Tag Archives: planck

L’universo e’ stabile, instabile o meta-stabile?

25 Mar

Negli ultimi articoli, complici anche i tantissimi commenti e domande fatte, siamo tornati a parlare di ricerca e delle ultime misure scientifiche che tanto hanno fatto discutere. Come fatto notare pero’, molto spesso, queste discussioni che dovrebbero essere squisitamente scientifiche lasciano adito ad articoli su giornali, anche a diffusione nazionale, che male intendono o approfittano del clamore per sparare sentenze senza senso e, lasciatemelo dire, assolutamente fuori luogo.

In particole, nell’articolo precedente, abbiamo discusso l’ultima misura della massa del quark top ottenuta mediante la collaborazione dei fisici di LHC e del Tevetron. Questo risultato e’ il piu’ preciso mai ottenuto prima e ci consente, di volta in volta, di migliorare la nostra conoscenza, come spesso ripeto, sempre troppo risicata e assolutamente lontana dalla comprensione del tutto.

Per discutere la misura della massa del top, siamo partiti da una notizia apparsa sui giornali che parlava di un universo pronto a dissolversi da un istante all’altro. Premesso che, come fatto notare, questa notizia era completamente campata in aria, su suggerimento di una nostra cara lettrice, ci e’ stato chiesto di discutere con maggior dettaglio quello che molti chiamano il destino ultimo del nostro universo. Come forse avrete sentito, su alcune fonti si parla spesso di universo stabile, instabile o meta-stabile farfugliando, nel vero senso della parola, come questa particolarita’ sia legata alla massa di qualche particella.

Cerchiamo dunque di spiegare questo importante e non banale concetto cercando sempre di mantenere un approccio quanto possibile divulgativo.

Per prima cosa, dobbiamo tornare a parlare del bosone di Higgs. Come forse ricorderete, in un articolo specifico:

Bosone di Higgs, ma che sarebbe? 

abbiamo gia’ affrontato la sua scoperta, cercando in particolare di spiegare il perche’ l’evidenza di questa particella sarebbe cosi’ importnate nell’ambito del modello standard e della fisica delle alte energie. Come fatto notare pero’, anche in questo caso, parliamo ancora di “evidenza” e non di “scoperta”. Visto che me lo avete chiesto direttamente, ci tengo a sottolineare questa importante differenza.

Come sapete, la fisica e’ detta una “scienza esatta”. Il motivo di questa definizione e’ alquanto semplice: la fisica non e’ esatta perche’ basata su informazioni infinitamente esatte, ma perche’ ogni misura e’ accompagnata sempre da un’incertezza esattamente quantificata. Questa incertezza, e’ quella che comunemente viene chiamato “errore”, cioe’ il grado di confidenza statistico che si ha su un determinato valore. Per poter parlare di evidenza, e’ necessario che la probabilita’ di essersi sbagliati sia inferiore di un certo valore, ovviamente molto basso. Per poter invece gridare alla scoperta, la probabiita’ statistica che quanto misurato sia un errore deve essere ancora piu’ bassa. Questo grado di confidenza, ripeto prettamente statistico, e’ quello che spesso sentiamo valutare riferendosi alla “sigma” o “all’incertezza”.

Bene, tornando al bosone di Higgs, perche’ si dice che ancora non c’e’ la sicurezza che quanto osservato sia proprio quell’Higgs che cerchiamo? Semplice, il grado di confidenza, non ci consente ancora di poter affermare con sicurezza statistica che la particella osservata sia proprio il bosone di Higgs che cerchiamo e non “un” bosone di Higgs o un’altra particella. Come ormai sappiamo, il bosone di Higgs tanto cercato e’ proprio quello relativo al campo di Higgs che determina la massa delle particelle. Per poter essere quel bosone, la particella deve essere, in particolare, scalare e con spin zero. Che significa? Praticamente, queste sono le caratteristiche che definiscono l’identikit dell’Higgs che cerchiamo. Se per quanto riguarda il fatto di essere scalare siamo convinti, per lo spin della particella, dal momento che decade in due fotoni, potrebbe avere spin 0 o 2. Per poter essere sicuri che lo spin sia proprio zero, sara’ necessario raccogliere ancora piu’ dati per determinare con sicurezza questa proprieta’ anche se statisticamente possiamo escludere con una certa incetezza che lo spin sia 2.

Detto questo, e supposto, con una buona confidenza statistica, che quanto trovato sia proprio il bosone di Higgs, sappiamo che la massa trovata per questa particella e’ 125.6 GeV con un un’incertezza totale di 0.4 GeV. Questo valore della massa ha pero’ aperto le porte per una discussione teorica molto accesa e di cui si inizia a parlare anche sui giornali non prettamente scientifici.

Perche’?

Come anticipato, la massa del bosone di Higgs determina la condizione di stabilita’ o instabilita’ del nostro universo. Perche’ proprio l’Higgs? Ovviamente, questo bosone e’ correlato con il campo scalare di Higgs, cioe’ quello che assegna la massa delle particelle. Ora pero’, nel modello standard, troviamo particelle che hanno masse anche molto diverse tra loro. Se osserviamo i quark, passiamo dall’up, il piu’ leggero, al top, il piu’ pesante, con una differenza di massa veramente enorme per particelle che appartengono alla stessa “famiglia”. Detto questo, per determinare la condizione di equilibrio, e tra poco spiegheremo cosa significa, del nostro universo, e’ possibile ragionare considerando proprio le masse dell’Higgs e del top.

In che modo?

Senza spendere troppe parole, vi mostro un grafico molto significativo:

 

Stabilita' dell'universo data dalla correlazione delle masse Top-Higgs

Stabilita’ dell’universo data dalla correlazione delle masse Top-Higgs

Cosa significa questo grafico? Come potete vedere, incrociando il valore della massa del top con quella dell’Higgs e’ possibile capire in quale zona ci troviamo, appunto: stabile, instabile o meta-stabile. Scientificamente, queste sono le condizioni in cui puo’ trovarsi quello che e’ definito vuoto quantomeccanico dell’universo. Se l’universo fosse instabile, allora sarebbe transitato in una successione di stati diversi senza poter formare strutture complesse dovute all’evoluzione. Come potete facilmente capire, in questo caso, noi oggi non saremo qui ad interrogarci su come e’ fatto l’universo dal momento che non avremmo avuto neanche la possibilita’ di fare la nostra comparsa. In caso di universo stabile invece, come il termine stesso suggerisce, tutto rimane in uno stato stazionario senza grosse modificazioni. Meta-stabile invece cosa significa? Questo e’ un termine ricavato direttamente dalla termodinamica. Detto molto semplicemente, un sistema meta-stabile si trova in una posizione di minimo di energia non assoluto. Cioe’? Detto in altri termini, il sistema e’ in uno stato di equilibrio, ma sotto particolari condizioni puo’ uscire da questo stato e scendere verso qualcosa di piu’ stabile ancora. Per capirlo meglio, immaginate di mettere una scodella sul pavimento con dentro una pallina. Se muovete di poco la pallina questa oscillera’ e ricadra’ sul fondo, posizione di equilibrio meta-stabile. Se date un colpo piu’ forte, la pallina uscira’ dalla scodella e andra’ sul pavimento. A questo punto pero’ il vostro sistema immaginario ha raggiunto la posizione piu’ stabile.

Ora, capite bene quanto sia importante e interessante capire che tipo di sistema e’ il nostro universo per determinare eventuali e future evoluzioni temporali che potrebbero avvenire. Come visto nel grafico precedente, per capire lo stato dell’universo possiamo valutare le masse del top e dell’Higgs.

Cosa otteniamo con i valori delle masse oggi conosciuti? Come potete vedere, come per un simpatico scherzo, la massa dell’Higgs ci posizione proprio nella strettissima zona di meta-stabilita’ del nostro universo. Come anticipato, il fatto di non essere nella zona di instabilita’ e’ assolutamente comprensibile pensando al fatto che noi oggi siamo qui. Certo, una massa superiore a 126 GeV ci avrebbe piazzato nella zona stabile dove, come si dice nelle favole, “vissero felici e contenti”. Cosa comporta il fatto di essere nella regione di meta-stabilita’? Come qualcuno, incurante della scienza, cerca di farvi credere, siamo in bilico su una corda. Il nostro universo da un momento all’altro potrebbe transitare verso uno stato piu’ stabile modificando radicalmente le proprieta’ del vuoto quantomeccanico. In questo caso, il nostro universo collasserebbe e segnebbe la nostra fine.

E’ vero questo?

Assolutamente no. Prima di tutto, cerchiamo di ragionare. Come detto, la massa attuale del bosone di Higgs e’ 125.6+/-0.4 GeV. Questo significa che entro una certa probabilita’, piu’ del 15%, la massa del bosone potrebbe essere maggiore di 126 GeV. In questo caso la misura sarebbe pienamente della regione “stabile” dell’universo. Ovviamente, per poter determinare con precisione questo valore e’ necessario ridurre l’incertezza che accompagna la misura in modo da “stringere” l’intervallo entro cui potrebbe essere compresa questa massa.

