Tag Archives: bosoni

L’espansione metrica dell’universo

8 Apr

In questo blog, abbiamo dedicato diversi articoli al nostro universo, alla sua storia, al suo destino, alla tipologia di materia o non materia di cui e’ formato, cercando, come e’ ovvio, ogni volta di mettere il tutto in una forma quanto piu’ possibile comprensibile e divulgativa. Per chi avesse perso questi articoli, o solo come semplice ripasso, vi riporto qualche link riassuntivo:

E parliamo di questo Big Bang

Il primo vagito dell’universo

Universo: foto da piccolo

La materia oscura

Materia oscura intorno alla Terra?

Due parole sull’antimateria

Flusso oscuro e grandi attrattori

Ascoltate finalmente le onde gravitazionali?

Come e’ ovvio, rendere questi concetti fruibili a fini divulgativi non e’ semplice. Per prima cosa, si deve evitare di mettere formule matematiche e, soprattutto, si deve sempre riflettere molto bene su ogni singola frase. Un concetto che potrebbe sembrare scontato e banale per un addetto ai lavori, potrebbe essere del tutto sconosciuto a chi, non avendo basi scientifiche solide, prova ad informarsi su argomenti di questo tipo.

Perche’ faccio questo preambolo?

Pochi giorni fa, un nostro lettore mi ha contatto via mail per chiedermi di spiegare meglio il discorso dell’espansione dell’universo. Per essere precisi, la domanda era relativa non all’espansione in se, ma a quella che viene appunto definita “espansione metrica” dell’universo. Cosa significa? Come visto varie volte, l’idea comunemente accettata e’ che l’universo sia nato da un Big Bang e durante questa espansione si sono prima formate le forze, il tempo, le particelle, poi i pianeti, le galassie e via dicendo. Ci sono prove di questo? Assolutamente si e ne abbiamo parlato, anche in questo caso, piu’ volte: la radiazione cosmica di fondo, lo spostamento verso il rosso delle galassie lontane, le conclusioni stesse portate dalla scoperta del bosone di Higgs e via dicendo. Dunque? Che significa espansione metrica dell’universo? In parole povere, noi diciamo che l’universo si sta espandendo, e che sta anche accelerando, ma come possiamo essere certi di questo? Che forma ha l’universo? Per quanto ancora si espandera’? Poi cosa succedera’? Sempre nella domanda iniziale, veniva posto anche un quesito molto interessante: ma se non fosse l’universo ad espandersi ma la materia a contrarsi? L’effetto sarebbe lo stesso perche’ la mutua distanza tra due corpi aumenterebbe nel tempo dando esattamente lo stesso effetto apparente che vediamo oggi.

Come potete capire, di domande ne abbiamo fin troppe a cui rispondere. Purtroppo, e lo dico in tutta sincerita’, rendere in forma divulgativa questi concetti non e’ molto semplice. Come potete verificare, raccontare a parole che il tutto sia nato da un Big Bang, che ci sia stata l’inflazione e si sia formata la radiazione di fondo e’ cosa abbastanza fattibile, parlare invece di forma dell’universo e metrica non e’ assolutamente semplice soprattutto senza poter citare formule matematiche che per essere comprese richiedono delle solide basi scientifiche su cui ragionare.

Cerchiamo dunque di andare con ordine e parlare dei vari quesiti aperti.

Come visto in altri articoli, si dice che il Big Bang non e’ avvenuto in un punto preciso ma ovunque e l’effetto dell’espansione e’ visibile perche’ ogni coppia di punti si allontana come se ciascun punto dell’universo fosse centro dell’espansione. Cosa significa? L’esempio classico che viene fatto e’ quello del palloncino su cui vengono disegnati dei punti:

Esempio del palloncino per spiegare l'espansione dell'universo

Esempio del palloncino per spiegare l’espansione dell’universo

Quando gonfiate il palloncino, i punti presenti sulla superficie si allontanano tra loro e questo e’ vero per qualsiasi coppia di punti. Se immaginiamo di essere su un punto della superficie, vedremo tutti gli altri punti che si allontanano da noi. Bene, questo e’ l’esempio del Big Bang.

Ci sono prove di questo? Assolutamente si. La presenza della CMB e’ proprio un’evidenza che ci sia stato un Big Bang iniziale. Poi c’e’ lo spostamento verso il rosso, come viene definito, delle galassie lontane. Cosa significa questo? Siamo sulla Terra e osserviamo le galassie lontane. La radiazione che ci arriva, non necessariamente con una lunghezza d’onda nel visibile, e’ caratteristica del corpo che la emette. Misurando questa radiazione ci accorgiamo pero’ che la frequenza, o la lunghezza d’onda, sono spostate verso il rosso, cioe’ la lunghezza d’onda e’ maggiore di quella che ci aspetteremmo. Perche’ avviene questo? Questo effetto e’ prodotto proprio dal fatto che la sorgente che emette la radiazione e’ in moto rispetto a noi e poiche’ lo spostamento e’ verso il rosso, questa sorgente si sta allontanando. A questo punto sorge pero’ un quesito molto semplice e comune a molti. Come sapete, per quanto grande rapportata alle nostre scale, la velocita’ della luce non e’ infinita ma ha un valore ben preciso. Questo significa che la radiazione emessa dal corpo lontano impiega un tempo non nullo per raggiungere la Terra. Come spesso si dice, quando osserviamo stelle lontane non guardiamo la stella come e’ oggi, ma come appariva quando la radiazione e’ stata emessa. Facciamo l’esempio classico e facile del Sole. La luce emessa dal Sole impiega 8 minuti per arrivare sulla Terra. Se noi guardiamo ora il Sole lo vediamo come era 8 minuti fa. Se, per assurdo, il sole dovesse scomparire improvvisamente da un momento all’altro, noi ce ne accorgeremmo dopo 8 minuti. Ora, se pensiamo ad una stella lontana 100 anni luce da noi, quella che vediamo e’ la stella non come e’ oggi, ma come era 100 anni fa. Tornando allo spostamento verso il rosso, poiche’ parliamo di galassie lontane, la radiazione che ci arriva e’ stata emessa moltissimo tempo fa. Domanda: osservando la luce notiamo uno spostamento verso il rosso ma questa luce e’ stata emessa, supponiamo, mille anni fa. Da quanto detto si potrebbe concludere che l’universo magari era in espansione 1000 anni fa, come da esempio, mentre oggi non lo e’ piu’. In realta’, non e’ cosi’. Lo spostamento verso il rosso avviene a causa del movimento odierno tra i corpi e dunque utilizzare galassie lontane ci consente di osservare fotoni che hanno viaggiato piu’ a lungo e da cui si ottengono misure piu’ precise. Dunque, da queste misure, l’universo e’ in espansione e’ lo e’ adesso. Queste misurazioni sono quelle che hanno portato Hubble a formulare la sua famosa legge da cui si e’ ricavata per la prima volta l’evidenza di un universo in espansione.

Bene, l’universo e’ in espansione, ma se ci pensate questo risultato e’ in apparente paradosso se pensiamo alla forza di gravita’. Perche’? Negli articoli precedentemente citati, abbiamo piu’ volte parlato della gravita’ citando la teoria della gravitazione universale di Newton. Come e’ noto, due masse poste a distanza r si attraggono con una forza che dipende dal prodotto delle masse ed e’ inversamente proporzionale al quadrato della loro distanza. Ora, nel nostro universo ci sono masse distribuite qui a la in modo piu’ o meno uniforme. Se pensiamo solo alla forza di gravita’, una coppia qualunque di queste masse si attrae e quindi le due masse tenderanno ad avvicinarsi. Se anche pensiamo ad una spinta iniziale data dal Big Bang, ad un certo punto questa spinta dovra’ terminare controbilanciata dalla somma delle forze di attrazione gravitazionale. In altre parole, non e’ possibile pensare ad un universo che si espande sempre se abbiamo solo forze attrattive che lo governano.

Questo problema ha angosciato l’esistenza di molti scienziati a partire dai primi anni del ‘900. Lo stesso Einstein, per cercare di risolvere questo problema dovette introdurre nella Relativita’ Generale quella che defini’ una costante cosmologica, a suo avviso, un artificio di calcolo che serviva per bilanciare in qualche modo l’attrazione gravitazionale. L’introduzione di questa costante venne definita dallo stesso Einstein il piu’ grande errore della sua vita. Oggi sappiamo che non e’ cosi’, e che la costante cosmologica e’ necessaria nelle equazioni non come artificio di calcolo ma, in ultima analisi, proprio per giustificare la presenza di componenti non barioniche, energia oscura in primis, che consentono di spiegare l’espansione dell’universo. Se vogliamo essere precisi, Einstein introdusse la costante non per avere un universo in espansione bensi’ un universo statico nel tempo. In altre parole, la sua costante serviva proprio a bilanciare esattamente l’attrazione e rendere il tutto fermo. Solo osservazioni successive, tra cui quella gia’ citata dello stesso Hubble, confermarono che l’universo non era assolutamente statico bensi’ in espansione.

Ora, a questo punto, potremmo decidere insieme di suicidarci dal punto di vista divulgativo e parlare della metrica dell’universo, di coordinate comoventi, ecc. Ma questo, ovviamente, implicherebbe fogli di calcoli e basi scientifiche non banali. Abbiamo le prove che l’universo e’ in espansione, dunque, ad esempio, guardando dalla Terra vediamo gli altri corpi che si allontanano da noi. Come si allontanano? O meglio, di nuovo, che forma avrebbe questo universo?

L’esempio del palloncino fatto prima per spiegare l’espansione dell’universo, e’ molto utile per far capire questi concetti, ma assolutamente fuoriviante se non ci si riflette abbstanza. Molto spesso, si confonde questo esempio affermando che l’universo sia rappresentato dall’intero palloncino compreso il suo volume interno. Questo e’ concettualmente sbagliato. Come detto in precedenza, i punti si trovano solo ed esclusivamente sulla superficie esterna del palloncino che rappresenta il nostro universo.

A complicare, o a confondere, ancora di piu’ le idee c’e’ l’esempio del pane con l’uvetta che viene usato per spiegare l’espansione dell’universo. Anche su wikipedia trovate questo esempio rappresentato con una bella animazione:

Esempio del pane dell'uvetta utilizzato per spiegare l'aumento della distanza tra i punti

Esempio del pane dell’uvetta utilizzato per spiegare l’aumento della distanza tra i punti

Come vedete, durante l’espansione la distanza tra i punti cresce perche’ i punti stessi, cioe’ i corpi presenti nell’universo, vengono trascinati dall’espansione. Tornado alla domanda iniziale da cui siamo partiti, potremmo penare che in realta’ lo spazio resti a volume costante e quello che diminuisce e’ il volume della materia. Il lettore che ci ha fatto la domanda, mi ha anche inviato una figura esplicativa per spiegare meglio il concetto:

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Come vedete, pensando ad una contrazione della materia, avremmo esattamente lo stesso effetto con la distanza mutua tra i corpi che aumenta mentre il volume occupato dall’universo resta costante.

Ragioniamo pero’ su questo concetto. Come detto, a supporto dell’espansione dell’universo, abbiamo la legge di Hubble, e anche altre prove, che ci permettono di dire che l’universo si sta espandendo. In particolare, lo spostamento verso il rosso della radiazione emessa ci conferma che e’ aumentato lo spazio tra i corpi considerati, sorgente di radiazione e bersaglio. Inoltre, la presenza dell’energia oscura serve proprio a spiegare questa evoluzione dell’universo. Se la condizione fosse quella riportata nell’immagine, cioe’ con la materia che si contrae, non ci sarebbe lo spostamento verso il rosso, e anche quello che viene definito Modello Standard del Cosmo, di cui abbiamo verifiche sperimentali, non sarebbe utilizzabile.

Resta pero’ da capire, e ritorno nuovamente su questo punto, che forma dovrebbe avere il nostro universo. Non sto cercando di volta in volta di scappare a questa domanda, semplicemente, stiamo cercando di costruire delle basi, divulgative, che ci possano consentire di capire questi ulteriori concetti.

Come detto, parlando del palloncino, non dobbiamo fare l’errore di considerare tutto il volume, ma solo la sua superificie. In particolare, come si dice in fisica, per capire la forma dell’universo dobbiamo capire che tipo di geometria assegnare allo spazio-tempo. Purtroppo, come imparato a scuola, siamo abituati a pensare alla geometria Euclidea, cioe’ quella che viene costruita su una superifice piana. In altre parole, siamo abituati a pensare che la somma degli angoli interni di un traiangolo sia di 180 gradi. Questo pero’ e’ vero solo per un triangolo disegnato su un piano. Non e’ assolutamente detto a priori che il nostro universo abbia una geometria Euclidea, cioe’ che sia piano.

Cosa significa?

Come e’ possibile dimostrare, la forma dell’universo dipende dalla densita’ di materia in esso contenuta. Come visto in precedenza, dipende dunque, come e’ ovvio pensare, dall’intensita’ della forza di attrazione gravitazionale presente. In particolare possiamo definire 3 curvature possibili in funzione del rapporto tra la densita’ di materia e quella che viene definita “densita’ critica”, cioe’ la quantita’ di materia che a causa dell’attrazione sarebbe in grado di fermare l’espasione. Graficamente, le tre curvature possibili vengono rappresentate con tre forme ben distinte:

Curvature possibili per l'universo in base al rapporto tra densita' di materia e densita' critica

Curvature possibili per l’universo in base al rapporto tra densita’ di materia e densita’ critica

Cosa significa? Se il rapporto e’ minore di uno, cioe’ non c’e’ massa a sufficienza per fermare l’espansione, questa continuera’ per un tempo infinito senza arrestarsi. In questo caso si parla di spazio a forma di sella. Se invece la curvatura e’ positiva, cioe’ la massa presente e’ maggiore del valore critico, l’espansione e’ destinata ad arrestarsi e l’universo iniziera’ ad un certo punto a contrarsi arrivando ad un Big Crunch, opposto al Big Bang. In questo caso la geometria dell’universo e’ rappresentata dalla sfera. Se invece la densita’ di materia presente e’ esattamente identica alla densita’ critica, in questo caso abbiamo una superficie piatta, cioe’ Euclidea, e l’espansione si arrestera’ ma solo dopo un tempo infinito.

Come potete capire, la densita’ di materia contenuta nell’universo determina non solo la forma di quest’ultimo, ma anche il suo destino ultimo in termini di espansione o contrazione. Fate pero’ attenzione ad un altro aspetto importante e molto spesso dimenticato. Se misuriamo questo rapporto di densita’, sappiamo automaticamente che forma ha il nostro universo? E’ vero il discorso sul suo destino ultimo, ma le rappresentazioni grafiche mostrate sono solo esplicative e non rappresentanti la realta’.

Perche’?

Semplice, per disegnare queste superifici, ripeto utilizzate solo per mostrare graficamente le diverse forme, come si e’ proceduto? Si e’ presa una superficie bidimensionale, l’equivalente di un foglio, e lo si e’ piegato seguendo le indicazioni date dal valore del rapporto di densita’. In realta’, lo spazio tempo e’ quadrimensionale, cioe’ ha 3 dimensioni spaziali e una temporale. Come potete capire molto facilmente, e’ impossibile sia disegnare che immaginare una superificie in uno spazio a 4 dimensioni! Questo significa che le forme rappresentate sono esplicative per far capire le differenze di forma, ma non rappresentano assolutamnete la reale forma dell’universo dal momento che sono ottenute eliminando una coordinata spaziale.

Qual e’ oggi il valore di questo rapporto di densita’? Come e’ ovvio, questo valore deve essere estrapolato basandosi sui dati raccolti da misure osservative nello spazio. Dal momento che sarebbe impossibile “contare” tutta la materia, questi valori vengono utilizzati per estrapolare poi il numero di barioni prodotti nel Big Bang. I migliori valori ottenuti oggi danno rapporti che sembrerebbero a cavallo di 1 anche se con incertezze ancora troppo elevate per avere una risposta definitiva.

Concludendo, affrontare queste tematiche in chiave divulgativa non e’ assolutamente semplice. Per quanto possibile, e nel limite delle mie possibilita’, spero di essere riuscito a farvi capire prima di tutto quali sono le verifiche sperimentali di cui disponiamo oggi e che sostengono le teorie di cui tanto sentiamo parlare. Queste misure, dirette o indirette che siano, ci permettono di capire che il nostro universo e’ con buona probabilita’ nato da un Big Bang, che sta attualmente espandendosi e questa espansione, almeno allo stato attuale, e’ destinata a fermarsi solo dopo un tempo infinito. Sicuramente, qualunque sia il destino ultimo del nostro universo, questo avverra’ in un tempo assolutamente molto piu’ grande della scala umana e solo la ricerca e la continua osservazione del cosmo ci possono permettere di fare chiarezza un poco alla volta.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Pubblicità

L’universo che si dissolve “improvvisamente”

21 Mar

Nella sezione:

Hai domande o dubbi?

una nostra cara lettrice ci ha chiesto lumi su una notizia apparsa in questi giorni sui giornali che l’ha lasciata, giustamente dico io, un po’ perplessa. La notizia in questione riguarda l’annuncio fatto solo pochi giorni fa della nuova misura della massa del quark top.

Perche’ questa notizia avrebbe suscitato tanto clamore?

Senza dirvi nulla, vi riporto un estratto preso non da un giornale qualsiasi, che comunque a loro volta hanno copiato da qui, ma dalla principale agenzia di stampa italiana:

Il più pesante dei mattoni della materia, il quark top, ha una misura più precisa e la sua massa, con quella del bosone di Higgs, potrebbe essere la chiave per capire se viviamo in un universo instabile, al punto di dissolversi improvvisamente.

Universo che si dissolve “improvvisamente”?

Vi giuro che vorrei mettermi a piangere. Solo pochi giorni fa abbiamo parlato di tutte quelle cavolate sparate dopo l’annuncio della misura di Bicep-2:

Ascoltate finalmente le onde gravitazionali?

Due notizie cosi’ importanti dal punto di vista scientifico accompagnate da sensazionalismo catastrofista nella stessa settimana sono davvero un duro colpo al cuore.

Al solito, e come nostra abitudine, proviamo a spiegare meglio l’importanza della misura ma, soprattutto, cerchiamo di capire cosa dice la scienza contrapposto a quello che hanno capito i giornali.

In diversi articoli abbiamo parlato di modello standard discutendo la struttura della materia che ci circonda e, soprattutto, presentando quelle che per noi, ad oggi, sono le particelle fondamentali, cioe’ i mattoni piu’ piccoli che conosciamo:

Due parole sull’antimateria

Piccolo approfondimento sulla materia strana

Bosone di Higgs …. ma che sarebbe?

Se ci concentriamo sui quark, vediamo che ci sono 6 componenti che, come noto, sono: up, down, strange, charm, bottom e top. Come gia’ discusso, i primi due, up e down, sono quelli che formano a loro volta protoni e neutroni, cioe’ le particelle che poi formano i nuclei atomici, dunque la materia che ci circonda.

Bene, il quark top e’ il piu’ pesante di questi oltre ad essere l’ultimo ad essere stato scoperto. Il primo annuncio di decadimenti con formazione di quark top e’ stato fatto nel 1995 grazie alla combinazione dei risultati di due importanti esperimenti del Fermi National Accelerator Laboratory di Batavia, nei pressi di Chicago. A questi esperimenti, oggi in dismissione, ma la cui analisi dei dati raccolti e’ ancora in corso, partecipavano e partecipano tuttora moltissimi fisici italiani dell’Istituto Nazionale di Fisica Nucleare.

La cosa piu’ sorprendente del quark top e’ la sua enorme massa, circa 170 GeV, che lo rende la particella elementare piu’ pesante mai trovata. Per darvi un’idea, il top e’ circa 180 volte piu’ pesante di un protone con una massa paragonabile a quella di un atomo di oro nel suo complesso. Il perche’ di una massa cosi’ elevata e’ una delle chiavi per capire i meccanismi che avvengono a livello microscopico e che, come e’ normale pensare, determinano il comportamento stesso del nostro universo.

Bene, cosa e’ successo in questi giorni?

Come avete letto, nel corso della conferenza:

Rencontres de Moriond

che si svolge annualmente a La Thuille in Val d’Aosta, e’ stata presentata una nuova misura della massa del quark top. Prima cosa importante da dire e’ che la misura in questione viene da una stretta collaborazione tra i fisici di LHC e quelli che analizzano i dati del Tevatron, cioe’ il collissore dove nel 1995 fu scoperto proprio il top. Queste due macchine sono le uniche al mondo, grazie alla grande energia con cui vengono fatti scontrare i fasci, in grado di produrre particelle pesanti come il quark top.

Dalla misurazione congiunta di LHC e Tevatron e’ stato possibile migliorare notevolmente l’incertezza sulla massa del top, arrivando ad un valore molto piu’ preciso rispetto a quello conosciuto fino a qualche anno fa.

Cosa comporta avere un valore piu’ preciso?

Come potete immaginare, conoscere meglio il valore di questo parametro ci consente di capire meglio i meccanismi che avvengono a livello microscopico tra le particelle. Come discusso parlando del bosone di Higgs, il ruolo di questa particella, e soprattutto del campo scalare ad essa associato, e’ proprio quello di giustificare il conferimento della massa. Se il  top ha una massa cosi’ elevata rispetto agli altri quark, il suo meccanismo di interazione con il campo di Higgs deve essere molto piu’ intenso. Inoltre, il quark top viene prodotto da interazioni forti, ma decade con canali deboli soprattutto producendo bosoni W. Non sto assolutamente cercando di confondervi. Come visto negli articoli precedenti, il W e’ uno dei bosoni messaggeri che trasportano l’interazione debole e che e’ stato scoperto da Carlo Rubbia al CERN. Detto questo, capite come conoscere con precisione la massa del top, significhi capire meglio i meccanismi che avvengono tra top, W e campo di Higgs. In ultima analisi, la conoscenza di questi modelli e’ fondamentale per capire perche’, durante l’evoluzione dell’universo, si sono formate particelle cosi’ pesanti ma anche per capire se esistono meccanismi di decadimento non ancora considerati o anche effetti, come vengono definiti, di nuova fisica che possono mettere in discussione o integrare il modello standard delle particelle.

Concludendo, la spiegazione della frase “universo che si dissolve improvvisamente” non significa nulla. Una misura piu’ precisa della massa del top implica una migliore conoscenza dei modelli ora utilizzati e soprattutto apre le porte per capire meglio cosa e’ avvenuto durante durante i primi istanti di vita dell’universo. Al solito pero’, anche sulla scia del tanto citato annuncio di Bicep-2, si e’ ben pensato di sfruttare l’occasione e trasformare anche questa importante notizia in un teatrino catastrofista. Per chi interessato ad approfondire, vi riporto anche il link di ArXiv in cui leggere l’articolo della misura in questione:

ArXiv, quark top

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

E parliamo di questo Big Bang

9 Apr

Dal momento che, in questo post:

Il primo vagito dell’universo

e in molti altri ancora, abbiamo parlato di nascita ed evoluzione del nostro universo, credo sia giunto il momento di dedicare un articolo apposito su questi concetti. Premetto, che cerchero’ di matenere un profilo piu’ semplice e divulgativo possibile, anche se ci stiamo addentrando in teorie, e spesso anche supposizioni, fisiche non del tutto banali. In questo senso, cerchero’ il piu’ possibile di utilizzare esempi anche volutamente forzati proprio per rendere il tutto maggiormente accessibile a tutti.

Partiamo dalle basi. Allo stato attuale della nostra conoscenza, la teoria maggiormente accettata all’orgine dell’universo e’ quella per cui il tutto si sarebbe formato da un’esplosione iniziale chiamata appunto Big Bang. Come visto nell’articolo precedentemente riportato, non dobbiamo immaginare questo evento come un classico boato, da cui tutti si sarebbe formato, bensi’ come un processo di espansione, anche non costante e molto veloce in alcuni istanti, ma che dura tutt’ora.

Perche’ e’ avvenuto il Big Bang?

Immaginiamo di fissare una scala temporale all’istante iniziale, cioe’ nel momento stesso in cui e’ iniziato il Big Bang. Per dirlo con parole semplici, immaginate di avere un cronometro e di farlo partire nel mometo in cui inizia questa espansione. Secondo la teoria, prima che iniziasse il big bang, materia e antimateria convivevano insieme in una singolarita’, cioe’ costituivano un volume, al limite occupante un punto, estremamemente denso e a temperatura elevatissima. Nella concezione fisica, in questa fase non esistevano le particelle, il tempo e le forze.

Poi cosa e’ successo?

Quando il sistema e’ divenuto instabile, dopo un tempo pari a 10^(-43) secondi, e’ avvenuta quella che si chiama la prima transizione di fase. Cosa significa? Le particelle si sono formate da questo plasma iniziale e ognuna di loro aveva un’energia molto elevata detta “energia di Planck”. In questa fase, detta di Grande Unificazione, tutte le forze, compresa quella gravitazionale, erano unificate, cioe’ si manifestavano come un’unica interazione.

Bene, fermiamoci un attimo e cerchiamo di capire meglio. Al punto in cui siamo arrivati, il big bang e’ gia iniziato. Le particelle cosi’ come le forze, anche se ancora unificate, si sono formate. Riprendiamo dall’inizio. Al tempo iniziale, cioe’ prima che iniziasse l’espansione, materia e antimateria convivano insieme. Dopo un tempo brevissimo, quando si formano le particelle, dopo 10^(-43) secondi, ci sono ancora materia e antimateria, appena 10^(-6) secondi dopo l’inizio, rimane solo materia.

Dove e’ finita l’antimateria?

Per chi lo avesse perso, abbiamo parlato in dettaglio di antimateria in questo post:

Due parole sull’antimateria

Il nostro attuale universo e’ formato solo da materia. L’antimateria e’ scomparsa. Perche’? Affiche’ questo sia possibile, e dunque sia iniziato il big bang, la fisica ci dice che devono essere state verificate le 3 condizioni di Sakharov. Senza entrare troppo nel dettaglio, in questa ipotesi, ci deve essere stata un’asimmetria tra materia e antimateria, che ha portato allo squilibrio che vediamo oggi. In particolare, in questo contesto si parla appunto di violazione di CP, cioe’ proprio di squilibrio della simmetria materia-antimateria nell’universo.

E’ possibile che siano rimaste delle sacche di antimateria da qualche parte oppure che l’universo sia formato da due distinte zone, una di materia ed una di antimateria?

La risposta e’ no. Capiamo il perche’. Quando entrano in contatto, materia e antimateria si annichilano, cioe’ ineragiscono distruggendosi a vicenda, e producendo radiazione gamma, cioe’, in linea di principio forzando l’esempio, luce. Se esistessero zone ben delimitate di materia e antimateria, nel punto di separazione tra di esse, si avrebbe annichilazione con la conseguente produzione di raggi gamma. Di questa radiazione non vi e’ nessuna evidenza ne’ dagli osservatori a Terra, ne’ dai satelliti, ne’ tantomeno dalle missioni esplorative che abbiamo mandato nello spazio.

Le condizioni di Sakharov offrono dunque un modello teorico in grado di spiegare perche’ potrebbe essere avvenuto questo squilibrio e quindi sia iniziato il big bang. Dico “potrebbe” perche’ al momento non tutte le condizioni sono state verificate e grande aiuto in questo senso dovrebbe venire dallo studio della fisica delle particelle agli acceleratori. Aprendo una piccola parentesi, quando in un acceleratore facciamo scontrare due fasci, questi interagiscono tra loro ad altissima energia. Man mano che aumentiamo l’energia, utilizzando sistemi sempre piu’ potenti, e’ come se andassimo indietro nel tempo tendendo verso il big bang. Ovviamente le energie oggi disponibili sono ancora molto lontane da quella iniziale, ma questo genere di studi ci consentono di comprendere molte cose importanti sul mondo delle particelle elementari.

Dunque, ricapitolando, abbiamo un sistema iniziale materia-antimateria, intervengono le condizioni di Sakharov e il sistema inizia ad espandersi facendo scomparire l’antimateria. Inizialmente le forze erano tutte unificate e le particelle si scontravano tra loro ad altissima energia.

Dopo, cosa e’ successo?

