Tag Archives: eccentricita

Tutti i movimenti della Terra

27 Giu

Proprio ieri, una nostra cara lettrice ci ha fatto una domanda molto interessante nella sezione:

Hai domande o dubbi?

Come potete leggere, si chiede se esiste una correlazione tra i moti della Terra e l’insorgere di ere di glaciazione sul nostro pianeta. Rispondendo a questa domanda, mi sono reso conto come, molto spesso, e non è certamente il caso della nostra lettrice, le persone conoscano solo i moti principali di rotazione e rivoluzione. A questo punto, credo sia interessante capire meglio tutti i movimenti che il nostro pianeta compie nel tempo anche per avere un quadro più completo del moto dei pianeti nel Sistema Solare. Questa risposta, ovviamente, ci permetterà di rispondere, anche in questa sede, alla domanda iniziale che è stata posta.

Dunque, andiamo con ordine, come è noto la Terra si muove intorno al Sole su un’orbita ellittica in cui il Sole occupa uno dei due fuochi. Questo non sono io a dirlo, bensì questa frase rappresenta quella che è nota come I legge di Keplero. Non starò qui ad annoiarvi con tutte le leggi, ma ci basta sapere che Keplero fu il primo a descrivere cinematicamente il moto dei pianeti intorno ad un corpo più massivo. Cosa significa “cinematicamente”? Semplice, si tratta di una descrizione completa del moto senza prendere in considerazione il perché il moto avviene. Come sapete, l’orbita è ellittica perché è la legge di Gravitazione Universale a spiegare la tipologia e l’intensità delle forze che avvengono. Bene, detto molto semplicemente, Keplero ci spiega l’orbita e come il moto si evolverà nel tempo, Newton attraverso la sua legge di gravitazione ci dice il perché il fenomeno avviene in questo modo (spiegazione dinamica).

Detto questo, se nel nostro Sistema Solare ci fossero soltanto il Sole e la Terra, quest’ultima si limiterebbe a percorrere la sua orbita ellittica intorno al Sole, moto di rivoluzione, mentre gira contemporaneamente intorno al suo asse, moto di rotazione. Come sappiamo bene, il primo moto è responsabile dell’alternanza delle stagioni, mentre la rotazione è responsabile del ciclo giorno-notte.

Purtroppo, ed è un eufemismo, la Terra non è l’unico pianeta a ruotare intorno al Sole ma ce ne sono altri, vicini, lontani e più o meno massivi, oltre ovviamente alla Luna, che per quanto piccola è molto vicina alla Terra, che “disturbano” questo moto molto ordinato.

Perche questo? Semplice, come anticipato, e come noto, due masse poste ad una certa distanza, esercitano mutamente una forza di attrazione, detta appunto gravitazionale, direttamente proporzionale al prodotto delle masse dei corpi e inversamente proporzionale al quadrato della loro distanza. In altri termini, più i corpi sono massivi, maggiore è la loro attrazione. Più i corpi sono distanti, minore sarà la forza che tende ad avvicinarli. Ora, questo è vero ovviamente per il sistema Terra-Sole ma è altresì vero per ogni coppia di corpi nel nostro Sistema Solare. Se Terra e Sole si attraggono, lo stesso fanno la Terra con la Luna, Marte con Giove, Giove con il Sole, e via dicendo. Come è facile capire, la componente principale delle forze è quella offerta dal Sole sul pianeta, ma tutte queste altre “spintarelle” danno dei contributi minori che influenzano “in qualche modo” il moto di qualsiasi corpo. Bene, questo “in qualche modo” è proprio l’argomento che stiamo affrontando ora, cioè i moti minori, ad esempio, della Terra nel tempo.