Se anche l’universo fosse in uno stato meta-stabile, non possiamo certo pensare che da un momento all’altro questo potrebbe uscire dallo stato di equilibrio e transitare verso altro se non in particolari condizioni. Vi ripeto nuovamente come in questo caso ci stiamo muovendo all’interno di ragionamenti prettamente teorici in cui gli stessi principi della fisica che oggi conosciamo potrebbero non essere validi. Secondo alcuni infatti, la stessa evoluzione dell’universo che ha portato oggi fino a noi potrebbe essere stata possibile proprio grazie alla natura meta-stabile del vuoto quantomeccanico.

Come ricorderete, in questi articoli:

Universo: foto da piccolo

Ascoltate finalmente le onde gravitazionali?

cosi’ come in tutti quelli richiamati a loro volta, abbiamo parlato dell’inflazione, cioe’ di quel particolare periodo nell’evoluzione dell’universo che ha portato ad una notevole espansione in tempi brevissimi. Conseguenza dell’inflazione e’ l’avere un universo omogeneo ed isotropo ed in cui le fluttuazione della radiazione di fondo sono molto ridotte. Bene, il bosone di Higgs potrebbe avere avuto un ruolo decisivo per l’innesco del periodo inflazionario. Secondo alcune teorie, infatti, le condizioni fisiche per poter accendere l’inflazione potrebbero essere state date da una particella scalare e l’Higgs potrebbe appunto essere questa particella. Se proprio devo aprire una parentesi, per poter affermare con sicurezza questa cosa, dobbiamo essere sicuri che la fisica che conosciamo oggi possa essere applicata anche in quella particolare fase dell’universo, cioe’ che i modelli attualmente conosciuti possano essere estrapolati a quella che viene comunemente definita massa di Planck dove tutte le forze fondamentali si riunificano. Ovviamente, per poter affermare con sicurezza queste teorie sono necessarie ancora molte ricerche per determinare tutti i tasselli che ancora mancano a questo puzzle.

Seguendo questa chiave di lettura, il fatto di essere in un universo meta-stabile, piu’ che un rischio potrebbe essere stata proprio la caratteristica che ha permesso l’evoluzione che poi ha portato fino ai giorni nostri, con la razza umana presente sulla Terra.

Altro aspetto curioso e importante della meta-stabilita’ dell’universo e’ la possibilita’ di includere i cosiddetti multiversi. Detto molto semplicemente, il fatto che l’universo sia meta-stabile apre gli scenari ad una serie di universi paralleli tutti uno di seguito all’altro caratterizzati da valori continui di alcuni parametri fisici. Non si tratta di racconti fantascientifici o di fantasia ma di vere e proprie teorie fisiche riguardanti il nostro universo.

Concludendo, la scoperta, o l’evidenza, del bosone di Higgs e’ stata sicuramente un ottimo risultato raggiunto dalla fisica delle alte energie, ma certamente non un punto di arrivo. La misura, ancora solo preliminare, della massa della particella apre le porte a scenari di nuova fisica o di considerazioni molto importanti circa la natura del nostro stesso universo. Come visto in questo articolo, quelli che apparentemente potrebbero sembrare campi del sapere completamente diversi e lontani, l’infinitamente piccolo e l’infinitamente grande, sono in realta’ correlati tra loro proprio da singole misure, come quella della massa dell’Higgs. A questo punto, capite bene come lo scneario si fa sempre piu’ interessante e sara’ necessario fare ancora nuove ricerche prima di arrivare a qualcosa di certo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Flusso oscuro e grandi attrattori

28 Feb

Nella ormai celebre sezione:

Hai domande o dubbi?

in cui sono usciti fuori davvero gli argomenti piu’ disparati ma sempre contraddistinti da curiosita’ e voglia di discutere, una nostra cara lettrice ci ha chiesto maggiori lumi sul cosiddetto “dark flow” o flusso oscuro. Una richiesta del genere non puo’ che farci piacere, dal momento che ci permette di parlare nuovamente di scienza e, in particolare, di universo.

Prima di poterci addentrare in questo argomento scientifico ma, anche a livello di ricerca, poco conosciuto, e’ necessario fare una piccolissima premessa iniziale che serve per riprendere in mano concetti sicuramente conosciuti ma su cui spesso non si riflette abbastanza.

Per iniziare la discussione, voglio mostrarvi una foto:

sir-isaac-newtons-philosophic3a6-naturalis-principia-mathematica

Quello che vedete non e’ un semplice libro, ma uno dei tre volumi che compongono il Philosophiae Naturalis Principia Mathematica o, tradotto in italiano, “I principi naturali della filosofia naturale”. Quest’opera e’ stata pubblicata il 5 luglio 1687 da Isaac Newton.

Perche’ e’ cosi’ importante questa opera?

Questi tre volumi sono considerati l trattato piu’ importante del pensiero scientifico. Prima di tutto, contengono la dinamica formulata da Newton che per primo ha posto le basi per lo studio delle cause del moto ma, soprattutto, perche’ contengono quella che oggi e’ nota come “Teoria della Gravitazione Universale”.

Sicuramente, tutti avrete sentito parlare della gravitazione di Newton riferita al famoso episodio della mela che si stacco’ dall’albero e cadde sulla testa del celebre scienziato. Come racconta la leggenda, da questo insignificante episodio, Newton capi’ l’esistenza della forza di gravita’ e da qui la sua estensione all’universo. Se vogliamo pero’ essere precisi, Newton non venne folgorato sulla via di Damasco dalla mela che cadeva, ma questo episodio fu quello che fece scattare la molla nella testa di un Newton che gia’ da tempo studiava questo tipo di interazioni.

Volendo essere brevi, la teoria della gravitazione di Newton afferma che nello spazio ogni punto materiale attrae ogni altro punto materiale con una forza che e’ proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato della loro distanza. In soldoni, esiste una forza solo attrattiva che si esercita tra ogni coppia di corpi dotati di massa e questa interazione e’ tanto maggiore quanto piu’ grandi sono le masse e diminuisce con il quadrato della loro distanza.

Semplice? Direi proprio di si, sia dal punto di vista fisico che matematico. Perche’ allora chiamare questa legge addirittura con l’aggettivo “universale”?

Se prendete la male di Newton che cade dall’albero, la Luna che ruota intorno alla Terra, la Terra che ruota intorno al Sole, il sistema solare che ruota intorno al centro della Galassia, tutti questi fenomeni, che avvengono su scale completamente diverse, avvengono proprio grazie unicamente alla forza di gravita’. Credo che questo assunto sia sufficiente a far capire l’universalita’ di questa legge.

Bene, sulla base di questo, l’interazione che regola l’equilibrio delle masse nell’universo e’ dunque la forza di gravita’. Tutto quello che vediamo e’ solo una conseguenza della sovrapposizione delle singole forze che avvengono su ciascuna coppia di masse.

Detto questo, torniamo all’argomento principale del post. Cosa sarebbe il “flusso oscuro”? Detto molto semplicemente, si tratta del movimento a grande velocita’ di alcune galassie in una direzione ben precisa, situata tra le costellazioni del Centauro e della Vela. Questo movimento direzionale avviene con velocita’ dell’ordine di 900 Km al secondo e sembrerebbe tirare le galassie in un punto ben preciso al di fuori di quello che definiamo universo osservabile.

Aspettate, che significa che qualcosa tira le galassie fuori dall’universo osservabile?

Per prima cosa, dobbiamo definire cosa significa “universo osservabile”. Come sappiamo, l’universo si sta espandendo e se lo osserviamo da Terra siamo in grado di vedere le immagini che arrivano a noi grazie al moto dei fotoni che, anche se si muovono alla velocita’ della luce, si spostano impiegando un certo tempo per percorrere delle distanze precise. Se sommiamo questi due effetti, dalla nostra posizione di osservazione, cioe’ la Terra, possiamo vedere solo quello che e’ contenuto entro una sfera con un raggio di 93 miliardi anni luce. Come potete capire, l’effetto dell’espansione provoca un aumento di quello che possiamo osservare. Se l’universo ha 14.7 miliardi di anni, ci si potrebbe aspettare di poter vedere dalla terra la luce partita 14.7 miliardi di anni fa, cioe’ fino ad una distanza di 14.7 miliardi di anni luce. In realta’, come detto, il fatto che l’universo sia in continua espansione fa si che quello che vediamo oggi non si trova piu’ in quella posizione, ma si e’ spostato a causa dell’espansione. Altro aspetto importante, la definizione di sfera osservabile e’ vera per ogni punto dell’universo, non solo per quella sfera centrata sulla Terra che rappresenta cquello che noi possiamo vedere.

Bene, dunque si sarebbe osservato un flusso di alcune galassie verso un punto preciso fuori dall’universo osservabile. Proprio dal fatto che questo flusso e’ all’esterno del nostro universo osservabile, si e’ chiamato questo movimento con l’aggettivo oscuro.

Aspettate un attimo pero’, se le galassie sono tirate verso un punto ben preciso, cos’e’ che provoca questo movimento? Riprendendo l’introduzione sulla forza di gravitazione, se le galassie, che sono oggetti massivi, sono tirate verso un punto, significa che c’e’ una massa che sta esercitando una forza. Poiche’ la forza di gravitazione si esercita mutuamente tra i corpi, questo qualcosa deve anche essere molto massivo.

Prima di capire di cosa potrebbe trattarsi, e’ importante spiegare come questo flusso oscuro e’ stato individuato.