Man mano che il tempo scorreva, si passo’ attraverso varie fasi, ognuna caratterizzata da una rottura di simmetria di qualche tipo. In tal senso, le forza si divisero tra loro, lasciando quelle che oggi indichiamo come forze fondamentali: forte, debole, elettromagnetica e gravitazionale. In particolare, quest’ultima fu la prima a separarsi non appena la temperatura inizio’ a scendere e le onde gravitazionali poterono propagarsi liberamente.

Qualche minuto dopo l’istante iniziale, le particelle, cioe’ protoni e neutroni, poterono iniziare a combianrsi formando nuclei di Deuterio ed Elio. Questa importante fase viene chiamata “nucleosintesi”.

La temperatura dell’universo era pero’ ancora troppo elevata. Per osservare la formazione dei primi atomi, si dovette aspettare ancora circa 379000 anni, quando materia e radiazione finalmente si separarono e quest’ultima pote’ viaggiare libera nel cosmo. Di questo preciso istante, abbiamo anche parlato in questo post:

Universo: foto da piccolo

in cui, come visto, si ebbe la formazione della radiazione di fondo che oggi, alla temperatura attuale, e’ di 2.7K con uno spettro nelle microonde.

Dopo questa fase, gli addensamenti di materia cominciarono ad attrarsi gravitazionalmente, formando poi le galassie, le stelle, i pianeti, ecc, cioe’ , quello che vediamo oggi osservando l’universo.

Ma esistono delle prove di tutto questo? E se in realta’ il big bang non fosse mai avvenuto?

Come visto in altri post, ma anche come comprensibile da quanto detto, proprio la radiazione di fondo costituisce una prova del big bang. Detto in altri termini, la CMB non sarebbe altro che un’eco di quanto avvenuto, cioe’ un reperto fossile dell’esplosione iniziale.

Inoltre, la velocita’ di espansione delle Galassie, misurata per la prima volta da Hubble, costituisce un’altra prova a sostegno di questa teoria.

Partendo da quest’ultimo concetto, una domanda lecita che chiunque potrebbe farsi e’: “dove e’ avvenuto il Big Bang?”

Modello dell'espansione dal Big Bang

Modello dell’espansione dal Big Bang

In tal senso, se inizialmente si aveva un punto da cui poi tutto si e’ espanso, immaginando un rewind dovremmo essere in grado di identificare il punto iniziale del big bang. In realta’, non e’ cosi’. I fisici sono soliti dire che il Big Bang e’ avvenuto ovunque o anche che ogni punto dell’universo e’ un centro di espansione.

Che significa?

L’espansione dello spazio tempo avviene in piu’ di tre dimesioni, per cui non e’ facile immaginare a mente cosa sia avvenuto. Per capire questo concetto, immaginate l’universo come un palloncino inizialmente sgonfio. Ora, prendendo un pennarello, fate dei puntini sulla superificie. Se le pareti del palloncino sono l’universo che si espande, mentre gonfiate il palloncino, ciascun punto, tra quelli che avete disegnato, vedra’ gli altri allontarsi da lui. In questo contesto, ciascun punto e’ centro dell’espansione, cioe’ ogni punto vede gli altri punti allontarsi da lui in tutte le direzioni. L’animazione riportata potra’ aiutarvi a capire meglio questo discorso. Fissando un punto, tutti gli altri si allontanano da questo, indipendentemente da quello che scegliete come vostro centro. Dunque, se osservate l’universo dalla Terra, vedrete tutti gli altri corpi allontarsi da noi, come se la Terra fosse il centro dell’espansione.

Concludendo, esistono diverse prove sperimentali a sostegno del Big Bang, cioe’ di questa esplosione iniziale da cui, partendo da uno stato di equilibrio materia-antimateria, tutto si e’ formato passando attraverso diverse rotture di simmetrie. Ad oggi, o forse mai, nessuno potra’ spiegare perche’ questa materia e antimateria erano li o cosa c’era prima di questo equilibrio. Se volete, ognuno, con il suo pensiero e la sua convinzione, puo’ dare la sua spiegazione. I processi di evoluzione dal tempo zero, sono ipotizzati, ma ancora molto lavoro resta da fare per verificare queste teorie e capire a fondo perche’, come e con che intensita’ sino avvenuti determinati meccanismi. Insomma, di lavoro da fare ce n’e’ ancora molto.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.