Dunque, abbiamo già parlato dei notissimi moti di rotazione e di rivoluzione. Uno dei moti che invece è divenuto famoso grazie, o forse purtroppo, al 2012 è quello di precessione degli equinozi, di cui abbiamo già parlato in questo articolo:

Nexus 2012: bomba a orologeria

Come sapete, l’asse della Terra, cioè la linea immaginaria che congiunge i poli geografici ed intorno al quale avviene il moto di rotazione, è inclinato rispetto al piano dell’orbita. Nel tempo, questo asse non rimane fisso, ma descrive un doppio cono come mostrato in questa figura:

Moto di precessione degli equinozi e di nutazione

Moto di precessione degli equinozi e di nutazione

Il moto dell’asse è appunto detto di “precessione degli equinozi”. Si tratta di un moto a più lungo periodo dal momento che per compiere un intero giro occorrono circa 25800 anni. A cosa è dovuto il moto di precessione? In realtà, si tratta del risultato di un duplice effetto: l’attrazione gravitazionale da parte della Luna e il fatto che il nostro pianeta non è perfettamente sferico. Perché si chiama moto di precessione degli equinozi? Se prendiamo la linea degli equinozi, cioè quella linea immaginaria che congiunge i punti dell’orbita in cui avvengono i due equinozi, a causa di questo moto questa linea si sposterà in senso orario appunto facendo “precedere” anno dopo anno gli equinozi. Sempre a causa di questo moto, cambia la costellazione visibile il giorno degli equinozi e questo effetto ha portato alla speculazione delle “ere new age” e al famoso “inizio dell’era dell’acquario” di cui, sempre in ambito 2012, abbiamo già sentito parlare.

Sempre prendendo come riferimento la figura precedente, notiamo che c’è un altro moto visibile. Percorrendo il cono infatti, l’asse della Terra oscilla su e giù come in un moto sinusoidale. Questo è noto come moto di “nutazione”. Perché avviene questo moto? Oltre all’interazione della Luna, molto vicina alla Terra, anche il Sole gioca un ruolo importante in questo moto che proprio grazie alla variazione di posizione relativa del sistema Terra-Luna-Sole determina un moto di precessione non regolare nel tempo. In questo caso, il periodo della nutazione, cioè il tempo impiegato per per compiere un periodo di sinusoide, è di circa 18,6 anni.

Andando avanti, come accennato in precedenza, la presenza degli altri pianeti nel Sistema Solare apporta dei disturbi alla Terra, così come per gli altri pianeti, durante la sua orbita. Un altro moto da prendere in considerazione è la cosiddetta “precessione anomalistica”. Di cosa si tratta? Abbiamo detto che la Terra compie un’orbita ellittica intorno al Sole che occupa uno dei fuochi. In astronomia, si chiama “apside” il punto di massima o minima distanza del corpo che ruota da quello intorno al quale sta ruotando, nel nostro caso il Sole. Se ora immaginiamo di metterci nello spazio e di osservare nel tempo il moto della Terra, vedremo che la linea che congiunge gli apsidi non rimane ferma nel tempo ma a sua volta ruota. La figura seguente ci può aiutare meglio a visualizzare questo effetto:

Moto di precessione anomalistica

Moto di precessione anomalistica

Nel caso specifico di pianeti che ruotano intorno al Sole, questo moto è anche chiamato di “precessione del perielio”. Poiché il perielio rappresenta il punto di massimo avvicinamento di un corpo dal Sole, il perché di questo nome è evidente. A cosa è dovuta la precessioni anomalistica? Come anticipato, questo moto è proprio causato dalle interazioni gravitazionali, sempre presenti anche se con minore intensità rispetto a quelle del Sole, dovute agli altri pianeti. Nel caso della Terra, ed in particolare del nostro Sistema Solare, la componente principale che da luogo alla precessione degli apsidi è l’attrazione gravitazionale provocata da Giove.