Secondo le teorie cosmologiche riconosciute, e come spesso si dice, l’universo sarebbe omogeneo e isotropo cioe’ sarebbe uguale in media in qualsiasi direzione lo guardiamo. Detto in altri termini, non esiste una direzione privilegiata, almeno su grandi scale, in cui ci sarebbero effetti diversi. Sempre su grandi scale, non esisterebbe neanche un movimento preciso verso una direzione ma l’isotropia produrrebbe moti casuali in tutte le direzioni.

Gia’ nel 1973 pero’, si osservo’ un movimento particolare di alcune galassie in una direzione precisa. In altri termini, un’anomalia nell’espansione uniforme dell’universo. In questo caso, il punto di attrazione e’ all’interno del nostro universo osservabile e localizzato in prossimita’ del cosiddetto “ammasso del Regolo”, una zona di spazio dominata da un’alta concentrazione di galassie vecchie e massive. Questa prima anomalia gravitazionale viene chiamata “Grande Attrattore”. In questa immagine si vede appunto una porzione di universo osservabile da Terra ed in basso a destra trovate l’indicazione del Grande Attrattore:

800px-2MASS_LSS_chart-NEW_Nasa

Questa prima anomalia dell’espansione venne osservata tramite quello che e’ definito lo spostamento verso il rosso. Cosa significa? Se osservate un oggetto che e’ in movimento, o meglio se esiste un movimento relativo tra l’osservatore e il bersaglio, la luce che arriva subisce uno spostamento della lunghezza d’onda dovuto al movimento stesso. Questo e’ dovuto all’effetto Doppler valido, ad esempio, anche per le onde sonore e di cui ci accorgiamo facilmente ascoltando il diverso suono di una sirena quando questa si avvicina o si allontana da noi.

220px-Redshift_blueshift.svg

Bene, tornando alle onde luminose, se la sorgente si allontana, si osserva uno spostamento verso lunghezze d’onda piu’ alte, redshift, se si avvicina la lunghezza d’onda diminuisce, blueshift. Mediate questo semplice effetto, si sono potuti osservare molti aspetti del nostro universo e soprattutto i movimenti che avvengono.

Tornando al grnde attrattore, questa zona massiva verso cui si osserva un moto coerente delle galassie del gruppo e’ localizzato a circa 250 milioni di anni luce da noi nella direzione delle costellazioni dell’Hydra e del Centauro e avrebbe una massa di circa 5×10^15 masse solari, cioe’ 5 milioni di miliardi di volte il nostro Sole. Questa, come anticipato, e’ soltanto una anomalia dell’espansione dell’universo che ha creato una zona piu’ massiva in cui c’e’ una concentrazione di galassie che, sempre grazie alla gravita’, attraggono quello che hanno intorno.

Discorso diverso e’ invece quello del Dark Flow. Perche’? Prima di tutto, come detto, questo centro di massa si trova talmente lontano da essere al di fuori del nostro universo osservabile. Visto da Terra poi, la zona di spazio che crea il flusso oscuro si trova piu’ o meno nella stessa direzione del Grande Attrattore, ma molto piu’ lontana. Se per il Grande Attrattore possiamo ipotizzare, detto in modo improprio, un grumo di massa nell’universo omogeneo, il flusso oscuro sembrerebbe generato da una massa molto piu’ grande ed in grado anche di attrarre a se lo stesso Grande Attrattore.

Il flusso oscuro venne osservato per la prima volta nel 2000 e descritto poi a partire dal 2008 mediante misure di precisione su galassie lontane. In questo caso, l’identificazione del flusso e’ stata possibile sfruttando il cosiddetto effetto Sunyaev-Zel’dovich cioe’ la modificazione della temperatura dei fotoni della radiazione cosmica di fondo provocata dai raggi X emessi dalle galassie che si spostano. Sembra complicato, ma non lo e’.

Di radiazione di fondo, o CMB, abbiamo parlato in questi articoli:

Il primo vagito dell’universo

E parliamo di questo Big Bang

Come visto, si tratta di una radiazione presente in tutto l’universo residuo del Big Bang iniziale. Bene, lo spostamento coerente delle galassie produce raggi X, questi raggi X disturbano i fotoni della radiazione di fondo e noi da terra osservando queste variazioni ricostruiamo mappe dei movimenti delle Galassie. Proprio grazie a queste misure, a partire dal 2000, e’ stato osservato per la prima volta questo movimento coerente verso un punto al di fuori dell’universo osservabile.

Cosa potrebbe provocare il Flusso Oscuro? Bella domanda, la risposta non la sappiamo proprio perche’ questo punto, se esiste, come discuteremo tra un po’, e’ al di fuori del nostro universo osservabile. Di ipotesi a riguardo ne sono ovviamente state fatte una miriade a partire gia’ dalle prime osservazioni.

Inizialmente si era ipotizzato che il movimento potrebbe essere causato da un ammasso di materia oscura o energia oscura. Concetti di cui abbiamo parlato in questi post:

La materia oscura

Materia oscura intorno alla Terra?

Se il vuoto non e’ vuoto

Universo: foto da piccolo

Queste ipotesi sono pero’ state rigettate perche’ non si osserva la presenza di materia oscura nella direzione del Dark Flow e, come gia’ discusso, per l’energia oscura il modello prevede una distribuzione uniforme in tutto l’universo.

Cosi’ come per il Grande Attrattore, si potrebbe trattare di un qualche ammasso molto massivo in una zona non osservabile da Terra. Sulla base di questo, qualcuno, non tra gli scienziati, aveva ipotizzato che questo effetto fosse dovuto ad un altro universo confinante con il nostro e che provoca l’attrazione. Questa ipotesi non e’ realistica perche’ prima di tutto, la gravitazione e’ frutto dello spazio tempo proprio del nostro universo. Se anche prendessimo in considerazione la teoria dei Multiversi, cioe’ universi confinanti, l’evoluzione di questi sarebbe completamente diversa. Il flusso oscuro provoca effetti gravitazionali propri del nostro universo e dovuti all’attrazione gravitazionale. Il fatto che sia fuori dalla nostra sfera osservabile e’ solo dovuto ai concetti citati in precedenza figli dell’accelerazione dell’espansione.

Prima di tutto pero’, siamo cosi’ sicuri che questo Flusso Oscuro esista veramente?

Come anticipato, non c’e’ assolutamente la certezza e gli scienziati sono ancora fortemente divisi non solo sulle ipotesi, ma sull’esistenza stessa del Flusso Oscuro.

Per farvi capire la diatriba in corso, questo e’ il link all’articolo originale con cui si ipotizzava l’esistenza del Flusso Oscuro:

Dark Flow

Subito dopo pero’, e’ stato pubblicato un altro articolo che criticava questo sostenendo che i metodi di misura applicati non erano corretti:

Wright risposta al Dark Flow

Dopo di che, una lunga serie di articoli, conferme e smentite, sono stati pubblicati da tantissimi cosmologi. Questo per mostrare quanto controversa sia l’esistenza o meno di questo flusso oscuro di Galassie verso un determinato punto dell’universo.

Venendo ai giorni nostri, nel 2013 e’ stato pubblicato un articolo di analisi degli ultimi dati raccolti dal telescopio Planck. In questo paper viene nuovamente smentita l’esistenza del dark flow sulla base delle misure delle velocita’ effettuate nella regione di spazio in esame:

Planck, 2013

Dunque? Dark Flow definitivamente archiviato? Neanche per sogno. Un altro gruppo di cosmologi ha pubblicato questo ulteriore articolo:

Smentita alla smentita

in cui attacca i metodi statistici utilizzati nel primo articolo e propone un’analisi diversa dei dati da cui si mostra l’assoluta compatibilita’ di questi dati con quelli di un altro satellite, WMAP, da cui venne evidenziata l’esistenza del dark flow.

Credo che a questo punto, sia chiaro a tutti la forte discussione ancora in corso sull’esistenza o meno di questo Dark Flow. Come potete capire, e’ importante prima di tutto continuare le analisi dei dati e determinare se questo flusso sia o meno una realta’ del nostro universo. Fatto questo, e se il movimento venisse confermato, allora potremmo fare delle ipotesi sulla natura di questo punto di attrazione molto massivo e cercare di capire di cosa potrebbe trattarsi. Ovviamente, sempre che venisse confermata la sua esistenza, stiamo ragionando su qualcosa talmente lontano da noi da essere al di fuori della nostra sfera osservabile. Trattare questo argomento ci ha permesso prima di tutto di aprire una finestra scientifica su un argomento di forte e continua attualita’ per la comunita’ scientifica. Come sappiamo, trattando argomenti di questo tipo, non troviamo risposte certe perche’ gli studi sono ancora in corso e, cosi’ come deve avvenire, ci sono discussioni tra gli scienziati che propongono ipotesi, le smentiscono, ne discutono, ecc, come la vera scienza deve essere. Qualora ci fossero ulteriori novita’ a riguardo, ne parleremo in un futuro articolo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Scie chimiche, la prova storica!

13 Gen

Un nostro caro lettore mi ha segnalato tramite mail una nuova importante “prova” a sostegno dell’esistenza delle scie chimiche. Negli ultimi giorni, questo presunto documento sta riaccendendo notevolmente la discussione su questa tematica, anche sotto la spinta dei soliti siti che non possono che trarre benefici dal far credere che ci sia un complotto mondiale per spargere veleni mediante aerosol atmosferico.

