Tag Archives: barionica

Flusso oscuro e grandi attrattori

28 Feb

Nella ormai celebre sezione:

Hai domande o dubbi?

in cui sono usciti fuori davvero gli argomenti piu’ disparati ma sempre contraddistinti da curiosita’ e voglia di discutere, una nostra cara lettrice ci ha chiesto maggiori lumi sul cosiddetto “dark flow” o flusso oscuro. Una richiesta del genere non puo’ che farci piacere, dal momento che ci permette di parlare nuovamente di scienza e, in particolare, di universo.

Prima di poterci addentrare in questo argomento scientifico ma, anche a livello di ricerca, poco conosciuto, e’ necessario fare una piccolissima premessa iniziale che serve per riprendere in mano concetti sicuramente conosciuti ma su cui spesso non si riflette abbastanza.

Per iniziare la discussione, voglio mostrarvi una foto:

sir-isaac-newtons-philosophic3a6-naturalis-principia-mathematica

Quello che vedete non e’ un semplice libro, ma uno dei tre volumi che compongono il Philosophiae Naturalis Principia Mathematica o, tradotto in italiano, “I principi naturali della filosofia naturale”. Quest’opera e’ stata pubblicata il 5 luglio 1687 da Isaac Newton.

Perche’ e’ cosi’ importante questa opera?

Questi tre volumi sono considerati l trattato piu’ importante del pensiero scientifico. Prima di tutto, contengono la dinamica formulata da Newton che per primo ha posto le basi per lo studio delle cause del moto ma, soprattutto, perche’ contengono quella che oggi e’ nota come “Teoria della Gravitazione Universale”.

Sicuramente, tutti avrete sentito parlare della gravitazione di Newton riferita al famoso episodio della mela che si stacco’ dall’albero e cadde sulla testa del celebre scienziato. Come racconta la leggenda, da questo insignificante episodio, Newton capi’ l’esistenza della forza di gravita’ e da qui la sua estensione all’universo. Se vogliamo pero’ essere precisi, Newton non venne folgorato sulla via di Damasco dalla mela che cadeva, ma questo episodio fu quello che fece scattare la molla nella testa di un Newton che gia’ da tempo studiava questo tipo di interazioni.

Volendo essere brevi, la teoria della gravitazione di Newton afferma che nello spazio ogni punto materiale attrae ogni altro punto materiale con una forza che e’ proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato della loro distanza. In soldoni, esiste una forza solo attrattiva che si esercita tra ogni coppia di corpi dotati di massa e questa interazione e’ tanto maggiore quanto piu’ grandi sono le masse e diminuisce con il quadrato della loro distanza.

Semplice? Direi proprio di si, sia dal punto di vista fisico che matematico. Perche’ allora chiamare questa legge addirittura con l’aggettivo “universale”?

Se prendete la male di Newton che cade dall’albero, la Luna che ruota intorno alla Terra, la Terra che ruota intorno al Sole, il sistema solare che ruota intorno al centro della Galassia, tutti questi fenomeni, che avvengono su scale completamente diverse, avvengono proprio grazie unicamente alla forza di gravita’. Credo che questo assunto sia sufficiente a far capire l’universalita’ di questa legge.

Bene, sulla base di questo, l’interazione che regola l’equilibrio delle masse nell’universo e’ dunque la forza di gravita’. Tutto quello che vediamo e’ solo una conseguenza della sovrapposizione delle singole forze che avvengono su ciascuna coppia di masse.

Detto questo, torniamo all’argomento principale del post. Cosa sarebbe il “flusso oscuro”? Detto molto semplicemente, si tratta del movimento a grande velocita’ di alcune galassie in una direzione ben precisa, situata tra le costellazioni del Centauro e della Vela. Questo movimento direzionale avviene con velocita’ dell’ordine di 900 Km al secondo e sembrerebbe tirare le galassie in un punto ben preciso al di fuori di quello che definiamo universo osservabile.

Aspettate, che significa che qualcosa tira le galassie fuori dall’universo osservabile?

Per prima cosa, dobbiamo definire cosa significa “universo osservabile”. Come sappiamo, l’universo si sta espandendo e se lo osserviamo da Terra siamo in grado di vedere le immagini che arrivano a noi grazie al moto dei fotoni che, anche se si muovono alla velocita’ della luce, si spostano impiegando un certo tempo per percorrere delle distanze precise. Se sommiamo questi due effetti, dalla nostra posizione di osservazione, cioe’ la Terra, possiamo vedere solo quello che e’ contenuto entro una sfera con un raggio di 93 miliardi anni luce. Come potete capire, l’effetto dell’espansione provoca un aumento di quello che possiamo osservare. Se l’universo ha 14.7 miliardi di anni, ci si potrebbe aspettare di poter vedere dalla terra la luce partita 14.7 miliardi di anni fa, cioe’ fino ad una distanza di 14.7 miliardi di anni luce. In realta’, come detto, il fatto che l’universo sia in continua espansione fa si che quello che vediamo oggi non si trova piu’ in quella posizione, ma si e’ spostato a causa dell’espansione. Altro aspetto importante, la definizione di sfera osservabile e’ vera per ogni punto dell’universo, non solo per quella sfera centrata sulla Terra che rappresenta cquello che noi possiamo vedere.

Bene, dunque si sarebbe osservato un flusso di alcune galassie verso un punto preciso fuori dall’universo osservabile. Proprio dal fatto che questo flusso e’ all’esterno del nostro universo osservabile, si e’ chiamato questo movimento con l’aggettivo oscuro.

Aspettate un attimo pero’, se le galassie sono tirate verso un punto ben preciso, cos’e’ che provoca questo movimento? Riprendendo l’introduzione sulla forza di gravitazione, se le galassie, che sono oggetti massivi, sono tirate verso un punto, significa che c’e’ una massa che sta esercitando una forza. Poiche’ la forza di gravitazione si esercita mutuamente tra i corpi, questo qualcosa deve anche essere molto massivo.

Prima di capire di cosa potrebbe trattarsi, e’ importante spiegare come questo flusso oscuro e’ stato individuato.

Secondo le teorie cosmologiche riconosciute, e come spesso si dice, l’universo sarebbe omogeneo e isotropo cioe’ sarebbe uguale in media in qualsiasi direzione lo guardiamo. Detto in altri termini, non esiste una direzione privilegiata, almeno su grandi scale, in cui ci sarebbero effetti diversi. Sempre su grandi scale, non esisterebbe neanche un movimento preciso verso una direzione ma l’isotropia produrrebbe moti casuali in tutte le direzioni.

Gia’ nel 1973 pero’, si osservo’ un movimento particolare di alcune galassie in una direzione precisa. In altri termini, un’anomalia nell’espansione uniforme dell’universo. In questo caso, il punto di attrazione e’ all’interno del nostro universo osservabile e localizzato in prossimita’ del cosiddetto “ammasso del Regolo”, una zona di spazio dominata da un’alta concentrazione di galassie vecchie e massive. Questa prima anomalia gravitazionale viene chiamata “Grande Attrattore”. In questa immagine si vede appunto una porzione di universo osservabile da Terra ed in basso a destra trovate l’indicazione del Grande Attrattore:

800px-2MASS_LSS_chart-NEW_Nasa

Questa prima anomalia dell’espansione venne osservata tramite quello che e’ definito lo spostamento verso il rosso. Cosa significa? Se osservate un oggetto che e’ in movimento, o meglio se esiste un movimento relativo tra l’osservatore e il bersaglio, la luce che arriva subisce uno spostamento della lunghezza d’onda dovuto al movimento stesso. Questo e’ dovuto all’effetto Doppler valido, ad esempio, anche per le onde sonore e di cui ci accorgiamo facilmente ascoltando il diverso suono di una sirena quando questa si avvicina o si allontana da noi.

220px-Redshift_blueshift.svg

Bene, tornando alle onde luminose, se la sorgente si allontana, si osserva uno spostamento verso lunghezze d’onda piu’ alte, redshift, se si avvicina la lunghezza d’onda diminuisce, blueshift. Mediate questo semplice effetto, si sono potuti osservare molti aspetti del nostro universo e soprattutto i movimenti che avvengono.

Tornando al grnde attrattore, questa zona massiva verso cui si osserva un moto coerente delle galassie del gruppo e’ localizzato a circa 250 milioni di anni luce da noi nella direzione delle costellazioni dell’Hydra e del Centauro e avrebbe una massa di circa 5×10^15 masse solari, cioe’ 5 milioni di miliardi di volte il nostro Sole. Questa, come anticipato, e’ soltanto una anomalia dell’espansione dell’universo che ha creato una zona piu’ massiva in cui c’e’ una concentrazione di galassie che, sempre grazie alla gravita’, attraggono quello che hanno intorno.

Discorso diverso e’ invece quello del Dark Flow. Perche’? Prima di tutto, come detto, questo centro di massa si trova talmente lontano da essere al di fuori del nostro universo osservabile. Visto da Terra poi, la zona di spazio che crea il flusso oscuro si trova piu’ o meno nella stessa direzione del Grande Attrattore, ma molto piu’ lontana. Se per il Grande Attrattore possiamo ipotizzare, detto in modo improprio, un grumo di massa nell’universo omogeneo, il flusso oscuro sembrerebbe generato da una massa molto piu’ grande ed in grado anche di attrarre a se lo stesso Grande Attrattore.

Il flusso oscuro venne osservato per la prima volta nel 2000 e descritto poi a partire dal 2008 mediante misure di precisione su galassie lontane. In questo caso, l’identificazione del flusso e’ stata possibile sfruttando il cosiddetto effetto Sunyaev-Zel’dovich cioe’ la modificazione della temperatura dei fotoni della radiazione cosmica di fondo provocata dai raggi X emessi dalle galassie che si spostano. Sembra complicato, ma non lo e’.

Di radiazione di fondo, o CMB, abbiamo parlato in questi articoli:

Il primo vagito dell’universo

E parliamo di questo Big Bang

Come visto, si tratta di una radiazione presente in tutto l’universo residuo del Big Bang iniziale. Bene, lo spostamento coerente delle galassie produce raggi X, questi raggi X disturbano i fotoni della radiazione di fondo e noi da terra osservando queste variazioni ricostruiamo mappe dei movimenti delle Galassie. Proprio grazie a queste misure, a partire dal 2000, e’ stato osservato per la prima volta questo movimento coerente verso un punto al di fuori dell’universo osservabile.

Cosa potrebbe provocare il Flusso Oscuro? Bella domanda, la risposta non la sappiamo proprio perche’ questo punto, se esiste, come discuteremo tra un po’, e’ al di fuori del nostro universo osservabile. Di ipotesi a riguardo ne sono ovviamente state fatte una miriade a partire gia’ dalle prime osservazioni.

Inizialmente si era ipotizzato che il movimento potrebbe essere causato da un ammasso di materia oscura o energia oscura. Concetti di cui abbiamo parlato in questi post:

La materia oscura

Materia oscura intorno alla Terra?

Se il vuoto non e’ vuoto

Universo: foto da piccolo

Queste ipotesi sono pero’ state rigettate perche’ non si osserva la presenza di materia oscura nella direzione del Dark Flow e, come gia’ discusso, per l’energia oscura il modello prevede una distribuzione uniforme in tutto l’universo.

Cosi’ come per il Grande Attrattore, si potrebbe trattare di un qualche ammasso molto massivo in una zona non osservabile da Terra. Sulla base di questo, qualcuno, non tra gli scienziati, aveva ipotizzato che questo effetto fosse dovuto ad un altro universo confinante con il nostro e che provoca l’attrazione. Questa ipotesi non e’ realistica perche’ prima di tutto, la gravitazione e’ frutto dello spazio tempo proprio del nostro universo. Se anche prendessimo in considerazione la teoria dei Multiversi, cioe’ universi confinanti, l’evoluzione di questi sarebbe completamente diversa. Il flusso oscuro provoca effetti gravitazionali propri del nostro universo e dovuti all’attrazione gravitazionale. Il fatto che sia fuori dalla nostra sfera osservabile e’ solo dovuto ai concetti citati in precedenza figli dell’accelerazione dell’espansione.

Prima di tutto pero’, siamo cosi’ sicuri che questo Flusso Oscuro esista veramente?

Come anticipato, non c’e’ assolutamente la certezza e gli scienziati sono ancora fortemente divisi non solo sulle ipotesi, ma sull’esistenza stessa del Flusso Oscuro.

Per farvi capire la diatriba in corso, questo e’ il link all’articolo originale con cui si ipotizzava l’esistenza del Flusso Oscuro:

Dark Flow

Subito dopo pero’, e’ stato pubblicato un altro articolo che criticava questo sostenendo che i metodi di misura applicati non erano corretti:

Wright risposta al Dark Flow

Dopo di che, una lunga serie di articoli, conferme e smentite, sono stati pubblicati da tantissimi cosmologi. Questo per mostrare quanto controversa sia l’esistenza o meno di questo flusso oscuro di Galassie verso un determinato punto dell’universo.

Venendo ai giorni nostri, nel 2013 e’ stato pubblicato un articolo di analisi degli ultimi dati raccolti dal telescopio Planck. In questo paper viene nuovamente smentita l’esistenza del dark flow sulla base delle misure delle velocita’ effettuate nella regione di spazio in esame:

Planck, 2013

Dunque? Dark Flow definitivamente archiviato? Neanche per sogno. Un altro gruppo di cosmologi ha pubblicato questo ulteriore articolo:

Smentita alla smentita

in cui attacca i metodi statistici utilizzati nel primo articolo e propone un’analisi diversa dei dati da cui si mostra l’assoluta compatibilita’ di questi dati con quelli di un altro satellite, WMAP, da cui venne evidenziata l’esistenza del dark flow.

Credo che a questo punto, sia chiaro a tutti la forte discussione ancora in corso sull’esistenza o meno di questo Dark Flow. Come potete capire, e’ importante prima di tutto continuare le analisi dei dati e determinare se questo flusso sia o meno una realta’ del nostro universo. Fatto questo, e se il movimento venisse confermato, allora potremmo fare delle ipotesi sulla natura di questo punto di attrazione molto massivo e cercare di capire di cosa potrebbe trattarsi. Ovviamente, sempre che venisse confermata la sua esistenza, stiamo ragionando su qualcosa talmente lontano da noi da essere al di fuori della nostra sfera osservabile. Trattare questo argomento ci ha permesso prima di tutto di aprire una finestra scientifica su un argomento di forte e continua attualita’ per la comunita’ scientifica. Come sappiamo, trattando argomenti di questo tipo, non troviamo risposte certe perche’ gli studi sono ancora in corso e, cosi’ come deve avvenire, ci sono discussioni tra gli scienziati che propongono ipotesi, le smentiscono, ne discutono, ecc, come la vera scienza deve essere. Qualora ci fossero ulteriori novita’ a riguardo, ne parleremo in un futuro articolo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Troppa antimateria nello spazio

5 Apr

Uno dei misteri che da sempre affascina i non addetti ai lavori e che spinge avanti la ricerca scientifica di base e’ la comprensione del nostro universo. In particolare, come sapete, ad oggi sappiamo veramente molto poco su cosa costituisce il nostro universo. Cosa significa questo? Dalle misure affettuate, solo una piccola frazione, intorno al 5%, e’ composta da materia barionica, cioe’ di quella stessa materia che compone il nostro corpo e tutti gli oggetti che ci circondano. La restante frazione e’ composta da quelli che spesso sentiamo chiamare contributi oscuri, materia oscura ed energia oscura. Mentre sulla materia oscura ci sono delle ipotesi, anche se ancora da verificare, sull’energia oscura, responsanbile dell’espansione dell’universo, sappiamo ancora molto poco.

Detto questo, la comprensione di questi contributi e’ una sfida tutt’ora aperta ed estremamente interessante per la ricerca scientifica.

Di questi argomenti, abbiamo parlato in dettaglio in questo post:

La materia oscura

Perche’ torno nuovamente su questo argomento? Solo un paio di giorni fa, e’ stata fatta una conferenza al CERN di Ginevra nella quale sono stati presentati i dati preliminari dell’esperimento AMS-02. I dati di questo rivelatore, realizzato con un’ampia collaborazione italiana, sono veramente eccezionali e potrebbero dare una spinta in avanti molto importante nella comprensione della materia oscura.

Andiamo con ordine.

Cosa sarebbe AMS-02?

AMS installato sulla Stazione Spaziale

AMS installato sulla Stazione Spaziale

AMS sta per Alpha Magnetic Spectrometer, ed e’ un rivelatore installato sulla Stazione Spaziale Internazionale. Compito di AMS-02 e’ quello di rivelare con estrema precisione le particelle dei raggi cosmici per cercare di distinguere prima di tutto la natura delle particelle ma anche per mettere in relazione queste ultime con la materia ordinaria, la materia oscura, la materia strana, ecc.

In particolare, lo spettrometro di AMS e’ estremamente preciso nel distinguere particelle di materia da quelle di antimateria e soprattutto elettroni da positroni, cioe’ elettroni dalle rispettive antiparticelle.

Vi ricordo che di modello standard, di antimateria e di materia strana abbiamo parlato in dettaglio in questi post:

Piccolo approfondimento sulla materia strana

Due parole sull’antimateria

Antimateria sulla notra testa!

Bosone di Higgs … ma che sarebbe?

Bene, fin qui tutto chiaro. Ora, cosa hanno di particolarmente speciale i dati di AMS-02?

Numero di positroni misurato da AMS verso energia

Numero di positroni misurato da AMS verso energia

Utilizzando i dati raccolti nei primi 18 mesi di vita, si e’ evidenziato un eccesso di positroni ad alta energia. Detto in parole semplici, dai modelli per la materia ordinaria, il numero di queste particelle dovrebbe diminuire all’aumentare della loro energia. Al contrario, come vedete nel grafico riportato, dai dati di AMS-02 il numero di positroni aumenta ad alta energia fino a raggiungere una livello costante.

Cosa significa questo? Perche’ e’  cosi’ importante?

Come detto, dai modelli della fisica ci si aspettarebbe che il numero di positroni diminuisse, invece si trova un aumento all’aumentare dell’energia. Poiche’ i modelli ordinari sono corretti, significa che ci deve essere qualche ulteriore sorgente di positroni che ne aumenta il numero rivelato da AMS-02.

Quali potrebbero essere queste sorgenti non considerate?

La prima ipotesi e’ che ci sia una qualche pulsar relativamente in prossimita’. Questi corpi possono emettere antiparticelle “sballando” di fatto il conteggio del rivelatore. Questa ipotesi sembrerebbe pero’ non veritiera dal momento che l’aumento di positroni e’ stato rivelato in qualsiasi direzione. Cerchiamo di capire meglio. Se ci fosse una pulsar che produce positroni, allora dovremmo avere delle direzioni spaziali in cui si vede l’aumento (quando puntiamo il rivelatore in direzione della pulsar) ed altre in cui invece, seguendo i modelli tradizionali, il numero diminuisce all’aumentare dell’energia. Come detto, l’aumento del numero di positroni si osserva in tutte le direzioni dello spazio.

Quale potrebbe essere allora la spiegazione?

Come potete immaginare, una delle ipotesi piu’ gettonate e’ quella della materia oscura. Come anticipato, esistono diverse ipotesi circa la natua di questa materia. Tra queste, alcune teorie vorrebbero la materia oscura come composta da particelle debolmente interagenti tra loro e con la materia ordinaria ma dotate di una massa. In questo scenario, particelle di materia oscura potrebbero interagire tra loro producendo nello scontro materia ordinaria, anche sotto forma di antimateria, dunque di positroni.

In questo scenario, i positroni in eccesso rivelati da AMS-02 sarebbero proprio prodotti dell’annichilazione, per dirlo in termini fisici, di materia oscura. Capite dunque che questi dati e la loro comprensione potrebbero farci comprendere maggiormente la vera natura della materia oscura e fissare i paletti su un ulteriore 20% della materia che costituisce il nostro universo.

Dal momento che la materia oscura permea tutto l’universo, questa ipotesi sarebbe anche compatibile con l’aumento dei positroni in tutte le direzioni.

Ora, come anticipato, siamo di fronte ai dati dei primi 18 mesi di missione. Ovviamente, sara’ necessario acquisire ancora molti altri dati per disporre di un campione maggiore e fare tutte le analisi necessarie per meglio comprendere questa evidenza. In particolare, i precisi rivelatori di AMS-02 consentiranno di identificare o meno una sorgente localizzata per i positroni in eccesso, confermando o escludendo la presenza di pulsar a discapito dell’ipotesi materia oscura.

Per completezza, spendiamo ancora qualche parola su questo tipo di ricerca e sull’importanza di questi risultati.

Come detto in precedenza, per poter confermare le ipotesi fatte, sara’ necessario prendere ancora molti dati. Ad oggi, AMS-02 potra’ raccogliere dati ancora per almeno 10 anni. Come anticipato, questo strumento e’ installato sulla Stazione Spaziale Internazionale. Questa scelta, piuttosto che quella di metterlo in orbita su un satellite dedicato, nasce proprio dall’idea di raccogliere dati per lungo tempo. La potenza richiesta per far funzionare AMS-02 consentirebbe un funzionamento di soli 3 anni su un satellite, mentre sulla ISS il periodo di raccolta dati puo’ arrivare anche a 10-15 anni.

AMS-02 e’ stato lanciato nel 2010 sullo Shuttle dopo diversi anni di conferme e ripensamenti, principalmente dovuti agli alti costi del progetto e alla politica degli Stati Uniti per le missioni spaziali.

Perche’ si chiama AMS-02? Il 02 indica semplicemente che prima c’e’ stato un AMS-01. In questo caso, si e’ trattato di una versione semplificata del rivelatore che ha volato nello spazio a bordo dello shuttle Discovery. Questo breve viaggio ha consentito prima di tutto di capire la funzionalita’ del rivelatore nello spazio e di dare poi la conferma definitiva, almeno dal punto di vista scientifico, alla missione.

Confronto tra AMS e missioni precedenti

Confronto tra AMS e missioni precedenti

Il risultato mostrato da AMS-02 in realta’ conferma quello ottenuto anche da altre due importanti missioni nello spazio, PAMELA e FERMI. Anche in questi casi venne rivelato un eccesso di positroni nei raggi cosmici ma la minore precisione degli strumenti non consenti’ di affermare con sicurezza l’aumento a discapito di fluttuazioni statistiche dei dati. Nel grafico a lato, vedete il confronto tra i dati di AMS e quelli degli esperimento precedenti. Come vedete, le bande di errore, cioe’ l’incertezza sui punti misurati, e’ molto maggiore negli esperimenti precedenti. Detto in termini semplici, AMS-02 e’ in grado di affermare con sicurezza che c’e’ un eccesso di positroni, mentre negli altri casi l’effetto poteva essere dovuto ad incertezze sperimentali.

Concludendo, i risultati di AMS-02 sono davvero eccezionali e mostrano, con estrema precisione, un aumento di positroni ad alta energia rispetto ai modelli teorici attesi. Alla luce di quanto detto, questo eccesso potrebbe essere dovuto all’annichilazione di particelle di materia oscura nel nostro universo. Questi risultati potebbero dunque portare un balzo in avanti nella comprensione del nostro universo e sulla sua composizione. Non resta che attendere nuovi dati e vedere quali conferme e novita’ potra’ mostrare questo potente rivelatore costruito con ampio contributo italiano.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Universo: foto da piccolo

24 Mar

In questi ultimi giorni, tutti i giornali, i telegiornali, i siti internet specializzati, sono stati invasi da articoli scientifici riguardanti le ultime scoperte fatte con il telescopio Planck. I dati di questo telescopio, gestito interamente dalla nostra Agenzia Spaziale Europea, hanno mostrato una foto dell’universo quando aveva solo 380000 anni. Ecco la foto che sicuramente vi sara’ capitato di vedere:

L'universo alla tenera eta' di 380000 anni

L’universo alla tenera eta’ di 380000 anni

Si parla anche di risultati sconvolgenti: l’universo e’ piu’ vecchio di quello che si pensava fino ad oggi. Inoltre, la radiazione cosmica di fondo presenta delle differenze tra i due emisferi oltre a mostrare una regione fredda piu’ estesa di quella che si pensava.

Fantastico, direi io, questi risultati mi hanno veramente impressionato. Ora pero’, la domanda che mi sono posto e’ molto semplice, anche su giornali nazionali, ho visto articoli che commentavano questa foto parlando di CMB, anisotropie, fase inflazionistica. In pochissimi pero’, si sono degnati di spiegare in modo semplice il significato di questi termini. Purtroppo, spesso vedo molti articoli che ripetono a pappagallo le notizie senza neanche chiedersi cosa significano quei termini che stanno riportando.

Cerchiamo, per quanto possibile, di provare a fare un po’ chiarezza spiegando in maniera completamente divulgativa cosa significa: radiazione cosmica di fondo, periodo inflazionistitico, ecc.

Andiamo con ordine. La foto da cui siamo partiti ritrae l’universo quando aveva 380000 anni ed in particolare mostra la mappa della radiazione cosmica di fondo.

Prima cosa, come facciamo a fare una foto dell’universo del passato? In questo caso la risposta e’ molto semplice e tutti noi siamo in grado di sperimentarla facilmente. Quando alziamo lo sguardo e vediamo il cielo stellato, in realta’ e’ come se stessimo facendo un viaggio nel tempo. Se guardiamo una stella distante 100 anni luce da noi, significa che quell’immagine che osserviamo ha impiegato 100 anni per giungere fino a noi. Dunque, quella che vediamo non e’ la stella oggi, bensi’ com’era 100 anni fa. Piu’ le stelle sono lontane, maggiore e’ il salto indietro che facciamo.

Bene, questo e’ il principio che stiamo usando. Quando mandiamo un telescopio in orbita, migliore e’ la sua ottica, piu’ lontano possiamo vedere e dunque, equivalentemente, piu’ indietro nel tempo possiamo andare.

Facciamo dunque un altro piccolo passo avanti. