terreno consente di determinare se c’e’ o meno la presenza di elementi chimici che possono rappresentare dei marker per la vita sul pianeta rosso. Fate attenzione, parliamo di marker per la vita, non di vita. Cioe’? Come e’ ovvio, ci sono degli elementi chimici che possono dare indicazioni molto precise sulla vita o sulla presenza di questa in passato. L’attivita’ metabolica, la decomposizione cellulare, ecc portano ad aumentare la presenza di determinati elementi piuttosto che di altri.

Tenete a mente queste parole perche’ saranno la chiave di lettura per comprendere meglio la notizia di cui stiamo parlando.

Perche’ Curiosity e’ stato inviato proprio nel cratere Gale? Ovviamente, il luogo non e’ stato scelto a caso, ma ponderato attentamente. Come visto negli articoli precedenti, questa depressione di Marte rappresenta uno dei posti migliori per la ricerca geologica e chimica del terreno. Inoltre, nella zona sono presenti alture che consetono una visione ad ampio raggio di gran parte di Marte, consentendo, qualora ncessario, una variazione del percorso qualora si evidenziassero zone di maggior interesse.

Bene, a questo punto siamo pronti a parlare della notizia.

Curiosity si trova ora in una zona molto particolare del cratere Gale nota come Yellowknife Bay. Questa e’ una depressione vicino all’equatore di Marte in cui si pensa che in passato ci fosse un lago con acque poco profonde. In particolare, la profondita’ delle acque e’ stiamata non oltre i 5 metri, ma la cosa importante e’ che, dalle analisi fatte, si pensa che queste acque, quando erano presenti, avevano caratteristiche molto particolari. Prima di tutto, erano praticamente ferme, poi erano caratterizzate da una bassa salinita’ ed erano raggiunte da una buona radiazione solare.

Curiosity si e’ concentrato in particolare su due rocce trovate nell’antico fondale del lago, chiamate John Klein e Cumberland. Dall’analisi di queste rocce sono emersi elementi come Carbonio, idrogeno, zolfo, azoto e fosforo.

Cosa significa questo?

Dal punto di vista scientifico, la presenza e la concentrazione di questi elementi significa che in passato erano presenti condizioni adatte per la formazione della vita.

Fate attenzione, come e’ stato interpretato questo da molti siti internet che hanno riportato la notizia? Semplice, trovati segni di vita su Marte! Signori, alla luce di quanto detto, capite molto bene come il sensazionalismo scientifico su argomenti di questo tipo regni sempre sovrano. E’ possibile questo? Ovviamente no. Tra l’altro, Curiosity ha una strumentazione di tipo geologico. Le analisi possibili sono sulle rocce per determinare caratteristiche chimico fisiche come, ad esempio, la concentrazione di elementi da analisi spettroscopiche. Nella dotazione del rover mancano gli strumenti per cercare molecole organiche, cioe’, in soldoni, tracce di vita passata o presente. Questo “particolare” lo avevamo commentato anche negli articoli precedenti parlando appunto sempre della distorsione mediatica sulle scoperte del rover.

Cosa succedera’ ora?

Dal punto di vista scientifico, quanto emerso e’ senza dubbio eccitante. Prima di tutto e’ stata dimostrata, qualora ci fossero ancora dubbi, l’importanza della missione e la correttezza del luogo scelto per le analisi. Inoltre, questa scoperta offre anche nuove motivazioni alla futura missione Exomars prevista per i prossimi anni. Questo nuovo rover, in cui molta tecnologia e’ di origine italiana, sara’ anche dotato di una trivella di 2 metri. Inoltre, ci saranno apparecchiature fondamentali proprio pere la ricerca di molecole organiche sia presenti che future.

Concludendo, Curiosity ha rivelato una zona di Marte con carattetristiche uniche al momento per lo studio della vita passata sul pianeta. La strumentazione presente consente di determinare tracce e concentrazioni di elementi chimici fondamentali per la vita. In futuro, la missione Exomars consentira’ di fare analisi specifiche su questi punti per determinare se in passato fossero presenti forme di vita biologica sul pianeta rosso. Come potete capire, la ricerca e la curiosita’ sui pianeti del sistema solare non e’ assolutamente morta e ancora tante sorprese ci deve rivelare.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Altro mostro, questa volta in Vietnam

23 Nov

Questa volta voglio niziare l’articolo in modo differente. Senza dirvi nulla, vi voglio mostrare un video molto interessante proveniente dal Vietnam:

Oggi, Video

si tratta di un video riportato sul sito ufficiale del settimanale Oggi. Non preoccupatevi, lo stesso video lo potete trovare su molti siti internet di giornali a distribuzione nazionale cosi’ come su molti siti complottisti.

Avete ascoltato bene la voce che accompagna il video?

Mostro misterioso, animale proveniente da altri pianeti, creatura sconosciuta dei fondali marini. Insomma, la storia e’ sempre la stessa.