Detto questo, per affrontare il prossimo moto millenario, torniamo a parlare di asse terrestre. Come visto studiando la precessione e la nutazione, l’asse terrestre descrive un cono nel tempo (precessione) oscillando (nutazione). A questo livello però, rispetto al piano dell’orbita, l’inclinazione dell’asse rimane costante nel tempo. Secondo voi, con tutte queste interazioni e questi effetti, l’inclinazione dell’asse potrebbe rimanere costante? Assolutamente no. Sempre a causa dell’interazione gravitazionale, Sole e Luna principalmente nel nostro caso, l’asse della Terra presenta una sorta di oscillazione variando da un massimo di 24.5 gradi ad un minimo di 22.1 gradi. Anche questo movimento avviene molto lentamente e ha un periodo di circa 41000 anni. Cosa comporta questo moto? Se ci pensiamo, proprio a causa dell’inclinazione dell’asse, durante il suo moto, uno degli emisferi della Terra sarà più vicino al Sole in un punto e più lontano nel punto opposto dell’orbita. Questo contribuisce notevolmente alle stagioni. L’emisfero più vicino avrà più ore di luce e meno di buio oltre ad avere un’inclinazione diversa per i raggi solari che lo colpiscono. Come è evidente, insieme alla distanza relativa della Terra dal Sole, la variazione dell’asse contribuisce in modo determinante all’alternanza estate-inverno. La variazione dell’angolo di inclinazione dell’asse può dunque, con periodi lunghi, influire sull’intensità delle stagioni.

Finito qui? Non ancora. Come detto e ridetto, la Terra si muove su un orbita ellittica intorno al Sole. Uno dei parametri matematici che si usa per descrivere un’ellisse è l’eccentricità, cioè una stima, detto molto semplicemente, dello schiacciamento dell’ellisse rispetto alla circonferenza. Che significa? Senza richiamare formule, e per non appesantire il discorso, immaginate di avere una circonferenza. Se adesso “stirate” la circonferenza prendendo due punti simmetrici ottenete un’ellisse. Bene, l’eccentricità rappresenta proprio una stima di quanto avete tirato la circonferenza. Ovviamente, eccentricità zero significa avere una circonferenza. Più è alta l’eccentricità, maggiore sarà l’allungamento dell’ellisse.

Tornando alla Terra, poiché l’orbita è un’ellisse, possiamo descrivere la sua forma utilizzando l’eccentricità. Questo valore però non è costante nel tempo, ma oscilla tra un massimo e un minimo che, per essere precisi, valgono 0,0018 e 0,06. Semplificando molto il discorso, nel tempo l’orbita della Terra oscilla tra qualcosa più o meno simile ad una circonferenza. Anche in questo caso, si tratta di moti millenari a lungo periodo ed infatti il moto di variazione dell’eccentricità (massimo-minimo-massimo) avviene in circa 92000 anni. Cosa comporta questo? Beh, se teniamo conto che il Sole occupa uno dei fuochi e questi coincidono nella circonferenza con il centro, ci rendiamo subito conto che a causa di questa variazione, la distanza Terra-Sole, e dunque l’irraggiamento, varia nel tempo seguendo questo movimento.

A questo punto, abbiamo analizzato tutti i movimenti principali che la Terra compie nel tempo. Per affrontare questo discorso, siamo partiti dalla domanda iniziale che riguardava l’ipotetica connessione tra periodi di glaciazione sulla Terra e i moti a lungo periodo. Come sappiamo, nel corso delle ere geologiche si sono susseguiti diversi periodi di glaciazione sul nostro pianeta, che hanno portato allo scioglimento dei ghiacci perenni e all’innalzamento del livello dei mari. Studiando i reperti e la quantità di CO2 negli strati di ghiaccio, si può notare una certa regolarità dei periodi di glaciazione, indicati anche nella pagina specifica di wikipedia:

Wiki, cronologia delle glaciazioni

Come è facile pensare, molto probabilmente ci sarà una correlazione tra i diversi movimenti della Terra e l’arrivo di periodi di glaciazione più o meno intensi, effetto noto come “Cicli di Milanković”. Perché dico “probabilmente”? Come visto nell’articolo, i movimenti in questione sono diversi e con periodi più o meno lunghi. In questo contesto, è difficile identificare con precisione il singolo contributo ma quello che si osserva è una sovrapposizione degli effetti che producono eventi più o meno intensi.