Di scie chimiche, mostrando di volta in volta l’assurdita’ di queste affermazioni, abbiamo parlato in diversi articoli. Ecco una serie degli ultimi post:

Alcune considerazione sulle scie chimiche

Scie Chimiche: il prelievo in quota

Scie chimiche e cloud seeding

Come difendersi dalle scie chimiche

Il Dibromoetano e le scie chimiche

A-380 modificato per spargere scie chimiche

Scie chimiche, ora abbiamo la prova

L’accordo Italia-USA per spargere scie chimiche

Tornando alla nuova notizia, senza girarci troppo intorno, vi mostro la prima pagina di questo documento:

Documento NASA-1971

Documento NASA-1971

Leggete molto bene il titolo: “Barium Cloud Launch”, cioe’ lancio o dispersione di nuvole di Bario. Si tratta di un documento storico timbrato NASA. Questa potrebbe essere la definitiva e schiacciante prova per l’esistenza di un complotto mondiale per spargere veleni.

Vuoi vedere che alla fine i complottisti avevano ragione e anche gli scienziati sono coinvolti in questo progetto?

Direi di no, ma cerchiamo di ragionare su questo documento, prima di trarre azzardate conclusioni.

Per prima cosa, vedere solo la prima pagina del report potrebbe portare fuori strada. Prima di iniziare a discutere, scarichiamo dunque l’intero documento a questo indirizzo:

NASA, 1971

Come vedete, quella riportata e’ veramente la prima pagina di questo documento.

Ora, leggendo i siti complottisti, si possono vedere davvero delle perle di ragionamento e disinformazione. Come potete leggere da soli, si tratta di un’operazione prevista tra la NASA e un istituto di ricerca tedesco. Bene, questo piccolo particolare viene interpretato dai complottisti come un’immensa operazione bellica pensata dal governo americano insieme ai nazisti, vengono definiti cosi’, tedeschi per continuare esperimenti sulla popolazione inerme.

Leggete attentamente quanto contenuto nel documento e, soprattutto, cosa che forse qualcuno non ha fatto o ha fatto finta di non fare, capiamo quello che il documento dice. Come potete leggere, si tratta di un esperimento “scientifico” per studiare i campi elettrici e magnetici ad alta quota. Per alta quota, non sparo numeri ma leggo dal documento, si parla di 20000 miglia di altitudine.

In cosa consiste l’esperimento?

Si prevede il lancio di un vettore per andare ad alta quota e spargere una miscela di ossido di bario e rame per formare una nuvola di questi composti ad alta quota. Ora, queste sostanza sono sensibili al campo magnetico e il loro sucessivo moto potrebbe essere utilizzato proprio per studiare intensita’, direzione e verso dei vettori di campo a queste altezze.

Per farvi un esempio, che poi e’ lo stesso che trovate nel documento, se prendete della limatura di ferro e la spargete intorno ad un magnete, vedrete come la limatura si orienta esattamente nella direzione delle linee del campo magnetico, cioe’ quelle linee invisibili che vanno dal polo nord al polo sud della calamita. Secondo le stesso principio, gli ossidi in atmosfera si orietano e seguono le linee di campo. Osservando da terra, con speciali stazioni appositamente pensate, potete dunque ottenere informazioni su questi parametri fisici.

Detto questo, quello riportato nel report non e’ assolutamente un esperimento di geoingegneria, o come vogliono chiamarla i complottisti, ma un esperimento scientifico volto ad evidenziare importanti caratteristiche del nostro pianeta e del vento solare che incide sugli strati alti dell’atmosfera.

Ora pero’, prima di chiudere facciamo un’altra importante considerazione. Secondo voi, se si trattasse di un segretissimo esperimento condotto dalla NASA con i nazisti su ordine di qualche potente organizzazione misteriosa, il documento sarebbe sul web facilmente scaricabile da chiunque? Personalmente, credo proprio di no.

Nello stesso sito dove abbiamo scaricato questo pdf, ci sono tantissimi articoli visto che si tratta della pagina in cui la NASA deposita i suoi Technical Reports. Mi permetto di dare un bel suggerimento ai compottisti per cercare nuove perle da spacciare come prove. Se andate sul sito generale a questo indirizzo:

NASA, TRS

Trovate anche un motore di ricerca per cercare tra i documenti. Se provate ad immetere come parole chiave “barium cloud”, trovate tantissimi articoli e proposte di misura che sono state fatte nel corso degli anni. I complottisti potrebbero creare un nuovo “scandalo” utilizzando uno per uno questi articoli, almeno avrebbero materiale per andare avanti altro tempo e cercare di convincere sempre piu’ persone dell’esistenza delle scie chimiche.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Se il vuoto non e’ vuoto

12 Ago

Come nell’articolo precedente, anche in questo caso vorrei parlarvi di un argomento suggerito nella sezione:

Hai domande o dubbi?

Piccola premessa iniziale, il fatto di scrivere articoli “su commissione” e’ qualcosa che mi rende veramente fiero di questo spazio creato sul web. Avere cosi’ tante richieste, significa che le persone sono coinvolte nella discussione, si informano e poi chiedono di poter approfondire gli argomenti insieme sul blog. Questo non puo’ che rendermi felice!

Detto questo, passiamo invece all’argomento della discussione. Come potete leggere, la richiesta e’ apparentemente molto semplice, si chiede di analizzare il discorso circa l’energia di punto zero.

Che significa energia di punto zero?

Ve la metto in modo molto semplice, immaginiamo uno spazio vuoto. Per vuoto non intendo un qualcosa creato con una pompa con la quale portare fuori le particelle del mezzo, ma qualcosa di completamente vuoto. Bene, questo spazio completamente vuoto e senza particelle ha un’energia. Per dirla nella forma “scienza e spettacolo”: il vuoto non e’ vuoto.

Cosa significa?

Mi metto nei panni di un non addetto ai lavori che prova a cercare una spiegazione. Vi faccio questo breve excursus perche’ girando su internet si trovano cose alcquanto curiose. Se andate su wikipedia, ormai punto di riferimento per tante persone curiose che vogliono capire le cose, trovate scritto:

Dal principio di indeterminazione di Heisenberg deriva che il vuoto è permeato da un mare di fluttuazioni quantistiche che creano coppie di particelle e anti-particelle virtuali che si annichiliscono in un tempo inversamente proporzionale alla propria energia. Il contributo complessivo all’energia del vuoto risulta così mediamente diverso da zero e pari a

 \epsilon = \frac{h\nu}{2}

dove h è la costante di Planck e  \nu è la frequenza di un generico modo di vibrazione associabile alla lunghezza d’onda materiale delle particelle virtuali.

Che dire, mi sembra chiarissimo. Ovviamente, la mia e’ un’affermazione sarcastica. Quanto trovate non mi sembra assolutamente in una forma divulgativa comprensibile ai piu’.

Cerchiamo dunque di fare un po’ di chiarezza e di capire cosa significa la frase: il vuoto non e’ vuoto.

Come anticipato, immaginiamo di poter disporre di un vuoto, cioe’ di uno spazio in cui sono state eliminate tutte le particelle. Ovviamente, uno spazio di questo tipo e’ impossibile da creare. Se anche ci mettessimo nello spazio, ci sarebbe comunque una certa densita’ di particelle che “sporcherebbero” il nostro vuoto, non rendendolo piu’ tale.

Rimaniamo pero’ nell’ambito dell’immaginazione e costruiamo il nostro esperimento mentale.

In fisica, per poter trattare il vuoto, e’ necessario tenere conto di alcune leggi molto importanti che ci vengono date dalla quantistica. Tra queste c’e’ ovviamente il principio di indeterminazione di Heisenberg che molti conoscono. Detto in modo molto divulgativo, e’ impossibile conoscere con precisione assoluta la posizione e la velocita’ di una particella. In realta’, questo principio e’ scritto in forma di disuguaglianza, cioe’ all’aumentare della precisione nella determinazione di una grandezza, aumenta l’incertezza sulla misura dell’altra variabile.

Premesso questo, osservando il vuoto ad una scala molto grande, vedremmo qualcosa di stabile e fermo nel tempo. Andando pero’ a scale sempre piu’ piccole,dove se vogliamo la fisica quantistica detta le regole, vedremmo una situazione molto caotica con coppie di particelle e antiparticelle che vengono create e distrutte in continuazione. Piu’ l’energia delle particelle e’ alta, minore e’ il tempo in cui vivono.

Per farvi capire, immaginate di osservare il mare da un aereo a quota molto alta. Da questa posizione, vedreste il mare immobile sotto di voi, come se fosse dipinto su una tela. Se ora vi avvicinate verso il basso, man mano che scendete, comincereste ad osservare le onde, i movimenti dell’acqua, ecc. Arrivati ad una distanza molto piccola, potreste anche accorgervi che quella situazione cosi’ stabile vista dall’alto, nascondeva in realta’ un mare in tempesta.

Tornado al nostro vuoto quantistico, questa continua creazione di particelle impica dunque che il vuoto non e’ assolutamente vuoto. L’energia associata a questo stato, e’ proprio quella dovuta a queste particelle, o meglio alle onde a loro associate.

Possibile che questo continuo creare particelle non provochi effetti?

In realta’, gli effetti li provoca e come, e anche sotto diversi aspetti. Prima di tutto, se non esistesse l’energia di punto zero, il principio di indeterminazione potrebbe essere violato ponendo una singola particella nello spazio.