Per chi non avesse ancora capito, in Vietnam e’ stato ritrovato spiaggiato un grosso animale, vermiforme come riportano molti giornali. Questo apparente mostro sarebbe poi stato trasportato sulla terra ferma dove avrebbe attirato una folla di curiosi come si vede dal video.

Cosa sarebbe questo mostro?

Non perche’ voglia essere ripetitivo, ma i giornali e siti catastrofisti al solito riportano sempre la stessa storia. L’origine del mostro e’ sconosciuta, si pensa provenga da un altro pianeta o, meglio ancora, si tratta di specie modificate a causa della radiazione e dell’inquinamento nei mari.

Questa storia, un po’ come tutte le altre, e’ assurda!

I video che trovate in rete, sono in realta’ appositamente studiati per portarvi fuori strada. E’ sempre un’abile mossa giornalistica per cercare di attirare piu’ visitatori e per fare in modo che un video diventi famoso in tutto il mondo.

La gente che vedete intorno al “mostro” sa benissimo di che animale si tratti. Come potete facilmente vedere, le somiglianze con questo animale:

balena-azzurra

sono molteplici. Sapete perche’ si somigliano tanto? Semplice, perche’ sono lo stesso animale, cioe’ una balenottera.

Questa versione della storia e’ stata proposta da numerosi biologi marini ma, come e’ ovvio, l’ipotesi scientifica e’ stata messa da parte per fare in modo che le persone fossero portate a credere altro.

Sapete perche’ tutta quella gente e’ intorno al cadavere della balena?

Se leggete in rete, trovate scritto che quelle persone sono radunate per curiosita’ intorno al corpo del povero animale spiggiato. In realta’ quelle persone sono intorno al corpo della balena smeplicemnte per rendere omaggio alla salma. In Vietnam infatti, le balene sono considerate animali porta fortuna circondati da un’aura quasi magica. Detto questo, la folla di curiosi intorno non e’ li per curiosita’, bensi’ per rendere omaggio alla balena. Dal momento che queto aninale e’ considerato un potente porta fortuna, le persone accorse sperano che il segno sia un precursore di avventi fortunati nella regione o nell’intero paese.

Ora, provate autonomamente a cercare in rete queste informazioni e troverete come molti siti, poco visitati per ovvi motivi, abbiano dato la spiegazione razionale con la tesi balena ma siano molto meno visitati di quelli catastrofisti che continuano a parlare di misterioso mostro.

Come spesso avviene, non mi stanchero’ mai di puntare il dito contro molti siti di giornali che invece di fare informazione si lasciano prendere dal catastrofismo cercando la notizia anche dove questa non c’e’.

Concludendo, anche il mostro in Vietnam era un animale perfettamente conosciuto e noto ai biologi marini. Personalmente, continuo a chiedermi come mai i tanti siti catatrofisti invece di concentrare le loro forze su argomenti veramente poco conosciuti continuino a perdere tempo dietro simili notizie. Pensate anche voi a quanta intelligenza sprecata che potrebbe essere utilizzzta, con ottimi frutti, nella ricerca di qualcosa di piu’ nobile.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

ISON: cometa in technicolor

15 Nov

Della ISON abbiamo parlato in tantissimi articoli:

Rapido aggiornamento sulla ISON

2013 o ancora piu’ oltre?

E se ci salvassimo?

Che la ISON abbia pieta’ di noi!

– Se la Ison non e’ cometa, allora e’ …

Riassumendo, si diceva che questa sarebbe stata la cometa del secolo con un passaggio talmente luminoso da essere perfettamente visibile ad occhio nudo in pieno giorno. Come visto pero’, queste stime sono state notevolmente ridimensionate quando si e’ potuto stimare il diametro del nucleo di questa cometa che, come visto, e’ inferiore ad un paio di kilometri. Nonostante questo, gia’ da mesi, i siti catastrofisti si sono scatenati nel lanciare previsioni e profezie legate a questa cometa: la Ison e’ Nibiru, la Ison arrivera’ sulla Terra, no, anzi, e’ un’astronave aliena, nemmeno e’ un pianeta, una costellazione, un mini sistema solare, ecc. Come visto negli articoli precedenti, tutte assurdita’ facilmente smentibili con un minimo di ricerca su internet ma, soprattutto, con un minimo di ragionamento.

Una particolarita’ pero’, almeno a mio avviso, questa cometa sicuramente la avra’: sara’ ricordata come l’oggetto celeste che maggiormente ha dato spunto per annunciare catastrofi.

L’ultima sparata che sta facendo riaccendere la discussione su internet e’ legata al colore di questa cometa. Come forse avrete letto, al passaggio vicino a Marte la Ison appariva di un bel colore verde. Continuando la sua corsa verso il perielio pero’, la cometa ha improvvisamente cambiato colore divenendo blu.

Cosa significa questo?

Inutile dire che si tratta, sempre secondo gli amici catastrofisti, di un fatto eclatante e misterioso, ovviamente non compreso dalla scienza. Inoltre, il nuovo colore della cometa sarebbe l’indicatore che la Ison e’ in realta’ la tanto temuta Blue Kachina della profezia Hopi. Di questa profezia abbiamo gia’ parlato abbondantemente in questo articolo:

Il 2012 e la profezia Hopi

Dunque, ci risiamo, una nuova fine del mondo ci attende tra pochi giorni. Meno male! Era gia’ qualche giorno che non veniva annunciata una nuova fine per la nostra amata Terra al punto che cominciavo a preoccuparmi.

