Tag Archives: galassia

Buon appetito Sagitarius A*

5 Mag

Un nostro caro lettore, nella sezione:

Hai domande o dubbi?

ci ha segnalato delle pagine davvero molto interessanti, dal nostro punto di vista, riguardanti un evento cosmico molto affascinante che sta iniziando proprio in questi mesi e durera’ per almeno una decina di anni.

Di cosa si tratta?

Molto probabilmente, se siete appassionati di astronomia e eventi cosmici, avrete sentito parlare di G2, una nube di gas che si sta avvicinando verso il centro della nostra galassia. Cosa c’e’ di speciale in questo movimento? In alcuni articoli abbiamo gia’ parlato del centro della Galassia e soprattutto di Sagitarius A*, il buco nero super massivo che si trova in questo punto:

Nube assassina dallo spazio

Meteorite anche a Cuba e dark rift

Nuova sconvolgente Teoria

Come visto, non c’e’ assolutamente nulla di anormale nella presenza di questo buco nella nostra galassia anzi, per dirla tutta, si pensa che oggetti di questo tipo siano presenti nel centro di molte galassie.

Ora, cosa sarebbe G2? Anche in questo caso, dietro questo nome misterioso, non c’e’ nulla di sorprendente. Si tratta di una nube di gas con una massa circa 3 volte quella della Terra che pero’ si trova molto vicina a Sagitarius. Come e’ ormai noto, parlando cosmologicamente di “molto vicino”, intendiamo comunque dimensioni molto elevate. Nel caso di G2, la sua orbita prevede un passaggio ravvicinato con una minima distanza dal buco nero di circa 260 unita’ astronomiche. Come visto in questo articolo:

I buchi neri che … evaporano

questa distanza corrisponde pero’ a circa 3000 volte il raggio dell’orizzonte degli eventi del buco nero. Come potete facilmente immaginare, ad una distanza cosi’ “piccola”, la nube sara’ attratta dalla gravita’ del buco nero per cui gli effetti di questa forza saranno molto intensi per il gas.

G2 e’ stata scoperta nel 2002, ma solo nel 2012 si e’ iniziato a studiarla in dettaglio proprio quando si e’ ricostruita con maggiore precisione la sua orbita. Il passaggio ravvicinato con Sagitarius A*, rappresenta un evento cosmico molto importante dal punto di vista dell’astrofisica. Durante questo incontro, sara’ infatti possibile studiare in dettaglio diverse caratteristiche dei buchi neri, ancora poco noti, come, ad esempio, il processo di accrescimento, la gravita’, l’orizzonte degli eventi, ecc..

Perche’ questo evento viene richiamato da alcuni siti catastrofisti? La motivazione e’ sempre, purtroppo, la stessa: speculare su eventi assolutamente non pericolosi pur di aumentare le visite ai propri siti. Come visto negli articoli precedenti, la Terra si trova a circa 26000 anni luce dal centro della Galassia. Questo significa che, anche volendo, qualunque cosa, radiazione o materia, sparata da Sagitarius A verso la Terra impieghera’ al minimo 26000 anni per raggiungerci. Detto questo, non credo sia il caso di preoccuparci ne’ di questo incontro, ne’ di qualunque altro evento cosmico che possa interessare il centro della nostra galassia.

Oltre a questa speculazione “scontata”, come sottolineato nel commento iniziale da cui siamo partiti, ci sono alcuni siti, apparentemente camuffati da siti scientifici, che propongono teorie “alternative” per G2 e per il suo passaggio ravvicinato. La prima ipotesi che salta agli occhi e’ che si vorrebbe far credere che G2 non sia in realta’ una nube di gas ma una stella. E’ possibile questo? In realta’ si, ma questa ipotesi, prima che su questi siti, e’ stata discussa a livello scientifico. Esistono infatti diverse ipotesi sull’origine e sulla struttura di G2. Come detto all’inizio, si pensa con maggiore probabilita’ che questa sia una nube di gas. Da dove proviene? Ipotesi possibili potrebbero essere che si tratti di una nube di gas cosmico isolata oppure che si tratti dell’atmosfera di una qualche stella strappata da eventi cosmici. Un’idea alternativa prevede invece, da studi sull’orbita, che non si tratti esclusivamente di gas, ma che, all’interno della nube osservata, ci sia un corpo massivo come una stella nelle fasi finali della propria esistenza. Altre ipotesi alternative prevedono che G2 sia un proto-pianeta, cioe’ quello che rappresentava un disco di accrescimento di un corpo massivo che pero’ non e’ riuscito a formarsi a causa della temperatura troppo alta dei gas. Tutte ipotesi possibili scientifiche e su cui ancora oggi si dibatte.

Dal punto di vista del passaggio ravvicinato, cosa comporterebbe una struttura diversa di G2?

Ovviamente, la reale natura della nube, continuiamo a chiamarla cosi’, determinera’ uno “spettacolo” diverso durante il passaggio. Per essere precisi, e per smentire alcuni siti e giornali che hanno usato titoli pomposi, questo passaggio non rappresentera’ un lauto pasto per Sagitarius A*, ma piu’ che altro uno spuntino. La minima distanza di passaggio sara’ tale da far avvertire l’attrazione gravitazionale da parte del buco nero ma, molto probabilmente, G2 sopravvivera’ all’incontro perche’ troppo distante dall’orizzonte degli eventi.

Diverse simulazioni condotte in questi mesi hanno mostrato scenari possibili in cui G2 sopravvivera’ anche se la sua orbita e la sua struttura saranno fortemente modificati. In particolare, dopo l’incontro, la nube di gas potrebbe essere talmente diffusa da non apparire piu’ come compatta. Inoltre, se G2 fosse composta solo ed esclusivamente di gas, durante l’assorbimento da parte di Sagitarius A*, verranno emessi brillamenti di radiazione soprattutto nei raggi X. Al contrario, se all’interno fosse presente un corpo massivo, questo effetto sarebbe notevolmente ridimensionato. Come potete capire molto bene, dall’emissione di radiazione nel passaggio, sara’ dunque possibile capire anche la struttura intima di G2.

Vi mostro anche una simulazione di uno degli scenari possibili dell’attrazione di G2 da parte del buco nero:

Simulazione dell'attrazione di G2 da parte di Sagitarius A*

Simulazione dell’attrazione di G2 da parte di Sagitarius A*

Come vedete, l’orbita seguita dalla nube viene deviata verso la parte centrale a causa dell’attrazione gravitazionale esercitata da Sagitarius A*.

Concludendo, a partire dal 2013 e’ iniziato il passaggio ravvicinato di una nube di gas, G2, in prossimita’ del buco nero che occupa il centro della nostra galassia, Sagitarius A*. Questo evento cosmico durera’ uan decina di anni che rappresentano comunque un intervallo molto breve sulle scale del nostro universo. A parte le speculazioni sempre presenti per eventi di questo tipo, si tratta di un evento assolutamente non pericoloso, ma estremamente affascinante dal punto di vista scientifico. Come visto nell’articolo, osservando questo passaggio, sara’ possibile ottenere informazioni molto importanti sulla nube di gas, sulla sua struttura interna ma, soprattutto, sara’ possibile carpire informazioni molto importanti per comprendere meglio i buchi neri e i processi che ne regolano il loro accrescimento.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Flusso oscuro e grandi attrattori

28 Feb

Nella ormai celebre sezione:

Hai domande o dubbi?

in cui sono usciti fuori davvero gli argomenti piu’ disparati ma sempre contraddistinti da curiosita’ e voglia di discutere, una nostra cara lettrice ci ha chiesto maggiori lumi sul cosiddetto “dark flow” o flusso oscuro. Una richiesta del genere non puo’ che farci piacere, dal momento che ci permette di parlare nuovamente di scienza e, in particolare, di universo.

Prima di poterci addentrare in questo argomento scientifico ma, anche a livello di ricerca, poco conosciuto, e’ necessario fare una piccolissima premessa iniziale che serve per riprendere in mano concetti sicuramente conosciuti ma su cui spesso non si riflette abbastanza.

Per iniziare la discussione, voglio mostrarvi una foto:

sir-isaac-newtons-philosophic3a6-naturalis-principia-mathematica

Quello che vedete non e’ un semplice libro, ma uno dei tre volumi che compongono il Philosophiae Naturalis Principia Mathematica o, tradotto in italiano, “I principi naturali della filosofia naturale”. Quest’opera e’ stata pubblicata il 5 luglio 1687 da Isaac Newton.

Perche’ e’ cosi’ importante questa opera?

Questi tre volumi sono considerati l trattato piu’ importante del pensiero scientifico. Prima di tutto, contengono la dinamica formulata da Newton che per primo ha posto le basi per lo studio delle cause del moto ma, soprattutto, perche’ contengono quella che oggi e’ nota come “Teoria della Gravitazione Universale”.

Sicuramente, tutti avrete sentito parlare della gravitazione di Newton riferita al famoso episodio della mela che si stacco’ dall’albero e cadde sulla testa del celebre scienziato. Come racconta la leggenda, da questo insignificante episodio, Newton capi’ l’esistenza della forza di gravita’ e da qui la sua estensione all’universo. Se vogliamo pero’ essere precisi, Newton non venne folgorato sulla via di Damasco dalla mela che cadeva, ma questo episodio fu quello che fece scattare la molla nella testa di un Newton che gia’ da tempo studiava questo tipo di interazioni.

Volendo essere brevi, la teoria della gravitazione di Newton afferma che nello spazio ogni punto materiale attrae ogni altro punto materiale con una forza che e’ proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato della loro distanza. In soldoni, esiste una forza solo attrattiva che si esercita tra ogni coppia di corpi dotati di massa e questa interazione e’ tanto maggiore quanto piu’ grandi sono le masse e diminuisce con il quadrato della loro distanza.