Per vedere invece un caso comprensibile a tutti, immaginate il nostro universo. Come sapete, il nostro universo e’ oggi in espansione come venne dimostrato per la prima volta da Hubble. Successivamente pero’, ci siamo accorti non solo che il nostro universo e’ in espansione, ma che sta anche accelerando rispetto al passato.

Come possiamo spiegare questo? Se il tutto dipendesse dal Big Bang, cioe’ il motore dell’espansione fosse il botto iniziale, ci si aspetterebbe un universo, forse anche in espansione, ma che pero’ sta diminuendo sempre di piu’ la sua spinta iniziale. In questa formulazione, sarebbe impossibile vedere un unverso che ad un certo punto accelera.

Questa apparente incongruenza viene appunto spiegata chiamando in causa l’energia del vuoto. Le particelle virtuali create nel vuoto, sono in relazione con l’energia oscura che provoca l’accelerazione che abbiamo misurato nell’espansione. Come sapete, dal punto di vista fisico, stiamo entrando in un terreno poco conosciuto. Parlare di energia oscura e’, allo stato attuale, ammettere grosse lacune nella nostra comprensione dei meccanismo dell’universo.

Esistono altre prove dell’esistenza dell’energia del vuoto?

Ovviamente si! La prova piu’ immediata a sostegno dell’esistenza dell’energia del vuoto e’ stata la dimostrazione dell’effetto Casimir.

Cerchiamo di spiegare in modo semplice di cosa si tratta.

Effetto Casimir: a causa delle fluttuazioni del vuoto si crea una forza di attrazione tra le lastre

Effetto Casimir: a causa delle fluttuazioni del vuoto si crea una forza di attrazione tra le lastre

Immaginate di porre due lastre metalliche piane e parallele ad una distanza molto piccola tra loro, dell’ordine dei micron o meno. Questo sistema viene posizionato in una regione di spazio in cui e’ stato creato il vuoto assoluto. Ora, come visto, in questa condizione si creeranno comunque tantissime coppie particella-antiparticella generate nel vuoto. Come anticipato, esiste pero’ il dualismo particella-onda, per cui ad ogni particella possiamo attribuire uno stato ondulatorio. Detto in altri termini, per ciascuna particella, ci sono casi in cui si comportera’ come una particella, altri come un’onda.

Benissimo. Guardate la figura a lato. Le coppie di particelle si produrranno ovunque, nella zona esterna, cosi’ come tra le lastre. Ora pero’, in virtu’ del dualismo particella onda, nello spazio interno avremmo a disposizione solo pochi micron di spazio. Questo significa che tra le lastre potremmo avere solo particelle con lunghezza d’onda molto piccola. Dal momento che l’energia di una particella e’ direttamente proporzionale alla sua lunghezza d’onda, l’energia generata tra le lastre e’ inferiore a quella sviluppata all’esterno. Effetto netto di questo squilibrio sara’ una forza che tende ad avvicinare tra loro le piastre.

Fantastico. E’ mai stato dimostrato questo effetto? Assolutamente si. La prima prova venne tentata nei laboratori Philips nel 1958 ma i risultati, anche se non escludevano la presenza dell’effetto Casimir, erano inficiati da errori sperimentali troppo grandi. Per una verifica diretta di questo effetto, si dovette aspettare fino al 1997 quando nell’universita’ di Washington venne dimostrato l’effetto Casimir utilizzando superfici sferiche in luogo di quelle piane. Questa soluzione venne adottata per eliminare i problemi di allineamento tra le piastre.

La dimostrazione dell’effetto cosi’ come ipotizzato da Casimir, cioe’ con lastre piane e parallele, arrivo’ solo nel 2001 quando nell’universita’ di Padova si pote’ realizzare un allineamento submicrometrico con risonatori.

Concludendo, se andiamo a scale molto piccole, la meccanica quantistica ci predice uno stato di vuoto densamente popolato da coppie di particelle e antiparticelle che continuamente vengono create e distrutte. Il tempo in cui ciascuna particella vive e’ inversamente proporzionale alla sua energia. In questa condizione, le coppie prodotte contribuiscono ad un livello non nullo di energia del vuoto. Effetti indiretti dell’energia del vuoto arrivano, tra l’altro, dell’espansione accelerata dell’universo, riconducibile all’esistenza di un’energia oscura. Oltre a questo, una dimostrazione pratica dell’esistenza dell’energia del vuoto arriva dall’effetto Casimir. In questo caso, non solo si dimostra l’esistenza di coppie di particelle virtuali, ma si evidenzia anche come queste particelle possano dare effetti tangibili.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

E parliamo di questo Big Bang

9 Apr

Dal momento che, in questo post:

Il primo vagito dell’universo

e in molti altri ancora, abbiamo parlato di nascita ed evoluzione del nostro universo, credo sia giunto il momento di dedicare un articolo apposito su questi concetti. Premetto, che cerchero’ di matenere un profilo piu’ semplice e divulgativo possibile, anche se ci stiamo addentrando in teorie, e spesso anche supposizioni, fisiche non del tutto banali. In questo senso, cerchero’ il piu’ possibile di utilizzare esempi anche volutamente forzati proprio per rendere il tutto maggiormente accessibile a tutti.

Partiamo dalle basi. Allo stato attuale della nostra conoscenza, la teoria maggiormente accettata all’orgine dell’universo e’ quella per cui il tutto si sarebbe formato da un’esplosione iniziale chiamata appunto Big Bang. Come visto nell’articolo precedentemente riportato, non dobbiamo immaginare questo evento come un classico boato, da cui tutti si sarebbe formato, bensi’ come un processo di espansione, anche non costante e molto veloce in alcuni istanti, ma che dura tutt’ora.

Perche’ e’ avvenuto il Big Bang?

Immaginiamo di fissare una scala temporale all’istante iniziale, cioe’ nel momento stesso in cui e’ iniziato il Big Bang. Per dirlo con parole semplici, immaginate di avere un cronometro e di farlo partire nel mometo in cui inizia questa espansione. Secondo la teoria, prima che iniziasse il big bang, materia e antimateria convivevano insieme in una singolarita’, cioe’ costituivano un volume, al limite occupante un punto, estremamemente denso e a temperatura elevatissima. Nella concezione fisica, in questa fase non esistevano le particelle, il tempo e le forze.

Poi cosa e’ successo?

Quando il sistema e’ divenuto instabile, dopo un tempo pari a 10^(-43) secondi, e’ avvenuta quella che si chiama la prima transizione di fase. Cosa significa? Le particelle si sono formate da questo plasma iniziale e ognuna di loro aveva un’energia molto elevata detta “energia di Planck”. In questa fase, detta di Grande Unificazione, tutte le forze, compresa quella gravitazionale, erano unificate, cioe’ si manifestavano come un’unica interazione.

Bene, fermiamoci un attimo e cerchiamo di capire meglio. Al punto in cui siamo arrivati, il big bang e’ gia iniziato. Le particelle cosi’ come le forze, anche se ancora unificate, si sono formate. Riprendiamo dall’inizio. Al tempo iniziale, cioe’ prima che iniziasse l’espansione, materia e antimateria convivano insieme. Dopo un tempo brevissimo, quando si formano le particelle, dopo 10^(-43) secondi, ci sono ancora materia e antimateria, appena 10^(-6) secondi dopo l’inizio, rimane solo materia.

Dove e’ finita l’antimateria?

Per chi lo avesse perso, abbiamo parlato in dettaglio di antimateria in questo post:

Due parole sull’antimateria

Il nostro attuale universo e’ formato solo da materia. L’antimateria e’ scomparsa. Perche’? Affiche’ questo sia possibile, e dunque sia iniziato il big bang, la fisica ci dice che devono essere state verificate le 3 condizioni di Sakharov. Senza entrare troppo nel dettaglio, in questa ipotesi, ci deve essere stata un’asimmetria tra materia e antimateria, che ha portato allo squilibrio che vediamo oggi. In particolare, in questo contesto si parla appunto di violazione di CP, cioe’ proprio di squilibrio della simmetria materia-antimateria nell’universo.

E’ possibile che siano rimaste delle sacche di antimateria da qualche parte oppure che l’universo sia formato da due distinte zone, una di materia ed una di antimateria?

La risposta e’ no. Capiamo il perche’. Quando entrano in contatto, materia e antimateria si annichilano, cioe’ ineragiscono distruggendosi a vicenda, e producendo radiazione gamma, cioe’, in linea di principio forzando l’esempio, luce. Se esistessero zone ben delimitate di materia e antimateria, nel punto di separazione tra di esse, si avrebbe annichilazione con la conseguente produzione di raggi gamma. Di questa radiazione non vi e’ nessuna evidenza ne’ dagli osservatori a Terra, ne’ dai satelliti, ne’ tantomeno dalle missioni esplorative che abbiamo mandato nello spazio.

Le condizioni di Sakharov offrono dunque un modello teorico in grado di spiegare perche’ potrebbe essere avvenuto questo squilibrio e quindi sia iniziato il big bang. Dico “potrebbe” perche’ al momento non tutte le condizioni sono state verificate e grande aiuto in questo senso dovrebbe venire dallo studio della fisica delle particelle agli acceleratori. Aprendo una piccola parentesi, quando in un acceleratore facciamo scontrare due fasci, questi interagiscono tra loro ad altissima energia. Man mano che aumentiamo l’energia, utilizzando sistemi sempre piu’ potenti, e’ come se andassimo indietro nel tempo tendendo verso il big bang. Ovviamente le energie oggi disponibili sono ancora molto lontane da quella iniziale, ma questo genere di studi ci consentono di comprendere molte cose importanti sul mondo delle particelle elementari.