Se confrontiamo i moti appena studiati con l’alternanza delle glaciazioni, otteniamo un grafico di questo tipo:

Relazione tra i periodi dei movimenti della Terra e le glaciazioni conosciute

Relazione tra i periodi dei movimenti della Terra e le glaciazioni conosciute

Come si vede, è possibile identificare una certa regolarità negli eventi ma, quando sovrapponiamo effetti con periodi molto lunghi e diversi, otteniamo sistematicamente qualcosa con periodo ancora più lungo. Effetto dovuto proprio alle diverse configurazioni temporali che si possono ottenere. Ora, cercare di trovare un modello matematico che prenda nell’insieme tutti i moti e li correli con le variazioni climatiche non è cosa banale e, anche se sembra strano da pensare, gli eventi che abbiamo non rappresentano un campione significativo sul quale ragionare statisticamente. Detto questo, e per rispondere alla domanda iniziale, c’è una relazione tra i movimenti della Terra e le variazioni climatiche ma un modello preciso che tenga conto di ogni causa e la pesi in modo adeguato in relazione alle altre, non è ancora stato definito. Questo ovviamente non esclude in futuro di poter avere una teoria formalizzata basata anche su future osservazioni e sull’incremento della precisione di quello che già conosciamo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Anche il giorno e’ relativo …. se siete altrove

12 Giu

Pensandoci, chissa’ quante volte avremo detto “se ci fosse un giorno di 48 ore, riuscirei a fare tutto”. Proprio relativamente a questo vorrei parlare in questo post, aprendo una piccola parentesi curiosita’ sui pianeti del sistema solare. In particolare, vorrei discutere la durata del giorno sui diversi pianeti, confrontandola proprio coi numeri a cui siamo abituati, cioe’ quello che osserviamo direttamente sulla Terra.

Per prima cosa, vi diro’ qualcosa di “sorprendente”, la Terra gira intorno al Sole in circa 365.25 giorni e gira su se stessa in “quasi 24 ore”. Solo per curiosita’, quel 0,25 in piu’ nel periodo di rivoluzione e’ proprio il responsabile dell’inserimento di un anno bisestile ogni quattro. Questa soluzione serve a recuperare lo scarto che, in caso contrario, provocherebbe una differenza crescente tra periodo dell’anno ed effettiva posizione intorno al Sole.

Bene, l’alternarsi delle stagioni, che indica l’anno terrestre, e’ semplicemnete dato dalla pozione della Terra sull’orbita fatta intorno al Sole. Come detto, in poco piu’ di 365 giorni, la Terra tornera’ nella stessa posizione.

Quello che invece chiamiamo giorno, cioe’ l’alternarsi di luce e buio, dura 24 ore. Cosa significa Ogni 24 ore torniamo a vedere il Sole nella stessa posizione.

Questo ovviamente e’ vero per la Terra. Cosa possiamo dire per gli altri pianeti?

sistema_solare

Come potete immaginare, le durate del giorno e dell’anno di un pianeta del Sistema Solare dipendono dai parametri orbitali del pianeta stesso. Per quanto riguarda il periodo impiegato a percorrere l’intera orbita, pianeti piu’ lontani dal Sole dovranno percorrere un percorso piu’ lungo per tornare nella stessa posizione, e questo fa si che i periodi siano via via crescenti quando ci allontaniamo dal Sole.

Ecco una tabella con i periodi di rivoluzione dei pianeti del Sistema Solare:

Pianeta Planet Rotazione

Rotation

Rivoluzione

Revolution

Plutone Pluto ~6gg 247,7 anni/years
Nettuno Neptune 16h 165 anni/years
Urano Urans -11h 84 anni/years
Saturno Saturn 10h 40′ 29,46 anni/years
Giove Jupiter 10 h 11,86 anni/years
Marte Mars ~24 h 687 giorni/days
Terra Earth 24 h 365 giorni/days
Venere Venus -243 gg 225 giorni/days
Mercurio Mercury 59 gg 88 giorni/days

oltre a questi, trovate anche i periodi di rotazione dei corpi. Fate attenzione ad una cosa, i segni negativi che compaiono per due pianeti, Urano e Venere, servono solo per indicare il moto retrogrado questi pianeti, cioe’ il fatto che questi corpi girino al contrario sull’orbita rispetto gli altri.

Questa tabella ci permette subito di calcolare il periodo dell’anno dei pianeti che, ad esempio, nel caso di Venere sara’ di 225 giorni.