Semplice? Direi proprio di si, sia dal punto di vista fisico che matematico. Perche’ allora chiamare questa legge addirittura con l’aggettivo “universale”?

Se prendete la male di Newton che cade dall’albero, la Luna che ruota intorno alla Terra, la Terra che ruota intorno al Sole, il sistema solare che ruota intorno al centro della Galassia, tutti questi fenomeni, che avvengono su scale completamente diverse, avvengono proprio grazie unicamente alla forza di gravita’. Credo che questo assunto sia sufficiente a far capire l’universalita’ di questa legge.

Bene, sulla base di questo, l’interazione che regola l’equilibrio delle masse nell’universo e’ dunque la forza di gravita’. Tutto quello che vediamo e’ solo una conseguenza della sovrapposizione delle singole forze che avvengono su ciascuna coppia di masse.

Detto questo, torniamo all’argomento principale del post. Cosa sarebbe il “flusso oscuro”? Detto molto semplicemente, si tratta del movimento a grande velocita’ di alcune galassie in una direzione ben precisa, situata tra le costellazioni del Centauro e della Vela. Questo movimento direzionale avviene con velocita’ dell’ordine di 900 Km al secondo e sembrerebbe tirare le galassie in un punto ben preciso al di fuori di quello che definiamo universo osservabile.

Aspettate, che significa che qualcosa tira le galassie fuori dall’universo osservabile?

Per prima cosa, dobbiamo definire cosa significa “universo osservabile”. Come sappiamo, l’universo si sta espandendo e se lo osserviamo da Terra siamo in grado di vedere le immagini che arrivano a noi grazie al moto dei fotoni che, anche se si muovono alla velocita’ della luce, si spostano impiegando un certo tempo per percorrere delle distanze precise. Se sommiamo questi due effetti, dalla nostra posizione di osservazione, cioe’ la Terra, possiamo vedere solo quello che e’ contenuto entro una sfera con un raggio di 93 miliardi anni luce. Come potete capire, l’effetto dell’espansione provoca un aumento di quello che possiamo osservare. Se l’universo ha 14.7 miliardi di anni, ci si potrebbe aspettare di poter vedere dalla terra la luce partita 14.7 miliardi di anni fa, cioe’ fino ad una distanza di 14.7 miliardi di anni luce. In realta’, come detto, il fatto che l’universo sia in continua espansione fa si che quello che vediamo oggi non si trova piu’ in quella posizione, ma si e’ spostato a causa dell’espansione. Altro aspetto importante, la definizione di sfera osservabile e’ vera per ogni punto dell’universo, non solo per quella sfera centrata sulla Terra che rappresenta cquello che noi possiamo vedere.

Bene, dunque si sarebbe osservato un flusso di alcune galassie verso un punto preciso fuori dall’universo osservabile. Proprio dal fatto che questo flusso e’ all’esterno del nostro universo osservabile, si e’ chiamato questo movimento con l’aggettivo oscuro.

Aspettate un attimo pero’, se le galassie sono tirate verso un punto ben preciso, cos’e’ che provoca questo movimento? Riprendendo l’introduzione sulla forza di gravitazione, se le galassie, che sono oggetti massivi, sono tirate verso un punto, significa che c’e’ una massa che sta esercitando una forza. Poiche’ la forza di gravitazione si esercita mutuamente tra i corpi, questo qualcosa deve anche essere molto massivo.

Prima di capire di cosa potrebbe trattarsi, e’ importante spiegare come questo flusso oscuro e’ stato individuato.

Secondo le teorie cosmologiche riconosciute, e come spesso si dice, l’universo sarebbe omogeneo e isotropo cioe’ sarebbe uguale in media in qualsiasi direzione lo guardiamo. Detto in altri termini, non esiste una direzione privilegiata, almeno su grandi scale, in cui ci sarebbero effetti diversi. Sempre su grandi scale, non esisterebbe neanche un movimento preciso verso una direzione ma l’isotropia produrrebbe moti casuali in tutte le direzioni.

Gia’ nel 1973 pero’, si osservo’ un movimento particolare di alcune galassie in una direzione precisa. In altri termini, un’anomalia nell’espansione uniforme dell’universo. In questo caso, il punto di attrazione e’ all’interno del nostro universo osservabile e localizzato in prossimita’ del cosiddetto “ammasso del Regolo”, una zona di spazio dominata da un’alta concentrazione di galassie vecchie e massive. Questa prima anomalia gravitazionale viene chiamata “Grande Attrattore”. In questa immagine si vede appunto una porzione di universo osservabile da Terra ed in basso a destra trovate l’indicazione del Grande Attrattore:

800px-2MASS_LSS_chart-NEW_Nasa

Questa prima anomalia dell’espansione venne osservata tramite quello che e’ definito lo spostamento verso il rosso. Cosa significa? Se osservate un oggetto che e’ in movimento, o meglio se esiste un movimento relativo tra l’osservatore e il bersaglio, la luce che arriva subisce uno spostamento della lunghezza d’onda dovuto al movimento stesso. Questo e’ dovuto all’effetto Doppler valido, ad esempio, anche per le onde sonore e di cui ci accorgiamo facilmente ascoltando il diverso suono di una sirena quando questa si avvicina o si allontana da noi.

220px-Redshift_blueshift.svg

Bene, tornando alle onde luminose, se la sorgente si allontana, si osserva uno spostamento verso lunghezze d’onda piu’ alte, redshift, se si avvicina la lunghezza d’onda diminuisce, blueshift. Mediate questo semplice effetto, si sono potuti osservare molti aspetti del nostro universo e soprattutto i movimenti che avvengono.

Tornando al grnde attrattore, questa zona massiva verso cui si osserva un moto coerente delle galassie del gruppo e’ localizzato a circa 250 milioni di anni luce da noi nella direzione delle costellazioni dell’Hydra e del Centauro e avrebbe una massa di circa 5×10^15 masse solari, cioe’ 5 milioni di miliardi di volte il nostro Sole. Questa, come anticipato, e’ soltanto una anomalia dell’espansione dell’universo che ha creato una zona piu’ massiva in cui c’e’ una concentrazione di galassie che, sempre grazie alla gravita’, attraggono quello che hanno intorno.

Discorso diverso e’ invece quello del Dark Flow. Perche’? Prima di tutto, come detto, questo centro di massa si trova talmente lontano da essere al di fuori del nostro universo osservabile. Visto da Terra poi, la zona di spazio che crea il flusso oscuro si trova piu’ o meno nella stessa direzione del Grande Attrattore, ma molto piu’ lontana. Se per il Grande Attrattore possiamo ipotizzare, detto in modo improprio, un grumo di massa nell’universo omogeneo, il flusso oscuro sembrerebbe generato da una massa molto piu’ grande ed in grado anche di attrarre a se lo stesso Grande Attrattore.

Il flusso oscuro venne osservato per la prima volta nel 2000 e descritto poi a partire dal 2008 mediante misure di precisione su galassie lontane. In questo caso, l’identificazione del flusso e’ stata possibile sfruttando il cosiddetto effetto Sunyaev-Zel’dovich cioe’ la modificazione della temperatura dei fotoni della radiazione cosmica di fondo provocata dai raggi X emessi dalle galassie che si spostano. Sembra complicato, ma non lo e’.

Di radiazione di fondo, o CMB, abbiamo parlato in questi articoli:

Il primo vagito dell’universo

E parliamo di questo Big Bang

Come visto, si tratta di una radiazione presente in tutto l’universo residuo del Big Bang iniziale. Bene, lo spostamento coerente delle galassie produce raggi X, questi raggi X disturbano i fotoni della radiazione di fondo e noi da terra osservando queste variazioni ricostruiamo mappe dei movimenti delle Galassie. Proprio grazie a queste misure, a partire dal 2000, e’ stato osservato per la prima volta questo movimento coerente verso un punto al di fuori dell’universo osservabile.

Cosa potrebbe provocare il Flusso Oscuro? Bella domanda, la risposta non la sappiamo proprio perche’ questo punto, se esiste, come discuteremo tra un po’, e’ al di fuori del nostro universo osservabile. Di ipotesi a riguardo ne sono ovviamente state fatte una miriade a partire gia’ dalle prime osservazioni.

Inizialmente si era ipotizzato che il movimento potrebbe essere causato da un ammasso di materia oscura o energia oscura. Concetti di cui abbiamo parlato in questi post:

La materia oscura

Materia oscura intorno alla Terra?

Se il vuoto non e’ vuoto

Universo: foto da piccolo

Queste ipotesi sono pero’ state rigettate perche’ non si osserva la presenza di materia oscura nella direzione del Dark Flow e, come gia’ discusso, per l’energia oscura il modello prevede una distribuzione uniforme in tutto l’universo.

Cosi’ come per il Grande Attrattore, si potrebbe trattare di un qualche ammasso molto massivo in una zona non osservabile da Terra. Sulla base di questo, qualcuno, non tra gli scienziati, aveva ipotizzato che questo effetto fosse dovuto ad un altro universo confinante con il nostro e che provoca l’attrazione. Questa ipotesi non e’ realistica perche’ prima di tutto, la gravitazione e’ frutto dello spazio tempo proprio del nostro universo. Se anche prendessimo in considerazione la teoria dei Multiversi, cioe’ universi confinanti, l’evoluzione di questi sarebbe completamente diversa. Il flusso oscuro provoca effetti gravitazionali propri del nostro universo e dovuti all’attrazione gravitazionale. Il fatto che sia fuori dalla nostra sfera osservabile e’ solo dovuto ai concetti citati in precedenza figli dell’accelerazione dell’espansione.

Prima di tutto pero’, siamo cosi’ sicuri che questo Flusso Oscuro esista veramente?