Dunque, ricapitolando, abbiamo un sistema iniziale materia-antimateria, intervengono le condizioni di Sakharov e il sistema inizia ad espandersi facendo scomparire l’antimateria. Inizialmente le forze erano tutte unificate e le particelle si scontravano tra loro ad altissima energia.

Dopo, cosa e’ successo?

Man mano che il tempo scorreva, si passo’ attraverso varie fasi, ognuna caratterizzata da una rottura di simmetria di qualche tipo. In tal senso, le forza si divisero tra loro, lasciando quelle che oggi indichiamo come forze fondamentali: forte, debole, elettromagnetica e gravitazionale. In particolare, quest’ultima fu la prima a separarsi non appena la temperatura inizio’ a scendere e le onde gravitazionali poterono propagarsi liberamente.

Qualche minuto dopo l’istante iniziale, le particelle, cioe’ protoni e neutroni, poterono iniziare a combianrsi formando nuclei di Deuterio ed Elio. Questa importante fase viene chiamata “nucleosintesi”.

La temperatura dell’universo era pero’ ancora troppo elevata. Per osservare la formazione dei primi atomi, si dovette aspettare ancora circa 379000 anni, quando materia e radiazione finalmente si separarono e quest’ultima pote’ viaggiare libera nel cosmo. Di questo preciso istante, abbiamo anche parlato in questo post:

Universo: foto da piccolo

in cui, come visto, si ebbe la formazione della radiazione di fondo che oggi, alla temperatura attuale, e’ di 2.7K con uno spettro nelle microonde.

Dopo questa fase, gli addensamenti di materia cominciarono ad attrarsi gravitazionalmente, formando poi le galassie, le stelle, i pianeti, ecc, cioe’ , quello che vediamo oggi osservando l’universo.

Ma esistono delle prove di tutto questo? E se in realta’ il big bang non fosse mai avvenuto?

Come visto in altri post, ma anche come comprensibile da quanto detto, proprio la radiazione di fondo costituisce una prova del big bang. Detto in altri termini, la CMB non sarebbe altro che un’eco di quanto avvenuto, cioe’ un reperto fossile dell’esplosione iniziale.

Inoltre, la velocita’ di espansione delle Galassie, misurata per la prima volta da Hubble, costituisce un’altra prova a sostegno di questa teoria.

Partendo da quest’ultimo concetto, una domanda lecita che chiunque potrebbe farsi e’: “dove e’ avvenuto il Big Bang?”

Modello dell'espansione dal Big Bang

Modello dell’espansione dal Big Bang

In tal senso, se inizialmente si aveva un punto da cui poi tutto si e’ espanso, immaginando un rewind dovremmo essere in grado di identificare il punto iniziale del big bang. In realta’, non e’ cosi’. I fisici sono soliti dire che il Big Bang e’ avvenuto ovunque o anche che ogni punto dell’universo e’ un centro di espansione.

Che significa?

L’espansione dello spazio tempo avviene in piu’ di tre dimesioni, per cui non e’ facile immaginare a mente cosa sia avvenuto. Per capire questo concetto, immaginate l’universo come un palloncino inizialmente sgonfio. Ora, prendendo un pennarello, fate dei puntini sulla superificie. Se le pareti del palloncino sono l’universo che si espande, mentre gonfiate il palloncino, ciascun punto, tra quelli che avete disegnato, vedra’ gli altri allontarsi da lui. In questo contesto, ciascun punto e’ centro dell’espansione, cioe’ ogni punto vede gli altri punti allontarsi da lui in tutte le direzioni. L’animazione riportata potra’ aiutarvi a capire meglio questo discorso. Fissando un punto, tutti gli altri si allontanano da questo, indipendentemente da quello che scegliete come vostro centro. Dunque, se osservate l’universo dalla Terra, vedrete tutti gli altri corpi allontarsi da noi, come se la Terra fosse il centro dell’espansione.

Concludendo, esistono diverse prove sperimentali a sostegno del Big Bang, cioe’ di questa esplosione iniziale da cui, partendo da uno stato di equilibrio materia-antimateria, tutto si e’ formato passando attraverso diverse rotture di simmetrie. Ad oggi, o forse mai, nessuno potra’ spiegare perche’ questa materia e antimateria erano li o cosa c’era prima di questo equilibrio. Se volete, ognuno, con il suo pensiero e la sua convinzione, puo’ dare la sua spiegazione. I processi di evoluzione dal tempo zero, sono ipotizzati, ma ancora molto lavoro resta da fare per verificare queste teorie e capire a fondo perche’, come e con che intensita’ sino avvenuti determinati meccanismi. Insomma, di lavoro da fare ce n’e’ ancora molto.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

 

Il primo vagito dell’universo che nasce

8 Apr

Come sappiamo, e come abbiamo visto in altri post, allo stato attuale della nostra conoscenza, l’universo che vediamo intorno a noi si e’ formato da un Big Bang, cioe’ da quella che comunemente assumiamo come un’enorme esplosione. Sempre basandoci sulle informazioni e sulle ipotesi accettate, prima del Big Bang, materia e antimateria convivano insieme. Ad un certo punto, sempre rimanendo nel campo delle ipotesi, sono intervenute delle condizioni particolari, note come “condizioni di Sakharov”, per cui il sistema e’ divenuto instabile. Nella seguente esplosione l’antimateria e’ scomparsa lasciando il posto alla materia che espandendosi, e dunque raffreddandosi, ha poi formato le galassie, le stelle i pianeti e tutto cio’ che vediamo oggi.

Questo che potrebbe apparire come un quadro molto chiaro e’ ben compreso, non deve assolutamente farci credere di aver capito tutto. Come visto in questi post:

La materia oscura

Troppa antimateria nello spazio

ancora molto poco sappiamo della costituzione del nostro universo. Solo il 5% della materia che lo compone e’ in realta’ identica a quella barionica che forma quello che ci circonda. Anche le suddette condizioni di Sakharov sono solo delle ipotesi circa l’origine dell’universo, attualmente sotto studio, ma su cui ancora molto resta da scoprire e verificare.

Premesso questo, solo qualche giorno fa, abbiamo parlato del Big Bang e della Radiazione Cosmica di Fondo, in questo articolo:

Universo: foto da piccolo

Come visto, la CMB, cioe’ quel fondo costante a 2.7K che riempie il nostro universo, e’ proprio una delle prove a sostegno dell’ipotesi del Big Bang. Il telescopio Plank e’ riuscito a riprendere una mappa dell’universo, quando questo aveva soltanto 360000 anni. Prima di questo limite, la radiazione di fondo non esisteva perche’ i fotoni erano intrappolati all’interno di questo plasma di elettroni e protoni non combinati che impedivano alla radizione di uscire verso l’esterno.

Solo un paio di giorni fa, cioe’ subito dopo l’uscita dei risultati di Planck, un fisico dell’universita’ di Washington, ha provato a ricostruire il suono prodotto dal Big Bang, proprio utilizzando i dati di Planck.

Fate attenzione, questo e’ quello che molti giornali hanno scritto, tra un attimo cercheremo di capire meglio cosa significa “ascoltare” il Big Bang.

Come detto all’inizio, nell’immaginario collettivo, il Big Bang viene visto come un’enorme esplosione da cui tutto si e’ originato. Bene, siete pronti “al botto”? Allora vi riporto il link in cui ascoltare la “tremenda” esplosione del Big Bang:

Il suono del Big Bang

Sentito che “botta”? Siete rimasti delusi? Vi aspettavate un esplosione?

Come avete sentito, si tratta di un sibilo continuo che lentamente scende verso frequenze piu’ basse.

La domanda interessante, e su cui molti dei giornali non hanno dato risposta, e’ invece: “ma che significa suono del big bang?”.

Come detto, questo suono sarebbe stato ottenuto prendendo i dati della radiazione di fondo. Come ormai sappiamo, si tratta di una radiazione elettromagnetica, certamente non di un’onda sonora. E allora?

Per definizione, per propagarsi un suono ha bisogno di un mezzo. Quando noi parliamo, semplicemente creiamo delle compressione e rarefazioni dell’aria intorno a noi, che mettono in vibrazione gli ossicini delle orecchie e quindi i suoni vengono ascoltati. E nel caso del Big Bang? In questo caso, il mezzo sarebbe l’interno baby universo, ancora molto compatto, che veniva messo in una sorta di “vibrazione” dalla radiazione che non poteva neanche fuoriuscire verso l’esterno.

Per ottenere il suono che abbiamo ascoltato, i fisici di Washington hanno utilizzato le diverse mappe ipotizzate per la CMB partendo proprio dagli ultimi risultati del telescopio Planck. Queste mappe sono state caricate su un software chiamato Mathematica e sono state trasormate in suoni. Per fare questo, le mappe della CMB sono state convertite in rumori, in realta’ neanche udibili. Per ottenere il suono che abbiamo ascoltato e’ stato necessario amplificare il rumore della CMB di un fattore 10 elevato alla 26, cioe’ 10 seguito da 25 zeri. Certamente un numero enorme e poco manipolabile dai non addetti ai lavori.