Cosa possiamo dire riguardo al giorno?

Facciamo subito una distinzione molto importante. Quello che comunemente siamo abituati ad indicare come giorno e’ inteso come il lasso di tempo che la Terra impiega a fare un giro su se stessa. In astronomia, questo e’ noto come “giorno siderale” o “giorno sidereo”. Prima pero’, abbiamo definito, intuitivamente, il giorno in maniera diversa, cioe’ come l’alternarsi della luce e del buio. In tal senso, per un osservatore che potrebbe anche ignorare il moto di rotazione del pianeta intorno all’asse, il giorno altro non e’ che il lasso di tempo che serve per fare un intero ciclo luce-buio.

In tal senso, tra i pianeti del sistema solare, molto interessante e’ il caso di Mercurio. Come sappiamo, Mercurio e’ il piu’ interno dei pianeti del sistema solare ed inoltre e’ quello che presenta un’eccentricita’ maggiore dell’orbita. Cosa significa? Semplicemente, l’ellisse percorsa da Mercurio intorno al Sole, presenta la maggiore differenza tra asse maggiore e minore. Detto in altri termini, l’orbita di Mercurio e’ quella che maggiormente si allontana da una circonferenza. Per la precisione, l’eccentricita’ di Mercurio sarebbe seconda a quella di Plutone che pero’ e’ stato declassato da pianeta a planetoide.

Come visto nella tabella, il periodo di rivoluzione di Mercurio e’ di circa 88 giorni, mentre servono 59 giorni per completare il giro intorno all’asse. Da questi numeri, Mercurio ogni due rivoluzioni fa tre giri intorno al proprio asse.

Fate attenzione pero’, se parliamo di giorno sidereo, in questo caso le 24 ore che abbiamo sulla Terra divengono 59 giorni. Ancora piu’ marcata e’ la differenza se parliamo di periodi diurni e notturni. Data la grande eccentricita’, mentre Mercurio gira su stesso, si avvicina e si allontana notevolmente dal Sole. Questo moto fa si che il giorno inteso come alternarsi buio-luce duri su Mercurio ben 176 giorni. Dati i numeri sulla tabella, il giorno dura piu’ o meno il doppio di un anno.

Pensando a come siamo abituati a concepire il tempo sulla Terra, e’ molto difficile immaginare la situazione di Marcurio. Praticamente, aspettando che faccia buoi (o luce in alternativa), vedremo passare per due volte tutte le stagioni.

Ovviamente non c’e’ nulla di misterioso in questo fatto, e’ solo una curiosita’, a mio avviso interessante, che si evidenzia sui pianeti del Sistema Solare.

Per completezza, se l’orbita di Mercurio fosse circolare, data la sua vicinanza al Sole, gli effetti di marea farebbero si che il pianeta mostrerebbe sempre la stessa faccia, esattamente come avviene per la Luna.

Sempre in termini di curiosita’, proviamo ad immaginare di essere sulla Luna e che la Terra sia il nostro Sole. In questo senso, poiche’ come visto in questo post:

Spettacolo lunare per il 23 Giugno

a parte piccole variazioni, la Luna mostra sempre la stessa faccia alla Terra, il giorno durerebbe un tempo infinito. Se fossimo sulla faccia verso Terra, illuminata in questo esperimento mentale, sarebbe sempre giorno, in caso contrario sarebbe sempre notte perche’ ci troveremmo sempre dall’altra parte.

Concludendo, i moti dei pianeti intorno al Sole presentano ovviamente delle differenze anche marcate tra loro. Parlando di giorno sidereo, cioe’ come il periodo necessario al pianeta per compiere un moto di rotazione intorno al proprio asse, passiamo da poche ore fino a decine di giorni. Per quanto riguarda invece il giorno inteso come alternanza luce-buio, in questo caso si devono considerare contemporaneamente sia il moto di rotazione che la rivoluzione. In tal senso, come nel caso di Mercurio, si possono avere situazioni apparentemente curiosieper noi che siamo abituati a vivere sulla Terra.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.