Come anticipato, non c’e’ assolutamente la certezza e gli scienziati sono ancora fortemente divisi non solo sulle ipotesi, ma sull’esistenza stessa del Flusso Oscuro.

Per farvi capire la diatriba in corso, questo e’ il link all’articolo originale con cui si ipotizzava l’esistenza del Flusso Oscuro:

Dark Flow

Subito dopo pero’, e’ stato pubblicato un altro articolo che criticava questo sostenendo che i metodi di misura applicati non erano corretti:

Wright risposta al Dark Flow

Dopo di che, una lunga serie di articoli, conferme e smentite, sono stati pubblicati da tantissimi cosmologi. Questo per mostrare quanto controversa sia l’esistenza o meno di questo flusso oscuro di Galassie verso un determinato punto dell’universo.

Venendo ai giorni nostri, nel 2013 e’ stato pubblicato un articolo di analisi degli ultimi dati raccolti dal telescopio Planck. In questo paper viene nuovamente smentita l’esistenza del dark flow sulla base delle misure delle velocita’ effettuate nella regione di spazio in esame:

Planck, 2013

Dunque? Dark Flow definitivamente archiviato? Neanche per sogno. Un altro gruppo di cosmologi ha pubblicato questo ulteriore articolo:

Smentita alla smentita

in cui attacca i metodi statistici utilizzati nel primo articolo e propone un’analisi diversa dei dati da cui si mostra l’assoluta compatibilita’ di questi dati con quelli di un altro satellite, WMAP, da cui venne evidenziata l’esistenza del dark flow.

Credo che a questo punto, sia chiaro a tutti la forte discussione ancora in corso sull’esistenza o meno di questo Dark Flow. Come potete capire, e’ importante prima di tutto continuare le analisi dei dati e determinare se questo flusso sia o meno una realta’ del nostro universo. Fatto questo, e se il movimento venisse confermato, allora potremmo fare delle ipotesi sulla natura di questo punto di attrazione molto massivo e cercare di capire di cosa potrebbe trattarsi. Ovviamente, sempre che venisse confermata la sua esistenza, stiamo ragionando su qualcosa talmente lontano da noi da essere al di fuori della nostra sfera osservabile. Trattare questo argomento ci ha permesso prima di tutto di aprire una finestra scientifica su un argomento di forte e continua attualita’ per la comunita’ scientifica. Come sappiamo, trattando argomenti di questo tipo, non troviamo risposte certe perche’ gli studi sono ancora in corso e, cosi’ come deve avvenire, ci sono discussioni tra gli scienziati che propongono ipotesi, le smentiscono, ne discutono, ecc, come la vera scienza deve essere. Qualora ci fossero ulteriori novita’ a riguardo, ne parleremo in un futuro articolo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Buongiorno Rosetta!

26 Gen

Solo pochi giorni fa, e’ stata data una notizia che, purtroppo, e’ passata un po’ in sordina sui siti di informazione: dopo ben 31 mesi, la sonda Rosetta si e’ risvegliata dal suo periodo di ibernazione ed e’ pronta ad effetturare una missione che non puo’ che richiamare alla mente scenari fantascientifici.

Di cosa si tratta?

La missione della sonda Rosetta e’ estremamente interessante dal punto di vista scientifico. Il suo compito e’ quello di avvicinarsi alla cometa 67P/Churyumov-Gerasimenko e, per la prima volta, far scendere un modulo di atterraggio pensato per esplorare la cometa.

Il nome Rosetta viene proprio dalla stele di Rosetta. Cosi’ come il manufatto, gli studiosi del settore pensano di poter scoprire importanti segreti del nostro universo analizzando da vicino la cometa. Come abbiamo visto in questo articolo:

Cos’e’ una cometa

le comete sono dei veri e propri fossili del nostro universo, dal cui studio e’ possibile raccogliere informazioni fondamentali sull’origine della Via Lattea e dell’universo stesso.

Non a caso, il lander destinato a scendere sulla cometa si chiama Philae e prende spunto dal nome di un’isola dove e’ stato ritrovato un importante manufatto che ha consentito di decifrare la Stele di Rosetta.

Torniamo alla missione. Perche’ la sonda e’ stata ibernata?

Rosetta e’ stata lanciata nel 2004. Il percorso ha previsto ben quattro fionde gravitazionali,  3 intorno alla Terra ed una intorno a Marte, per consentire alla sonda di acquistare suffciente velocita’ per il suo viaggio. Terminata questa prima fase, la sonda e’ stata messa in stato di ibernazione per risparmiare importanti risorse inutili per il viaggio.

In questi giorni, dopo ben 31 mesi, Rosetta e’ stata risvegliata in automatico dal suo computer di bordo. Come potete facilmente immaginare, il risveglio e’ stato un procedimento molto lungo ed estremamente delicato. Per prima cosa, e’ stato un successo ricevere da Terra il primo segnale da Rosetta che indicava il corretto funzionamento della strumentazione.

Ora, la sonda ha ripreso il suo viaggio verso la 67P/Churyumov-Gerasimenko. Per darvi qualche informazione aggiuntiva, si tratta di una cometa periodica del nostro Sistema Solare con un periodo di 6.45 anni terrestri. Una volta raggiunta la cometa, dalla sonda si stacchera’ il modulo Philae destinato a posarsi sulla superficie del piccolo corpo. Parliamo infatti di una dimensione di 2×4 kilometri quadrati.

Ricostruzione 3D del nucleo della cometa

Ricostruzione 3D del nucleo della cometa

Anche se durante la preparazione della missione, e’ stato utilizzato il telescopio Hubble per ricostruire un’immagine 3D della cometa, come potete facilmente immaginare, non e’ possibile pianificare alla perfezione il momento dell’atterraggio. Questa delicatissima operazione sara’ infatti eseguita in diretta per correggere eventuali variazioni di piano e consentire al lander di atterrare.

Una volta in posizione, Philae utilizzera’ i suoi strumenti per fare un’analisi assolutamente esclusiva di un corpo di questo tipo. Il lander e’ dotato anche di un trapano in grado di scavare a profondita’ fino a 20 cm. I frammenti raccolti saranno anche scaldati in piccoli fornetti fino a 1200 gradi per permettere un’analisi chimico-fisica dei materiali.

Come potete facilmente capire, si tratta di un’operazione estremamente complessa ma che potrebbe consentire di raccogliere informazioni importantissime per la comprensione del nostro universo. Una missione di questo tipo, come anticipato all’inizio, non puo’ che richiamare gli scenari di alcuni film di fantascienza degli anni ’90. Sicuramente, l’operazione presenta alcuni punti oscuri ma grandi speranze sono affidate a questa missione pensata e sviluppata dall’ESA con un contributo italiano davvero notevole. L’arrivo intorno alla cometa e’ atteso per la seconda meta’ del 2014. Non resta ancora molto da aspettare. Daremo ulteriori aggiornamenti su questa missione, seguendo passo dopo passo ogni evoluzione di Rosetta.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Nube assassina dallo spazio

6 Nov

Nella solita sezione dedicata a queste proposte:

Hai domande o dubbi

un nostro caro lettore ci ha chiesto informazioni riguardo ad una notizia che, soprattutto negli ultimi giorni, sta facendo molto discutere sul web e ha fornito nuova linfa ai tanti siti catastrofisti che, diciamocela tutta, dopo il 21 dicembre 2012 sono rimasti un po’ a corto di idee.

Di cosa si tratta?

Cerchero’ di farvela molto breve. Anche se sul web girano molte versioni, con dettagli piu’ o meno fantasiosi, il succo e’ pressapoco questo: una massiccia nube di “qualcosa” si sarebbe staccata dal centro della nostra galassia, la Via Lattea, e starebbe per raggiungere ad altissima velocita’ il nostro pianeta. Su cosa sia questo “qualcosa” ognuno ci mette del suo: antimateria, una soluzione acida, antiparticelle. Nonostante questo, il risultato e’ sempre lo stesso: quando la nube raggiungera’ la Terra, e manca ovviamente molto poco, il nostro mondo verra’ spazzato via. Anzi, per dirvela con le stesse parole, l’effetto del passaggio di questa nube sara’ come l’acqua buttata su un foglio scritto con inchiostro, tutto si dissolvera’ a causa dell’interazione tra la materia che costituisce il nostro pianeta e quel qualcosa che forma la nube.

Quanto tempo resta? Ovviamente molto poco, qualcuno parla di giorni, altri di mesi, ma l’ora e’ comunque prossima. Possibile che non se ne sia accorto nessuno? Ma dai, possibile che nessuno se ne sia accorto? Ovviamente qualcuno c’e’, indovinate chi? Ma ovvio, la NASA! Come al solito pero’, i tecnici dell’ente spaziale americano hanno scoperto questa nube e la stanno continuamente monitornando. Purtroppo, per evitare problemi di ordine pubblico, che cuore nobile che hanno, evitano di dirlo ai comuni mortali che tanto sarebbero destinati lo stesso a morire.

Per fortuna, come nei migliori film di fantascienza americani, c’e’ il solito eroe, il buono del film, che si accorge di tutto e cerca di avvisare gli abitanti della Terra. Questo qualcuno e’ uno scienziato, l’astrofisico inglese Albert Shervinsky. Avete capito bene, mica uno qualsiasi, addirittura un astrofisico. Sapete dove lavora il buono del nostro film? All’universita’ di Cambridge, quindi non un’istituzione da quattro soldi.

Cosa dire, c’e’ un buco nero che butta una nube di qualcosa di distruttivo, la nube sta arrivando sulla Terra e un astrofisico di un’importante universita’ se ne accorge. Detto questo, non resta altro da fare che pregare prima che la fine giunga sotto forma di nube spaziale.

Attenzione, forse, e dico forse, prima di pregare o lasciarsi prendere dal panico e’ il caso di leggere meglio la storia che gira sul web e che tanto sta facendo discutere.

Siamo proprio sicuri che questa storia sia verosimile?

Come potete immaginare, anche dal mio tono goliardico utilizzato fino a questo punto, la storia e’ una vera e propria bufala, tra l’altro anche orchestrata in modo pessimo.

Torniamo di nuovo seri e ragioniamo su quanto detto fino a questo punto.

Prima di tutto, c’e’ una nube esplusa da un buco nero o meglio dal buco nero al centro della nostra galassia. Di questo buco nero, anche noto come Sagitarius A, abbiamo parlato in dettaglio in questo articolo:

Nexus 2012: bomba a orologeria

A parte che e’ un buco nero supermassivo e occupa la parte centrale della nostra Galassia, questo buco nero e’ solo un buco nero. Con questo intendo dire che il suo comportamento e’ molto ben descritto da quello che sappiamo su questa classe di oggetti celesti. Come visto in questo articolo:

I buchi neri che … evaporano

secondo la teoria di Hawking i buchi neri possono evaporare, cioe’ emettere particelle verso l’esterno diminuendo nel corso del tempo la loro massa. Questo e’ un meccanismo noto e di cui abbiamo gia’ parlato in dettaglio. L’evaporazione e’ l’unico modo in cui una parte di materia esce all’esterno del buco nero, per definizione spazio in cui la materia viene assorbita a causa dell’elevatissima gravita’.

Perche’ dico questo?

Anche se fosse, un buco nero puo’ emettere radiazione all’esterno attraverso l’evaporazione, ma sempre di particelle ordinarie si tratta. Se anche, per assurdo, pensassimo che un qualcosa venisse emesso dal buco nero, sarebbe sempre qualcosa di materia ordinaria. E’ completamente assurdo pensare che questo qualcosa, ripeto fatto di materia ordinaria, se incontrasse la Terra la dissolverebbe nel nulla. Per tentare di giustificare questa affermazione, alcuni siti, come visto, inventano che questo qualcosa emesso dal buco nero sia antimateria. Come visto nell’articolo precedente sull’evaporazione, questa affermazione e’ assolutamente non giustificata.

Altra considerazione non da poco, il nostro Sagitarius A si trova ad una distanza stimata di circa 26000 anni luce dalla Terra. Ora, se un qualcosa venisse emesso dal buco nero in direzione della Terra, supponendo che questo qualcosa viaggi alla velocita’ della luce, allora servirebbero 26000 anni prima di arrivare a colpirci. Con 26000 anni di tempo, non credo sia il caso di preoccuparci.

Da dove nasce questa storia cosi’ assurda?

E’ interessante rispondere a questa domanda se non altro per capire come vengono create queste bufale che ormai quotidianamente ci offrono divertenti storielle da leggere online.

La bufale della nube emessa dal centro galattico verso la nostra Terra e’ in realta’ una storia vecchia gia’ di qualche anno. In rete si trova infatti un articolo del 2005 che parlava dell’osservazione di questa nube:

Pravda.ru, nube dal centro galattico

Per chi non lo conoscesse, questo sito e’ assolutamente affidabile o meglio offre sempre una certezza: se leggete una notizia in rete e non sapete se sia vera o meno, controllate Pravda. ru. Se la stessa notizia la trovate anche qui, allora potete essere sicuri che si tratta di una bufala!

Perche’ proprio ora e’ stata ritirata fuori?

Anche per questo c’e’ una spiegazione. Gia’ da questa estate, si parlava dell’osservazione di una nube di gas che e’ passata in prossimita’ di Sagitarius A. Attenzione, qui parliamo di misure reali fatte da osservatori in orbita. A causa della fortissima gravita’ vicino al centro, la nube aveva mostrato dinamiche molto particolari che avevano permesso agli studiosi di poter capire alcuni importanti parametri del buco nero super massivo. Su youtube si trova anche un video pubblicato dall’INAF in cui si parla di questa osservazione:

Il diffondersi di questa notizia aveva ovviamente creato la distorsione di cui stiamo parlando, alimentata anche dal vecchio articolo bufala che gia’ girava in rete.

Prima di chiudere, proprio per non lasciare niente al caso, c’e’ ancora un altro punto  di cui parlare. Come visto, anche se ci sono varie vesioni della storia, tutte sono concordi sull’eroe buono pronto a diffondere la notizia al popolo, l’astrofisico Albert Shervinsky dell’universita’ di Cambridge.

Chi e’ costui?

Come nella migliore tradizione delle bufale, non esiste nessun astrofisico con questo nome, tantomeno all’universita’ di Cambridge.

Come verificare questo?

Semplice, andiamo a vedere nel sito dell’universita’ citata. Ci sono due dipartimenti papabili in cui potrebbe lavorare un astrofisico, uno e’ quello di fisica, l’altro e’ il dipartimento di astronomia. Bene, andiamo alle pagine corrispondenti in cui troviamo tutti i membri affiliati:

Cambridge, dipartimento di Fisica

Cambridge, dipartimento di Astronomia

Come mostrato, non esiste nessun astrofisico in questa universita’ con il nome citato nella notizia.

Concludendo, anche in questo caso si tratta della solita bufala o meglio del soito tentativo vano dei siti catastrofisti alla disperata ricerca di un qualcosa utile per sostituire l’ormai tramontato 21 Dicembre 2012. Come visto, la notizia di una nube sparata dal centro della galassia verso la Terra e’ solo la riproposizione di una vecchia bufala del 2005, ritirata fuori dopo le osservazioni in orbita su Sagitarius A. A parte queste osservazioni, tutto cio’ che e’ contenuto nella notizia e’ una libera produzione della fantasia di qualche buontempone.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

(Quasi) pronta al lancio la missione GAIA

24 Ott

Diverse volte nei nostri articoli abbiamo parlato di astronomia, ma soprattutto della ricerca di esopianeti al di fuori del nostro sistema solare:

A caccia di vita sugli Esopianeti

Nuovi esopianeti. Questa volta ci siamo?

Esopianeti che non dovrebbero esserci

Ancora sugli esopianeti

Aggiornamento su Kepler

Come visto in particolare nell’ultimo articolo, la sonda Kepler, che tanto ha contribuito all’esplorazione della nostra Galassia, ha avuto gravi problemi di funzionamento al punto di inficiare il suo funzionamento.

Premesso questo, negli ultimi giorni, molti siti e giornali hanno invece parlato di una nuova missione quasi pronta al lancio da parte dell’ESA, con un’ampia partecipazione dei nostri ASI e INAF. La missione in questione e’ chiamata GAIA dove, come al solito, il nome non e’ altro che un acronimo che sta per Global Astrometric Interferometer for Astrophysics.

Prima di darvi qualche dettaglio tecnico sull’esperimento e dirvi a cosa servira’, partiamo invece dicendo a cosa “non” serve Gaia. Come di solito avviene, molti giornali e siti internet hanno preso la palla al balzo per inventare storielle fantastiche e rafforzare le paure degli ultimi tempi.

La missione GAIA

La missione GAIA

Leggendo in rete, trovate scritto che GAIA e’ una missione preparata in fretta e furia dall’ESA perche’, tastuali parole, gli astronomi si sono resi conto che qualcosa non torna nel nostro sistema solare e, finalmente, hanno preso in seria considerazione la possibilita’ che la nostra Terra possa essere colpita nel giro di poco tempo da qualche asteroide o cometa in grado di provocare estinzioni di massa o, peggio ancora, far scomparire del tutto il nostro pianeta. Inoltre, molti siti parlano di uno studio particolare atteso da Gaia per individuare nane brune nel nostro sistema solare e per tracciare corpi vagabondi che provengono da orbite particolari tali per cui questi oggetti sarebbero invisibili fino al momento dell’impatto con la Terra.

Cosa vi ricorda questa storia?

Ovvio, il tanto amato, citato e fantasticato Nibiru! Ovviamente, il tutto mescolato insieme nel solito brodo catastrofista. Nane brune nel sistema solare che creano pioggie di meteoriti, asteroidi killer che provengono da dietro il Sole e sono invisibili fino al momento dell’urto sulla Terra. Insomma, anche sulla missione Gaia, e notate il modo subdolo, senza citare espressamente la cosa, si cerca di rafforzare l’idea che Nibiru sia una minaccia reale ma coperta dai soliti scienziati che sanno ma non dicono.

Lasciamo perdere queste fantasie e vediamo invece come e’ fatta Gaia.

Prima premessa, per poter arrivare al momento del lancio di una qualsiasi missione, sono necessari anni di studi e preparazione. Pensare l’esperimento, fare calcoli di fattibilita’, studiare prototipi, ecc. Tutte operazioni che richiedono anni. Nel caso di Gaia, la missione e’ stata elaborata inizialmente prima ancora del 2000.

A cosa serve?

La missione punta ad ottenere una mappa 3D molto precisa delle stelle e degli oggetti vicini al sistema solare nella nostra Galassia, oltre ad una mappa meno precisa dei corpi piu’ lontani. La durata della missione dovrebbe essere all’incirca di 5 anni, periodo in cui Gaia potra’ osservare circa un miliardo di stelle.

Per ottenere queste risoluzioni, Gaia e’ dotata di due telescopi con punti di vista differenti ma focale in comune. Gli strumenti sono realizzati con una matrice di piu’ di 100 CCD che garantiranno una risoluzione intorno al miliardo di pixel. Detto in modo familiare, parliamo di 1000 Mega pixel se paragonata con le comuni macchine fotografiche.

Altro aspetto importante della missione e’ la posizione in cui il satellite orbitera’. Come potete leggere dalla vasta bibliografia, Gaia occupera’ il cosiddetto punto Lagrangiano 2, o anche L2 nel nostro sistema solare. Cosa significa? Detto in termini molto semplici, se prendiamo il sistema a tre corpi composto da Sole, Terra e Luna, come e’ noto questi interagiscono tra loro attraverso la mutua attrazione gravitazionale. Bene, visto nello spazio, a causa delle rotazioni, nel tempo e nollo spazio, l’intensita’ risultante delle tre forze non sara’ costante. Esistono pero’ dei punti particolari di equilibrio in cui le forze che agiscono sul corpo di massa minore, ad esempio, come in questo caso, il satellite che occupa il punto, si bilanciano esattamente.

Per farvi capire meglio, vi mostro un’immagine proprio del sistema Sole-Terra in cui sono riportati questi punti di equilibrio:

Punti lagrangiani in un sistema a 3 corpi

Punti lagrangiani in un sistema a 3 corpi

Come anticipato, Gaia si trovera’ proprio nel secondo punto lagrangiano. Oltre al discorso gravitazionale, questo particolare punto offre una condizione molto privilegiata: durante il suo moto Terra e Luna saranno fuori dal campo visivo del telescopio, la radiazione incidente non sara’ troppo elevata e si hanno condizioni di temperatura abbastanza costanti.

Durante la sua vita operativa, Gaia osservera’ circa 70 volte ciascuna porzione di cielo ad intervalli differenti. Questo e’ fondamentale per poter capire l’evoluzione nel tempo delle stelle osservate.

Quali sono gli obiettivi di Gaia?

Grazie ai suoi strumenti, Gaia potra’ registrare dati con una precisione quasi 200 volte maggiore dei suoi predecessori. Attraverso l’osservazione delle stelle, come anticipato, si potra’ studiare la dinamica dell’evoluzione oltre ad individuare nuovi esopianeti fuori dal sistema solare. Inoltre, la capacita’ di registrare dati a diverse lunghezze d’onda permettera’ di studiare la chimica dei corpi e ottenere informazioni nuove sull’origine della nostra galassia.

Dunque, siamo pronti a questa nuova avventura?

Purtroppo no. La data iniziale di lancio di Gaia era il 2011, come potete leggere in questo link dell’ASI:

ASI, Gaia

Da questa, sicuramente un po’ aggressiva, si era passati al 2013 e il lancio era atteso per la fine di quest’anno. Purtroppo, ci sara’ un nuovo slittamento e si spera di poter lanciare Gaia, la cui partenza sara’ fatta dallo spazioporto di Kourou nella Guiana francese, all’inizio dell’anno prossimo. Il ritardo e’ dovuto ad una serie di problemi tecnici evidenziati dall’ESA che dunque ha deciso, per motivi di sicurezza e di riuscita della missione, di rimandare di qualche mese il lancio.

Concludendo, la missione GAIA e’ quasi pronta al lancio. Come visto nell’articolo, non e’ assolutamente vero che questa missione e’ stata preparata in fretta e furia per studiare e valutare il rischio sempre crescente di scontro tra la Terra ed un asteroide proveniente dallo spazio. Al contrario, questa missione, come tutte le altre, ha richiesto anni di preparazione e di studio e i suoi obiettivi scientifici saranno molto importanti ed interessanti. Come visto, infatti, la missione si occupera’ di analizzare e registrare circa un miliardo di stelle nella nostra galassia ottenendo dati quasi 200 volte piu’ precisi di quelli delle missioni precedenti.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

E quindi uscimmo a riveder le stelle

10 Set

Nella sezione:

Hai domande o dubbi?

e’ stata fatta una richiesta davvero molto interessante. Come potete leggere, si chiede come vengano ricostruite le immagini astronomiche che spesso ci vengono mostrate e catturate dai tanti telescopi a terra e in orbita. Questa richiesta sembra apparentemente molto semplice, ma nasconde in realta’ una vera e propria professione. Oggi come oggi, molti astronomi dedicano il loro lavoro proprio alla visione e all’elaborazione di immagini astronomiche. Cerchiamo di capire meglio come funzionano queste tecniche per poter meglio apprezzare anche il lavoro che c’e’ dietro una bella immagine che troviamo sulla rete.

Come sapete bene, al giorno d’oggi, per esplorare l’universo non si utilizzano piu’ solo telescopi nel visibile. In questo caso, come facilmente immaginabile, questi sistemi catturano immagini esattamente come farebbe il nostro occhio. Oltre a questi, si utilizzano telescopi, sia a terra che in orbita, sensibili all’infrarosso, ai raggi X, all’ultravioletto, oltre ad enormi antenne pensate per catturare segnali radio provenienti dal cosmo.

Che differenza c’e’ tra queste radiazioni?

Per capire bene il concetto, vi mostro quello che normalmente si chiama lo spettro della radiazione elettromagnetica:

Spettro della radiazione elettromagnetica

Diverse lunghezze d’onda vengono accorpate in famiglie. Come vedete, la parte visibile, cioe’ quella a cui i nostri occhi sono sensibili, e’ in realta’ solo una strettra frazione dell’intero spettro. Per fare un esempio, tutti conosciamo le immagini infrarosse utilizzate per esempio per identificare le fonti di calore. Bene, questo e’ un esempio di immagine fuori dallo spettro visibile. Si tratta di particolari che i nostri occhi non sarebbero in grado di vedere, ma che riusciamo a visualizzare utilizzando tecnologie appositamente costruite. Non si tratta di immagini false o che non esistono, semplicemente, mediante l’ausilio di strumentazione, riusciamo a “vedere” quello che i nostri occhi non sono in grado di osservare.

Bene, il principio dietro l’astronomia nelle diverse lunghezze d’onda e’ proprio questo. Sfruttando parti dello spettro normalmente non visibili, si riesce ad osservare dettagli che altrimenti sarebbero invisibili.

Per dirla tutta, anche le normali immagini visibili, subiscono un’opera di elaborazione pensata per ricostruire i dettagli e per ottimizzare la visione. Cosa significa? Nella concezione comune, un telescopio nel visibile e’ paragonabile ad una normale macchina digitale. Questo non e’ esattamente vero. Molto spesso, le immagini catturate da questi sistemi sono ottenute mediante una sovrapposizione di dati raccolti utilizzando filtri diversi.

Cosa significa?

Prendiamo come esempio il telescopio Hubble. In questo caso, il sistema acquisisce immagini a diverse lunghezze d’onda, o isolando una particolare frequenza piuttosto che altre. Si tratta di immagini in bianco e nero che poi vengono colorate artificialmente e sovrapposte per formare l’immagine finale. Attenzione, non dovete pensare che la colorazione artificiale sia un trucco per far apparire piu’ belle le foto. Questa tecnica e’ di fondamentale importanza per far esaltare dei particolari che altrimenti verrebbero confusi con il resto. Questa tecnica si chiama dei “falsi colori”, proprio perche’ la colorazione non e’ quella originale ma e’ stata creata artificialmente.

Per capire meglio, proviamo a fare un esempio.

Prendiamo una delle foto piu’ famose di Hubble, quella della galassia ESO 510-G13:

ESO 510-G13 da Hubble

Questa immagine e’ ottenuta con la tecnica del “colore naturale”, cioe’ esattamente come la vedrebbero i nostri occhi se fossero potenti come quelli di Hubble. In questo caso dunque, la colorazione e’ quella che potremmo vedere anche noi ma anche questa immagine e’ stata ottenuta sovrapponendo singoli scatti ripresi dal telescopio.

In particolare, si sono sovrapposte tre immagini in bianco e nero, ognuna ottenuta selezionando solo la radiazione visibile blu, rossa e verde:

ESO 510-G13 immagini a colore singolo

Perche’ viene fatto questo?

Selezionando solo una piccola parte dello spettro visibile, cioe’ il singolo colore, e’ possibile sfruttare il sistema per catturare al meglio i singoli dettagli. In questo modo, come visibile nelle foto, ciascuna immagine e’ relativa ad un solo colore, ma al meglio della risoluzione. Sommando poi le singole parti, si ottiene il bellissimo risultato finale che abbiamo visto.

Analogamente, in alcuni casi, si amplificano determinate lunghezze d’onda rispetto ad altre, per rendere piu’ visibili alcuni dettagli. Anche in questo caso vi voglio fare un esempio. Questa e’ una bellissima immagine della Nebulosa dell’Aquila:

Nebulosa testa d'aquila

Cosa significa amplificare alcuni colori?

Nella foto riportata, oltre ad ammirarla, gli astronomi riescono a vedere le emissioni di luce da parte dei singoli gas costituenti la nebulosa. Questo studio e’ importante per determinare la concentrazione di singoli elementi, e dunque identificare particolari tipologie di corpi celesti. Per capire meglio, nella ricostruzione a posteriori dell’immagine, e’ stato assegnato il colore verde all’emissione degli atomi di idrogeno, il rosso agli ioni di zolfo e il blu alla luce emessa dall’ossigeno ionizzato. Perche’ questo artificio grafico? Se non venisse elaborata, nell’immagine la luce emessa dalla zolfo e dall’idrogeno sarebbero indistinguibili tra loro. Se ora rileggete l’assegnazione dei colori riportata e rivedete l’immagine della nebulosa, siete anche voi in grado di determinare quali gas sono piu’ presenti in una zona piuttosto che in un’altra. Ovviamente questi sono processi che devono essere fatti analiticamente, elaborando le informazioni di ogni singolo pixel.

Analogo discorso puo’ essere fatto per la radioastronomia. In questo caso, come sapete e come anticipato, quelli che vengono registrati sono dei segnali radio provenienti dai diversi settori in cui viene diviso l’universo. Non avendo delle immagini, nei radiotelescopi si hanno degli impulsi radio che devono essere interpretati per identificare il tipo di sorgente, ma soprattutto la zona da cui il segnale proviene.

Per farvi capire meglio questo concetto, vi racconto la storia dell’inizio della radioastronomia. Nel 1929 un radiotecnico americano che lavorava in una stazione di Manila, mentre era al lavoro per eliminare disturbi dalle trasmissioni, si accorse che vi era un particolare rumore di fondo che si intensifica in determinati momenti della giornata. Nello stesso anno, Jansky, un ingegnere della compagnia americana Bell, anche lui al lavoro per cercare di migliorare le comunicazioni transoceaniche, arrivo’ alla stessa conclusione del radiotecnico. L’ingegnere pero’ calcolo’ il momento preciso in cui questi disturbi aumentavano, trovando che il periodo che intercorreva tra i massimi corrispondeva esattamente alla durata del giorno sidereo, 23 ore e 56 minuti. Solo anni piu’ tardi, riprendendo in mano questi dati, ci si accorse che la fonte di questo disturbo era il centro della nostra galassia. I segnali radio captati erano massimi quando il ricevitore passava davanti al centro della galassia, emettitore molto importante di segnali radio.

Oggi, mediante i nostri radiotelescopi, riusciamo ad identificare moltissime sorgenti radio presenti nell’universo e, proprio studiando questi spettri, riusciamo a capire quali tipologie di sorgenti si osservano e da quale punto dell’universo e’ stato inviato il segnale. A titolo di esempio, vi mostro uno spettro corrispondente ai segnali radio captati nell’arco del giorno con un semplice radiotelescopio:

Spettro giornaliero di un radiotelescopio con antenna da 3.3 metri. Fonte: Univ. di Pisa

Come vedete, sono chiaramente distinguibili i momenti di alba e tramonto, il passaggio davanti al centro galattico e quello corrispondente al braccio di Perseo. Come potete facilmente capire, si tratta di misure, chiamiamole, indirette in cui i nostri occhi sono proprio le antenne dei telescopi.

Concludendo, ci sono diversi metodi per pulire, migliorare o amplificare le immagini raccolte dai telescopi sia a terra che in orbita. Quello che facciamo e’ amplificare la nostra vista o utilizzando sistemi molto potenti, oppure ampliando lo spettro delle radiazioni che altrimenti non sarebbero visibili. I telescopi divengono dunque degli occhi sull’universo molto piu’ potenti e precisi dei nostri. Metodi diversi, ottico, UV, IR, radio, ecc, possono aiutare a capire dettagli o strutture che altrimenti sarebbero invisibili in condizioni normali. Detto questo, capite quanto lavoro c’e’ dietro una bella immagine che trovate su internet e soprattutto perche’ la foto ha una specifica colorazione o particolari sfumature.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Fiocco rosa per il delfino

22 Ago

Come sempre accade, il nostro universo e’ in grado di regalarci degli spettacoli gratuiti assolutamente non paragonabili con nient’altro. Da pochi giorni, abbiamo avuto l’appuntamento annuale con le “lacrime di San lorenzo” che da sempre affascinano e tengono molte persone con il nasu all’insu’ tutta la notte.

Proprio pochi giorni dopo il picco delle stelle cadenti, precisamente il 14 agosto, un astrofilo giapponese, mentre era intento ad osservare il cielo, ha notato una stella nella costellazione del cigno che non conosceva e che non gli sembrava ci fosse nei giorni precedenti. La segnalazione dell’astrofilo ha ovviamente mobilitato gli astronomi di mezzo mondo che osservando il cielo hanno potuto constatare la presenza di una cosiddetta “stella nova”.

Nova Delfini 2013

Nova Delfini 2013

Cosa sarebbe una stella nova?

Non lasciativi confondere dal nome. L’aggettivo “nova” non c’entra nulla ne’ con supernova ne’ tantomeno con nuova. Si tratta di un fenomeno conosciuto nel nostro universo e che ogni tanto e’ possibile osservare. La stella nova in questione e’ dovuta ad un sistema binario visibile nella costellazione del cigno. In questa coppia, una delle due stelle e’ una nana bianca. Come sapete, questo e’ uno stadio particolare dell’evoluzione delle stelle che, una volta esaurito il combustibile nucleare, si contraggono gravitazionalmente mantenendo la stessa massa, paragonabile a quella del sole, ma raggiungendo diametri piu’ simili a quelli della Terra.

Un sistema di stelle doppie e’ ovviamente influenzato dai campi gravitazionali dei membri. Ciascuna stella esercita e subisce la forza di attrazione della compagna. In questa configurazione e’ possibile che la nana bianca assorba idrogeno dall’altra stella riuscendo in questo modo ad innescare un’esplosione di tipo nucleare grazie alla fusione degli atomi.

Detto questo, una stella nova altro non e’ che l’esplosione della nana bianca che, a differenza di quanto accade nelle supernove, non viene assolutamente distrutta ma rimane intatta. Capite anche che questo e’ un fenomeno transitorio che si esaurisce nel giro di poco tempo terminata l’esplosione.

Bene, la stella individuata il 14 agosto, e ora chiamata Nova Delfini 2013, si trova, come anticipato, nella costellazione del cigno ed e’ visibile anche dall’Italia.

Particolarita’ di questa nova e’ l’aumento di luminosita’ che ha fatto registrare passando da magnitudine +13 a +6,8 fino a +4 nei giorni scorsi. Come detto in altri articoli, minore e’ la magniturdine, che puo’ assumere anche valori negativi, maggiore e’ la luminosita’ della stella.

Come detto, Nova Delfini 2013 e’ visibile anche dall’Italia. Per individuarla potete fare riferimento a questa mappa stellare:

Posizione di Nova Delfini nel cielo

Posizione di Nova Delfini nel cielo

Avendo una magnitudine di +4, dalle citta’ con inquinamento luminoso piu’ elevato e’ consigliabile munirsi anche solo di un semplice binocolo. La stella e’ invece perfettamente visibile dalla campagna o dai luoghi meno illuminati.

Dal punto di vista astronomico, la stella si trova a 97 anni luce da noi. In passato sono gia’ state osservate stelle nove anche a magnitudine minore, ad esempio nova Scorpio nello scorpione. Eventi di questo tipo sono comunque sempre spettacolari e ci permettono di capire come il nostro universo non sia assolutamente statico ma possa essere visto come un sistema vivo e mutabile nel tempo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Le forze di marea

13 Ago

Nella sezione:

Hai domande o dubbi?

E’ stata posta una nuova domanda molto interessante e che credo sia il caso di discutere subito. Prima di cominciare, vi ricordo che questa sezione e’ stata appositamente creata per far si che chiunque possa richiedere argomenti specifici che, qualora non ancora trattati, verranno poi affrontati negli articoli al fine di stimolare una discussione costruttiva tra tutti i lettori.

Premesso questo, la domanda riguarda le cosiddette “forze mareali” o “di marea”.

Di cosa si tratta?

Partiamo, al solito, da quello che e’ noto a tutti: i pianeti dell’universo ruotano intorno al Sole grazie alla forza di gravita’ che li tiene uniti. Allo stesso modo, a distanze minori, molti pianeti del sistema solare presentano dei satelliti orbitanti intorno a loro. Ovviamente, anche questi sono tenuti insieme dalla forza di gravita’.

Ecco un primo risultato interessante e che spesso passa inosservato. Lo studio e la formulazione matematica della forza di gravita’, fatta per la prima volta da Newton, prende il nome di “teorie della gravitazione universale”. L’aggettivo “universale” non e’ assolutamente messo li per caso, ma sta ad indicare come la validita’ di questa legge sia vera a scale estremamente diverse tra loro. Se noi rimaniamo attaccati alla Terra e perche’ c’e’ la forza di gravita’. Se la Terra ruota intorno al Sole e’ perche’ c’e’ la forza di gravita’. Allo stesso modo, la rotazione del sistema solare intorno al centro della Galassia, cosi’ come il moto della Galassia stessa e’ possibile grazie alla forza di gravita’. Detto questo, capite bene perche’ viene attribuito l’aggettivo universale a questa legge.

Dal punto di vista fisico, due qualsiasi masse poste ad una certa distanza si attraggono secondo una forza direttamente proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato della loro distanza. Come anticipato questo e’ vero per due qualsiasi masse estese nello spazio.

Per andare avanti, concentriamoci pero’ sulla domanda fatta e dunque parliamo di forze di marea. Come e’ noto, l’innalzamento e l’abbassamento del livello delle acque sulla Terra e’ dovuto alla Luna, anche se, come vedremo, anche il Sole ha il suo contributo.

Alla luce di quanto detto prima, se la Terra attrae la Luna, ed e’ vero il viceversa, come mai i due corpi non vanno uno verso l’altro finendo per scontrarsi?

Il segreto della stabilita’ delle orbite e’ appunto nel moto di rotazione della Luna intorno alla Terra. Questo movimento genera una forza centrifuga diretta verso l’esterno che stabilizza il moto. Questo e’ lo stesso effetto che trovate per qualsiasi corpo in rotazione nell’universo. Per essere precisi, due corpi in rotazione tra loro, ruotano intorno al centro di massa del sistema. Nel caso di Terra e Luna, la differenza tra le masse e’ cosi’ grande che il centro di massa cade molto vicino al centro della Terra.

Detto questo, abbiamo capito perche’ il sistema puo’ ruotare stabilmente, ma ancora non abbiamo capito da dove si originano le maree.

Come anticipato, l’intensita’ della forza di attrazione gravitazionale e’ inversamente proporzionale al quadrato della distanza. Bene, rimaniamo nell’esempio Terra-Luna. L’attrazione subita dal nostro satellite per opera della Terra, non sara’ identica in ogni punto della Luna. Mi spiego meglio, provate a guardare questo disegno:

Forze di marea subite per attrazione gravitazionale

Forze di marea subite per attrazione gravitazionale

Il lato piu’ vicino all’altro pianeta subira’ un’attrazione maggiore dal momento che la distanza tra i due corpi e’ piu’ piccola. Questo e’ vero ogni qual volta siamo in presenza di corpi grandi. Analogamente, prendendo in esame il contributo centrifugo, la forza risultante tendera’ a spingere il lato vicino verso l’altro pianeta e allontare il lato lontano.

Ragioniamo su quanto detto senza perderci. Abbiamo un corpo esteso ad una certa distanza da qualcosa che lo attrae. Questa attrazione dipende dalla distanza tra i due corpi. Dal momento che abbiamo un corpo esteso, il lato che guarda il centro di attrazione sara’ necessariamente piu’ vicino subendo una forza maggiore rispetto al lato lontano.

Bene, questa differenza tra le interazioni tende ad allungare il corpo cioe’ a farlo passare da una sfera ad un elissoide. Queste sono appunto le forze di marea.

Quali effetti possiamo avere?

Nell’immagine riportata prima, si vedevano proprio le forze di marea esercitata dalla Luna sulla Terra. Come vedete, il lato verso la Luna e quello diametralmente opposto tendono ad allungarsi, provocando dunque un innalzamento delle acque. Negli punti perpendicolari al sistema invece, si avra’ uno schiacciamento e dunque un abbassamento del livello delle acque. Ecco spiegato come avvengono le maree. Ovviamente, poiche’ tutto il sistema e’ in movimento, i punti con alta e bassa marea cambieranno nel corso della giornata, presentando due cicli completi nell’arco del giorno.

Domanda lecita: perche’ nel calcolo delle maree consideriamo solo gli effetti della Luna trascurando completamente il Sole? Come sappiamo, la massa del Sole e’ notevolmente maggiore di quella della Luna quindi ci si aspetterebbe un contributo dominante. Come visto, le forze mareali si generano perche’ ci sono differenze significative tra l’attrazione subita da un lato del pianeta rispetto all’altro. Dal momento che la distanza tra la Terra e il Sole e’ molto piu’ elevata di quella Terra-Luna, la differenza di intensita’ dovuta all’attrazione solare e’ molto meno marcata. Detto in altri termini, a distanze maggiori un corpo esteso puo’ essere approssimato come un punto e dunque e’ molto piccola la forza di marea che si genera.

Effetti misurabili si possono avere quando Sole, Terra e Luna sono allineati, come avviene nel novilunio, dal momento che i contributi si sommano. In questo caso si possono dunque avere livelli di marea massimi, anche noti come maree sigiziali, cioe’ in cui la differenza di altezza tra alta e bassa marea raggiunge il picco.

Analogamente a quanto visto, anche la Luna subisce una forza di marea da parte della Terra. Dal momento pero’ che la Luna non e’ ricoperta da oceani, la resistenza meccanica alla distorsione e’ molto maggiore. In questo caso, l’effetto misurabile e’ una differenza di qualche kilometro tra l’asse rivolto verso la Terra e quello perpendicolare, tale da far apparire il nostro satellite come un elissoide.

Altro effetto delle forze di marea tra corpi estesi vicini e’ la sincronizzazione della rotazione. Come tutti sanno, la Luna rivolge sempre la stessa faccia verso la Terra. Detto in altri termini, a meno di “oscillazioni” che si registrano, un osservatore sulla Terra riesce a vedere sempre la stessa porzione di Luna o meglio, un lato della stessa rimane sempre invisibile al nostro sguardo, il cosiddetto “lato oscuro della Luna”.

Perche’ si ha questo comportamento?

Come anticipato, questo e’ dovuto alla rotazione sincrona della Luna intorno alla Terra. Detto molto semplicemente, il periodo di rotazione e di rivoluzione della Luna coincidono tra loro. Se volete, in parole povere, mentre la Luna si sta spostando sulla sua orbita, ruota su se stessa in modo tale da compensare  lo spostamento e mostrare sempre la stessa faccia a Terra. La figura puo’ aiutare meglio a comprendere questo risultato:

Rotazione sincrona tra satellite e pianeta. Fonte: wikipedia.

Rotazione sincrona tra satellite e pianeta. Fonte: wikipedia.

Ovviamente, parlare di stesso periodo di rivoluzione e rotazione non puo’ certo essere un caso. Rotazioni sincrone si hanno come conseguenza delle forze mareali potendo dimostrare che per corpi vicini tra loro, il moto tende ad essere sincrono in tempi astronomicamente brevi.

Parlando di forze di marea, ci siamo limitati a studiare il caso del sistema Terra-Luna. Seguendo la spiegazione data, capite bene come questi effetti possano essere estesi a due qualsiasi corpi in rotazione vicina tra loro. In tal senso, effetti di marea si possono avere in prossimita’ di buchi neri, di stelle di neutroni o anche di galassie, cioe’ corpi in grado di generare un elevato campo gravitazionale. In particolare, nel caso delle galassie le forze di marea tendono, in alcuni casi, ad allungare la forma spostando la posizione di corpi celesti che si allontanano a causa della differenza di attrazione.

Concludendo, abbiamo visto come la Luna possa generare sulla Terra le maree. L’effetto del Sole e’ in realta’ inferiore perche’ molto maggiore e’ la distanza che ci separa dalla nostra stella. Effetti di questo tipo vengono generati a causa della differenza di attrazione gravitazionale che si registra nei diversi punti di un corpo esteso. Queste differenze, generano appunto una forza risultante, detta di marea, che tende ad allungare il corpo. Effetti analoghi si possono avere per corpi piu’ estesi e comunque ogni qual volta si hanno due masse posizionate ad una distanza non troppo maggiore del diametro dei corpi.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Facciamoci trovare dagli alieni

14 Giu

Ogni tanto si leggono delle notizie scientifiche quanto mai curiose. Su questo blog, diverse volte abbiamo parlato di extraterrestri, ma non analizzando i tantissimi video di presunti avvistamenti che ogni giorno compaiono in rete, bensi’ cercando di affrontare il discorso in modo prettamente scientifico. Anche se a molti potrebbe apparire strano, la scienza da sempre si e’ interrogata circa la possibile esistenza di forme di vita aliene, valutando, o almeno cercando di farlo, la reale probabilita’, non solo che una forma di vita intelligente possa esistere, ma anche che questa possa entrare in contatto con noi.

Come visto in questi post:

Messaggio alieno nelle Aurore

Il segnale WOW!

poter valutare questa probabilita’ e’ molto difficile e richiede una stima di parametri anche non direttamente legati tra loro. L’equazione di Drake, cerca appunto di considerare ogni singolo aspetto che potrebbe consentire questo incontro, fornendo come risultato una stima di probabilita’. Se ci pensiamo, per prima cosa dovremmo avere un pianeta in grado di ospitare la vita, poi questa vita si dovrebbe essere sviluppata nel tempo creando appunto una societa’ evoluta. Che significa evoluta? Con un grado di tecnologia che gli permetta di inviare e ricevere segnali dallo spazio o, al limite, di poter esplorare lo spazio.

Ogni qual volta si parla di alieni, scatta automaticamente la molla secondo la quale queste forme di vita sarebbero infinitamente piu’ sviluppate di noi e con mezzi incredibili. Perche’ avviene questo? Proviamo a fare un ragionamento al contrario: se fossimo noi gli alieni dello stereotipo collettivo? Magari, una forma di vita aliena esiste, ma e’ ancora troppo poco sviluppata. Immaginate la nostra societa’ anche solo 200 anni fa. Eravamo in grado di esplorare l’universo? Assolutamente no. Se una societa’ con uno sviluppo tecnologico pari al nostro di 200 anni fa avesse pensato a forme di vita aliene, magari avrebbe pensato al nostro attuale sviluppo.

Sempre pensando alle probabilita’ di incontro, proviamo a fare un passo aggiuntivo. Supponiamo che la societa’ aliena esista e che si sia sviluppata ad un livello paragonabile al nostro. Bene, tutto risolto? Assolutamente no. L’universo e’ molto grande, se gli alieni sono distanti migliaia di anni luce da noi, con buona probabilita’ non riusciremo mai ad incontrarci. Se state pensando ai viaggi con la velocita’ del pensiero o cose di questo tipo, torniamo al discorso precedente sullo sviluppo tecnologico. Noi con migliaia di anni di sviluppo siamo arrivati ad oggi. Se volessimo considerare alieni fantascientifici, dovremmo valutare anche la probabilita’ che questo sviluppo sia avvenuto.

Attenzione, proprio da questo punto, vorrei partire con una nuova considerazione. Gli alieni esistono, sono evoluti, hanno la possibilita’ di incontrarci, vuoi perche’ sono vicini o perche’ hanno lo sviluppo tale per farlo, non resta che prendere appuntamento. Sicuri? No, manca un’altra valutazione. Tutte queste belle probabilita’ devono essere vere “adesso”. Immaginate una societa’ aliena che si sia sviluppata e abbia soddisfatto tutti i criteri visti, ma questo sia avvenuto, ad esempio, 1 miliardo di anni fa. Magari sono stati in grado di visitare l’universo ma noi ancora non c’eravamo. Dunque, tutte queste condizioni devono essere vere allo stesso tempo, altrimenti l’incontro non e’ possibile. Bene, proprio queste considerazioni chiamano in causa un discorso diverso da quello prettamente scientifico. Per poter valutare queste proprieta’ si devono considerare sviluppi antropologici, societari, evoluzionistici, ecc. Immaginate una bella societa’ aliena che si e’ sviluppata, ha raggiunto un’immensa tecnologia ma che si e’ autodistrutta. Il discorso e’ assurdo? Non credo proprio, basta guardare la nostra societa’.

Capite dunque che valutare la probabilita’ di un incontro con forme di vita aliene, implica un ragionamento molto vasto. Nonostante questo, l’equazione di Drake ha portato importanti risultati in questo senso, non escludendo assolutamente questa possibilita’. Ovviamente, non resta che aspettare e vedere quello che succede.

Perche’ ho fatto questo lungo preambolo? Prima di tutto per poter riprendere concetti molto importanti visti in passato ma che possono essere considerati degli evergreen. Inoltre, vorrei parlarvi di un’iniziativa curiosa che sta spopolando sulla rete in questi ultimi giorni; si tratta del progetto “Lone Signal”.

In cosa consiste?

Il progetto consiste nell’inviare nello spazio un messaggio e sperare che qualche societa’ aliena possa riceverlo. Scopo? Far capire che ci siamo e dove si trova la terra. Il messaggio conterra’ infatti informazioni circa la posizione della Terra e sul nostro attuale sviluppo: come e’ fatto l’atomo di idrogeno, gli elementi della tavola periodica, ecc. Oltre a queste informazioni, anche gli utenti della rete potranno contribuire ed inviare il loro messaggio agli alieni, semplicemente collegandosi con il sito internet del progetto:

Lone Signal

Se volete partecipare a questa iniziativa, dovete sbrigarvi, il primo invio e’ infatti atteso per il 18 Giugno.

o-LONE-SIGNAL-SPACE-MESSAGE-570

Il messaggio verra’ poi inviato sotto forma di onda elettromagnetica verso Gliese 526 utilizzando la Jamesburg Earth Station della California. Gliese 526 e’ una nana rossa con un piccolo sistema planetario orbitante a 17,6 anni luce da noi. Alcuni di questi pianeti sono considerati adatti ad ospitare forme di vita. Di questo e soprattutto della cosiddetta fascia di abitabilita’, abbiamo parlato diverse volte affrontando il discorso esopianeti:

A caccia di vita sugli Esopianeti

Nuovi esopianeti. Questa volta ci siamo?

Cosa ne penso? Se devo essere sincero, iniziative come questa lasciano veramente il tempo che trovano. Su molti siti si parla di iniziativa simile al programma SETI, di cui sicuramente avete sentito parlare. Su questo non sono assolutamente d’accordo. Nel caso di SETI, si cercava di “ascoltare” segnali provenienti dallo spazio esplorando zone considerate piu’ probabili per la vita. Anche per questo programma sono state mosse critiche per la non ripetibilita’ di un eventuale segnale, vedi proprio il WOW!, ma anche per la casualita’ della zona da esplorare.

Nel caso del Lone Signal, si andra’ a sparare un segnale verso qualcosa molto distante da noi. E’ la prima volta? Assolutamente no, sempre nell’articolo sul WOW! abbiamo parlato del messaggio di Arecibo. In quel caso, il messaggio era stato inviato verso Ercole e l’iniziativa piu’ che un programma scientifico, era stata vista come uno spot pubblicitario successivo all’ammodernamento del radiotelescopio.

Gia’ cercare forme di vita aliene e’ concettualmente difficile, immaginate di voler urlare in una direzione e sperare che qualche vi ascolti. Inoltre, tutto questo discorso implica che le forme di vita siano sufficientemente evolute e che siano in grado di ricevere onde elettromagnetiche, cosa tutt’altro che scontata.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

IceCube e l’esplorazione del cosmo con i neutrini

22 Mag

Nell’articolo precedente, abbiamo parlato di neutrini:

EniGma con Nadir Mura

come visto nell’intervista, e come sicuramente ricorderete, queste particelle sono balzate agli onori delle cronache soprattutto a seguito della misura, poi trovata affetta da errori strumentali, che voleva i neutrini viaggiare ad una velocita’ superiore a quella della luce.

Ora, vorrei tornare nuovamente a parlare di queste particelle, a causa di una nuova misura fisica che sta facendo molto discutere.

Come sappiamo bene, i neutrini sono particelle molto particolari soprattutto a cusa della loro bassa probabilita’ di interazione con la materia, che li rende difficilmente rivelabili. Fino a pochi ani fa, si pensava addirittura che i neutrini non avessero massa, cosa smentita poi grazie alla ricerca e all’osservazione dell’oscillazione dei neutrini, cioe’ della proprieta’ di queste particelle di trasformarsi durante il cammino da una famiglia all’altra.

Proprio a causa di queste proprieta’ cosi’ particolari, i neutrini vengono studiati in diversi esperimenti e, molto spesso, in condizioni quasi estreme. Come detto, la bassa probabilita’ di osservazione, impone agli esperimenti di eliminare all’origine tutto il “rumore” da altre fonti, cioe’ quanto piu’ possibile, ogni altro evento prodotto da particelle diverse e che rischierebbe di coprire, a cuasa della maggiore probabilita’, i neutrini da rivelare.

Proprio per qusto motivo, si sente spesso parlare di rivelatori disposti in angoli remoti del mondo, all’interno delle miniere, sotto kilometri di roccia come nei laboratoridel Gran Sasso o anche immersi ad elevate profondita’ nel mare. Il motivo di questo e’, come anticipato, avere uno schermo naturale in grado di fermare le altre particelle lascinado passare i neutrini. Questi ultimi, a causa della bassa probabilita’ di interazione, passano con molta facilita’ kilometri di materiale senza interagire con la materia.

Posizionamento di uno dei rivelatori di IceCube nel ghiaccio

Posizionamento di uno dei rivelatori di IceCube nel ghiaccio

Dopo questa doverosa introduzione, vorrei parlarvi di IceCube, uno dei maggiori rivelatori di neutrini, costruito addirittura sotto i ghiacci dell’Antartide. IceCube e’ composto da un elevato numero di elementi sensibili, sepolti ad ua profondita’ variabile tra 1500 e 2500 metri di ghiaccio. La matrice cosi’ ottenuta consente di avere una superficie da rivelare dell’odine di 1 kilometro cubo.

Perche’ sto parlando di neutrini ed in particolare di IceCube?

Scopo di questi esperimenti e’ quello di studiare i neutrini provenienti dal sole o dai raggi cosmici, anche per rivelare nuove sorgenti astrofisiche. Il motivo di questo e’ molto semplice: studire le emissioni di neutrini da parte di oggetti nell’universo, consente di ottenere una sorta di telescopio con queste particelle e dunnque poter analizzare, anche in questo modo, lo spazio che ci circonda.

Bene, l’anno scorso, quasi per caso, IceCube ha individuato due neutrini con l’energia piu’ alta mai registrata sulla Terra, dell’ordine del petaelettronvolt. Per capire quanto sia elevata questa energia, basti pensare che LHC, il grande collisore del CERN, fa scontrare particelle con energia di 3.5 teraelettronvolt, cioe’ circa 300 volte inferiore a quella osservata da ICeCube. Durante l’analisi dei dati condotta per studiare questi eventi particolari, ci si e’ accorti che tra il 2010 e il 2012, il rivelatore avrebbe visto 26 eventi di alta energia, circa 10 volte quella di LHC.

Perche’ sono importanti questi eventi? Nel nostro sistema solare, l’unica sorgente di neutrini presente e’ il Sole. Questi pero, avendo energia molto piu’ bassa, non possono aver generato quanto osservato dai fisici di IceCube. Come potete capire, si tratta, con ottima probabilita’, di una sorgente extragalattica, non ancora identificata.

Dai modelli elaborati, le sorgenti di neutrini nello spazio potrebbero essere le esplosioni di Supernovae, i gamma ray burst o i quasar. Nell’idea, come anticipato, di realizzare un telescopio a neutrini dell’universo, molto interessante sarebbe individuare questa sorgente. Purtroppo, ad oggi, questo non e’ stato ancora possibile, soprattutto a causa dei pochi eventi raccolti all’esperimento.

Anche se manca la spiegazione ufficiale, possaimo provare a formulare ipotesi circa l’origine di questi eventi, soprattutto per capire l’importanza di questo risultato.

Dei gamma ray burst abbiamo parlato in questo post:

WR104: un fucile puntato verso la Terra?

Ccome visto, la conoscenza di questi eventi, ma soprattutto, eventualmente, il poter studiare il loro comportamento diretto, ci permetterebbe di aumentare la nostra conoscenza dell’universo e, perche’ no, magari in futuro farci confermare o smentire idee catastrofiste.

In passato, precisamente nel 1987, sulla Terra arrivarono, ad esempio, i neutrini prodotti da una supernova molto distante nella Nube di Magellano. Anche in questo caso, eventi come quelli delle esplosioni di supernovae ci consentono di comprendere meglio importanti meccanismi alla base dell’universo.

Altre ipotesi formulate riguardano invece la materia oscura, di cui abbiamo parlato in questi post:

La materia oscura

Troppa antimateria nello spazio

Come visto, ad oggi, ci accorgiamo della presenza di materia oscura mediante considerazioni indirette. Purtroppo, non e’ stato ancora possibile individuare questa curiosa forma di materia, anche se molte ipotesi sono state formulate. Proprio l’astrofisica a neutrini potrebbe aiutare a sciogliere qualche riserva. Secondo alcune ipotesi infatti, i neutrini potrebbero essere stati prodotti dallo scontro di materia oscura nel centro della nostra Galassia. In questo caso, studiare in dettaglio i parametri dei candidati, aiuterebbe molto ad individuare la sorgente di produzione dei neutrini ma anche, e soprattutto, di ottenere maggiori informazioni sull’origine della Via Lattea e sulla natura della meteria oscura.

Concludendo, IceCube ha individuato 26 neutrini di alta energia che hanno attraversato i suoi rivelatori. Statisticamente, la probabilita’ che si tratti di un errore e’ inferiore  allo 0,004% per cui sara’ interessante analizzare i dati e capire meglio quali test organizzare nel futuro per cercare di risolvere importanti dubbi che ormai da troppo tempo sono in attesa di una spiegazione ufficiale.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.