Nonostante questo enorme fattore di amplificazione, i 100 secondi di suono che abbiamo ascoltato sono relativi solo ad un periodo tra 380000 e 760000 anni dopo il Big Bang. Come detto, prima di questo limite, la radiazione non poteva uscire e dunque non c’era un vero e proprio suono. Dopo 760000 anni invece, l’universo cominciava ad essere talmente rarefatto che il suono assumeva frequenze sempre piu’ basse. Questo spiega anche il perche’, andando avanti con la registrazione, il suono diventa sempre piu’ grave.

Concludendo, personalmente trovo questo esperimento molto carino. Se vogliamo essere precisi, non stiamo parlando del vero rumore prodotto dal Big Bang per i motivi elencati prima. Nonostante questo, e’ molto affascinante la trasposizione fatta tra CMB e onde sonore, che ci permette, almeno in parte, di capire come e’ avvenuto il Big Bang. Detto questo, da oggi in poi, forse non penseremo piu’ al Big Bang come ad una semplice esplosione.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Universo: foto da piccolo

24 Mar

In questi ultimi giorni, tutti i giornali, i telegiornali, i siti internet specializzati, sono stati invasi da articoli scientifici riguardanti le ultime scoperte fatte con il telescopio Planck. I dati di questo telescopio, gestito interamente dalla nostra Agenzia Spaziale Europea, hanno mostrato una foto dell’universo quando aveva solo 380000 anni. Ecco la foto che sicuramente vi sara’ capitato di vedere:

L'universo alla tenera eta' di 380000 anni

L’universo alla tenera eta’ di 380000 anni

Si parla anche di risultati sconvolgenti: l’universo e’ piu’ vecchio di quello che si pensava fino ad oggi. Inoltre, la radiazione cosmica di fondo presenta delle differenze tra i due emisferi oltre a mostrare una regione fredda piu’ estesa di quella che si pensava.

Fantastico, direi io, questi risultati mi hanno veramente impressionato. Ora pero’, la domanda che mi sono posto e’ molto semplice, anche su giornali nazionali, ho visto articoli che commentavano questa foto parlando di CMB, anisotropie, fase inflazionistica. In pochissimi pero’, si sono degnati di spiegare in modo semplice il significato di questi termini. Purtroppo, spesso vedo molti articoli che ripetono a pappagallo le notizie senza neanche chiedersi cosa significano quei termini che stanno riportando.

Cerchiamo, per quanto possibile, di provare a fare un po’ chiarezza spiegando in maniera completamente divulgativa cosa significa: radiazione cosmica di fondo, periodo inflazionistitico, ecc.

Andiamo con ordine. La foto da cui siamo partiti ritrae l’universo quando aveva 380000 anni ed in particolare mostra la mappa della radiazione cosmica di fondo.

Prima cosa, come facciamo a fare una foto dell’universo del passato? In questo caso la risposta e’ molto semplice e tutti noi siamo in grado di sperimentarla facilmente. Quando alziamo lo sguardo e vediamo il cielo stellato, in realta’ e’ come se stessimo facendo un viaggio nel tempo. Se guardiamo una stella distante 100 anni luce da noi, significa che quell’immagine che osserviamo ha impiegato 100 anni per giungere fino a noi. Dunque, quella che vediamo non e’ la stella oggi, bensi’ com’era 100 anni fa. Piu’ le stelle sono lontane, maggiore e’ il salto indietro che facciamo.

Bene, questo e’ il principio che stiamo usando. Quando mandiamo un telescopio in orbita, migliore e’ la sua ottica, piu’ lontano possiamo vedere e dunque, equivalentemente, piu’ indietro nel tempo possiamo andare.

Facciamo dunque un altro piccolo passo avanti. Planck sta osservando l’universo quando aveva solo 380000 anni tramite la CMB o radiazione cosmica a microonde. Cosa sarebbe questa CMB?

Partiamo dall’origine. La teoria accettata sull’origine dell’universo e’ che questo si sia espanso inizialmente da un big bang. Un plasma probabilmente formato da materia e antimateria ad un certo punto e’ esploso, l’antimateria e’ scomparsa lasciando il posto alla materia che ha iniziato ad espandersi e, di conseguenza, si e’ raffreddata. Bene, la CMB sarebbe un po’ come l’eco del big bang e, proprio per questo, e’ considerata una delle prove a sostegno dell’esplosione iniziale.

Come si e’ formata la radiazione di fondo? Soltanto 10^(-37) secondi dopo il big bang ci sarebbe stata una fase detta di inflazione in cui l’espansione dell’universo ha subito una rapida accelerazione. Dopo 10^(-6) secondi, l’universo era ancora costituito da un plasma molto caldo di  fotoni, elettroni e protoni, l’alta energia delle particelle faceva continuamente scontrare i fotoni con gli elettroni che dunque non potevano espandersi liberamente. Quando poi la temperatura dell’universo e’ scesa intorno ai 3000 gradi, elettroni e protoni hanno cominciato a combianrsi formando atomi di idrogeno e i fotoni hanno potuto fuoriuscire formando una radiazione piu’ o meno uniforme. Bene, questo e’ avvenuto, piu’ o meno, quando l’universo aveva gia’ 380000 anni.

Capiamo subito due cose: la foto da cui siamo partiti e’ dunque relativa a questo periodo, cioe’ quando la materia (elettroni e protoni) hanno potuto separarsi dalla radiazione (fotoni). Stando a questo meccanismo, capite anche perche’ sui giornali trovate che questa e’ la piu’ vecchia foto che potrebbe essere scattata. Prima di questo momento infatti, la radiazione non poteva fuoriuscire e non esisteva questo fondo di fotoni.

Bene, dopo la separazione tra materia e radiazione, l’universo ha continuato ad espandersi, dunque a raffreddarsi e quindi la temperatura della CMB e’ diminuita. A 380000 anni di eta’ dell’universo, la CMB aveva una temperatura di circa 3000 gradi, oggi la CMB e’ nota come fondo cosmico di microonde con una temperatura media di 2,7 gradi Kelvin. Per completezza, e’ detta di microonde perche’ oggi la temperatura della radiazione sposta lo spettro appunto su queste lunghezze d’onda.

Capite bene come l’evidenza della CMB, osservata per la prima volta nel 1964, sia stata una conferma proprio del modello del big bang sull’origine del nostro universo.

E’ interessante spendere due parole proprio sulla scoperta della CMB. L’esistenza di questa radiazione di fondo venne predetta per la prima volta nel 1948 da Gamow, Alpher e Herman ipotizzando una CMB a 5 Kelvin. Successivamente, questo valore venne piu’ volte corretto a seconda dei modelli che venivano utilizzati e dai nuovi calcoli fatti. Dapprima, a questa ipotesi non venne dato molto peso tra la comunita’ astronomica, fino a quando a partire dal 1960 l’ipotesi della CMB venne riproposta e messa in relazione con la teoria del Big Bang. Da questo momento, inizio’ una vera e propria corsa tra vari gruppi per cercare di individuare per primi la CMB.

Penzias e Wilson davanti all'antenna dei Bell Laboratories

Penzias e Wilson davanti all’antenna dei Bell Laboratories

Con grande sorpresa pero’ la CMB non venne individuata da nessuno di questi gruppi, tra cui i principali concorrenti erano gli Stati Uniti e la Russia, bensi’ da due ingegneri, Penzias e Wilson, con un radiotelescopio pensato per tutt’altre applicazioni. Nel 1965 infatti Penzias e Wilson stavano lavorando al loro radiotelescopio ai Bell Laboratories per lo studio della trasmissione dei segnali attraverso il satellite. Osservando i dati, i due si accorsero di un rumore di fondo a circa 3 Kelvin che non comprendenvano. Diversi tentativi furono fatti per eliminare quello che pensavano essere un rumore elettronico del telescopio. Solo per darvi un’idea, pensarono che questo fondo potesse essere dovuto al guano dei piccioni sull’antenna e per questo motivo salirono sull’antenna per ripulirla a fondo. Nonostante questo, il rumore di fondo rimaneva nei dati. Il punto di svolta si ebbe quando l’astronomo Dicke venne a conoscenza di questo “problema” dell’antenna di Penzias e Wilson e capi’ che in realta’ erano riusciti ad osservare per la prima volta la CMB. Celebre divenne la frase di Dicke quando apprese la notizia: “Boys, we’ve been scooped”, cioe’ “Ragazzi ci hanno rubato lo scoop”. Penzias e Wilson ricevettero il premio Nobel nel 1978 lasciando a bocca asciutta tutti gli astronomi intenti a cercare la CMB.

Da quanto detto, capite bene l’importanza di questa scoperta. La CMB e’ considerata una delle conferme sperimentali al modello del Big Bang e quindi sull’origine del nostro universo. Proprio questa connessione, rende la radiazione di fondo un importante strumento per capire quanto avvenuto dopo il Big Bang, cioe’ il perche’, raffreddandosi, l’universo ha formato aggreggati di materia come stelle e pianeti, lasciando uno spazio quasi vuoto a separazione.

Le osservazioni del telescopio Planck, e dunque ancora la foto da cui siamo partiti, hanno permesso di scoprire nuove importanti dinamiche del nostro universo.

Prima di tutto, la mappa della radiazione trovata mostra delle differenze, o meglio delle anisotropie. In particolare, i due emisferi presentano delle piccole differenze ed inoltre e’ stata individuata una regione piu’ fredda delle altre, anche detta “cold region”. Queste differenze furono osservate anche con la precedente missione WMAP della NASA, ma in questo caso si penso’ ad un’incertezza strumentale del telescopio. Nel caso di Plack, la tecnologia e le performance del telescopio confermano invece l’esistenza di regioni “diverse” rispetto alle altre.

Anche se puo’ sembrare insignificante, l’evidenza di queste regioni mette in dubbio uno dei capisaldi dell’astronomia, cioe’ che l’universo sia isotropo a grande distanza. Secondo i modelli attualmente utilizzati, a seguito dell’espansione, l’universo dovrebbe apparire isotropo, cioe’ “uniforme”, in qualsiasi direzione. Le differenze mostrate da Planck aprono dunque lo scenario a nuovi modelli cosmologici da validare. Notate come si parli di “grande distanza”, questo perche’ su scale minori esistono anisotropie appunto dovute alla presenza di stelle e pianeti.

Ci sono anche altri importanti risultati che Planck ha permesso di ottenere ma di cui si e’ parlato poco sui giornali. In primis, i dati misurati da Planck hanno permesso di ritoccare il valore della costante di Hubble. Questo parametro indica la velocita’ con cui le galassie si allontanano tra loro e dunque e’ di nuovo collegato all’espansione dell’universo. In particolare, il nuovo valore di questa costante ha permesso di modificare leggermente l’eta’ dell’universo portandola a 13,82 miliardi di anni, circa 100 milioni di anni di piu’ di quanto si pensava. Capite dunque perche’ su alcuni articoli si dice che l’universo e’ piu’ vecchio di quanto si pensava.

Inoltre, sempre grazie ai risultati di Planck e’ stato possibile ritoccare le percentuali di materia, materia oscura e energia oscura che formano il nostro universo. Come saprete, la materia barionica, cioe’ quella di cui siamo composti anche noi, e’ in realta’ l’ingrediente meno abbondante nel nostro universo. Solo il 4,9% del nostro universo e’ formato da materia ordinaria che conosciamo. Il 26,8% dell’universo e’ invece formato da “Materia Oscura”, qualcosa che sappiamo che esiste dal momento che ne vediamo gli effetti gravitazionali, ma che non siamo ancora stati in grado di indentificare. In questo senso, un notevole passo avanti potra’ essere fatto con le future missioni ma anche con gli acceleratori di particelle qui sulla terra.

Una considerazione, 4,9% di materia barionica, 26,8% di materia oscura e il resto? Il 68,3% del nostro universo, proprio l’ingrediente piu’ abbondante, e’ formato da quella che viene detta “Energia Oscura”. Questo misterioso contributo di cui non sappiamo ancora nulla si ritiene essere il responsabile proprio dell’espansione e dell’accelerazione dell’universo.

Da questa ultima considerazione, capite bene quanto ancora abbiamo da imparare. Non possiamo certo pensare di aver carpito i segreti dell’universo conoscendo solo il 5% di quello che lo compone. In tal senso, la ricerca deve andare avanti e chissa’ quante altre cose strabilinati sara’ in grado di mostrarci in futuro.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Finalmente le foto di Nibiru

19 Ott

Rieccoci a parlare dell’argomento piu’ amato dai catastrofisti del 2012. Avete indovinato, ci stiamo riferendo a Nibiru. Di questo misterioso decimo pianeta del sistema solare abbiamo parlato, ad esempio, in questi post:

Nibiru e’ vicino, la prova delle orbite

La NASA torna a parlare di Nibiru

Evidenze di un decimo pianeta?

Nibiru e la deviazione delle Pioneer

Nibiru: la prova del trattore gravitazionale

Nibiru e’ monitorato dall’osservatorio di Arecibo?

dimostrando di volta in volta, come non esistono prove concrete per l’esistenza di questo pianeta, ne tantomeno prove degli effetti che un corpo di queste dimensioni avrebbe nel Sistema Solare.

Uno dei punti che spesso abbiamo citato, e’ proprio la mancanza di immagini di questo pianeta. Se, come sostenuto da alcune fonti, Nibiru fosse gia’ all’interno del nostro Sistema Solare, sarebbe chiaramente visibile non solo dagli osservatori ufficiali, ma anche dai tanti astrofili attrezzati con strumenti di precisione.

Siamo stati accontentati. In queste ultime ore, sono finalmente comparse in rete le prime immagini di Nibiru. Se la notizia fosse vera, a questo punto non avremo piu’ dubbi. Se lo vediamo significa che esiste.

Ecco una di queste immagini:

Una delle prime immagini di Nibiru

La foto sarebbe stata catturata dal Max Planck Institut for Radioastronomy e diffusa in rete da Donny Gillson. Stando a quanto dichiarato in rete, Gillson sarebbe un ricercatore dell’istituto che avrebbe volontariamente messo in rete la immagini per diffondere la notizia e sconfiggere la copertura scintifico-governativa sul Decimo Pianeta.

Molte fonti online riportano anche il testo di una presunta mail che sarebbe stata inviata da Gillson ed in cui viene spiegata la scoperta di Nibiru e i motivi della copertura. Nibiru sarebbe un intero Sistema al di fuori della Via Lattea ma diretto proprio verso la parte centrale del Sistema Solare. Ovviamente il sistema sarebbe “top secret” per la NASA e noto con il nome ELC20049-DNY.

Sempre nella mail, Gillson parla di una sua fonte interna alla NASA che avrebbe dichiarato un pericoloso aumento della velocita’ del sistema che comporterebbe una passaggio al perielio per la fine del 2012 o al massimo per l’inizio del 2013. La conferma della scoperta si sarebbe avuta dall’analisi completa dei dati raccolti da WISE nell’infrarosso, anche se gli astronomi avrebbero calcolato la traiettoria gia’ negli anni ’80.

Una foto di Donny Gillson

Cerchiamo di analizzare queste informazioni per capire la veridicita’ delle affermazioni.

Prima di tutto, chi e’ realmente Donny Gillson? Nella pagina del Max Planck dedicata alla ricerca nell’infrarosso:

Max Planck Radio Astronomy IR

non si trovano tracce di Gillson. Lo stesso vale per tutti i gruppi di ricerca presenti nel laboratorio. Dunque, la prima notizia che lo vorrebbe astronomo del Max Planck e’ falsa.

Cercando in rete, si trova l’altro nome con cui e’ conosciuto telematicamente Gillson che e’ UrsuAdams. Il canale youtube in cui venivano caricati i filmati su Nibiru, risulta ora chiuso da parte dei gestori, cosi’ come il suo sito internet:

Donny Gilson Internet

non risulta piu’ attivo. Certo, questo inizio non fa ben sperare.

Ciliegina sulla torta, le presunte immagini di Nibiru non sarebbero assolutamente nuove foto. Come e’ facilmente verificabile mettendole a confronto:

Video confronto

Le immagini fornite da Gillson rappresentano la Nebulosa del Teschio nella costellazione della Balena. Dunque, nessuna prova di un nuovo pianeta o sistema, ma solo foto di altri corpi celesti spacciate come immagini di Nibiru.

Come potete facilmente capire, siamo di fronte all’ennessimo tentativo di truffa complottista nei confronti della cosmologia ufficiale. A riprova di questo, Gillson nella sua mail parla di riunioni a porte chiuse tenute dalla NASA e della scelta del governo americano di non divulgare notizie di questo tipo per evitare problemi di ordine pubblico.

Di nuovo dunque, siamo di fronte ad un becero e infondato tentativo di mettere in cattiva luce la scienza:

Il complotto del complottista

Per farvi capire meglio, Gillson e’ molto famoso negli Stati Uniti come “racconta favole”. In un sito in lingua inglese si trova una raccolta di tutte le sue perle di saggezza degli ultimi anni:

Donny Gillson News

Molto divertenti sono le sue interpretazioni sull’errore dell’esperimento OPERA nella misura della velocita’ del neutrino. Come forse ricorderete, il risultato trovato ha tenuto banco per diverso tempo dal momento che i neutrini risultavano piu’ veloci della luce. Come dichiarato da Gillson in uno spettacolo radiofonico, la spiegazione (prima di trovare l’errore sperimentale) della misura era da ricercarsi nei neutrini prodotti proprio da Nibiru nel nostro Sistema Solare e confusi con quelli prodotti al CERN.

A questo punto credo che la fonte della notizia sia stata ben compresa ed e’ inutile continuare a ragionare di questa evidenza.

Siamo in presenza di notizie completamente inventate e create appositamente per cercare di fornire una prova fotografica di Nibiru. Il tentativo, oltre ad essere facilmente smascherabile, risulta anche goffo e mal costruito.

Concludendo, non esistono assolutamente prove fotografiche di Nibiru, ne tantomeno, ad oggi, evidenze che facciano pensare all’esistenza di un decimo pianeta nel Sistema Solare.

Per analizzare concretamente e scientificamente tutte le profezie sul 2012, cercando di fare chiarezza nel mare di informazioni che si trovano in rete, non perdete in libreria “Psicosi 2012. Le risposte della scienza”.