Premessa, come visto nell’articolo riportato, la profezia Hopi riguarda qualcosa completamente diverso e, comunque, si tratta di un racconto di questo popolo indiano.

Detto questo, cerchiamo di capire se veramente c’e’ qualcosa di anomalo in questo cambio di colore.

In realta’, cambiamenti di colore lungo la traiettoria non sono affatto straordinari e vengono mostrati da diverse comete. Come potete facilmente immaginare, man mano che questi corpi si avvicinano al Sole vengono investiti da una radiazione sempre crescente ed inoltre aumenta anche la loro temperatura. Come visto in questo articolo:

Cos’e’ una cometa

questi corpi sono caratterizzati dalla sublimazione degli elementi che li compongono e, dunque, anche il colore caratteristico sara’ legato alla chimica dell’oggetto.

Bene, questa e’ una spiegazione semplice e comprensibile per tutti.

Pensateci, se ci sono diversi elementi questi possono “bruciare” in momenti diversi. Inoltre, un elemento puo’ essere piu’ dominante e rendere visibili gli altri solo in un secondo momento. Tutte cose perfettamente chiare e che possono spiegare in primis il colore delle comete e anche, come nel caso della Ison, cambi di colore lungo la traiettoria.

Ora pero’, e’ interessante capire da cosa siano determinati i colori verde e blu di cui stiamo parlando.

Su questo punto devo aprire una parentesi su molti siti di informazione scientifica o che pretendono di essere considerati tali. Se provate a cercare informazioni su internet, trovate che il colore verde e’ dovuto al cianogeno ma anche il colore blu e’ dovuto al cianogeno. Forse, e dico forse, si fa un po’ di confusione.

Per capire bene, vi mostro una tabella con gli elementi che possono essere presenti nella coda di una cometa e che emettono nello spettro del visibile:

Particelle a maggiore emissione
nel campo visibile
Molecole nm Ioni nm
CN 399 CO+ 426
C3 406 H3O+ 700
CH 435
C2 514

Vedete che il cianogeno,CN, emette a 399 nanometri. Cosa significa? Piccola digressione. Il cosiddetto spettro del visibile e’ quella banda di frequenze, o lunghezze d’onda, che i nostri occhi sono in grado di vedere. In questo spettro possiamo inserire appunto i diversi colori ognuno con una lunghezza d’onda diversa. Senza tanti giri di parole, vi mostro una seconda tabella:

Colore Frequenza Lunghezza d’onda
Violetto 668-789 THz 380–450 nm
Blu 631-668 THz 450–475 nm
Ciano 606-631 THz 476-495 nm
Verde 526-606 THz 495–570 nm
Giallo 508-526 THz 570–590 nm
Arancione 484-508 THz 590–620 nm
Rosso 400-484 THz 620–750 nm

Come vedete, partendo dal violetto si arriva fino al rosso aumentando la frequenza. Prima di questi valori abbiamo gli ultravioletti dopo gli infrarossi, bande di frequenze non osservabili ai nostri occhi.

Ora, il cianogeno, cosi’ come visto nella prima tabella, emette a 399 nanometri. Detto in altri termini, quando l’emissione di luce da parte di questo elemento e’ presente, la cometa apparira’ di un colore blu/violetto, come comprensibile utilizzando la seconda tabella. Notate inoltre come il colore verde abbia una lunghezzad’onda piu’ grande tra 495 e 570 nanometri. Capite dunque che il cianogeno non puo’ essere responsabile del colore verde che si osservava quando la Ison era in prossimita’ di Marte.

Sempre facendo riferimento alla prima tabella, e’ evidente che il colore verde era invece dovuto all’emissione di luce da parte di molecole di C2 che emettono luce intorno ai 514 nanometri.

Questo ci fa capire come, a volte, anche siti scientifici facciano confusione o forniscano informazioni non reali.

Ultima considerazione, ora che la cometa e’ divenuta blu, mostrando quindi la presenza di cianogeno, alcuni siti si sono lanciati nella speculazione su questo gas. Come e’ noto, si tratta di un composto tossico per l’essere umano se viene respirato. Ragioniamo, e’ contenuto in una cometa che, se anche superasse il perielio, si troverebbe a 60 milioni di kilometri da noi. Secondo voi c’e’ pericolo?

Nonostante questo, si stanno creando le condizioni per riproporre la truffa del 1910 quando al passaggio della cometa di Halley venne proposta la presenza di questo gas nelle code della comete, poi risultato reale. In quell’occasione molti buontemponi, leggasi truffatori, vendevano maschere antigas e pillole miracolose per difendersi dal pericolo del cianogeno che poteva arrivare sulla Terra.

Non mi meraviglierei se questa cosa venisse riproposta ora.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.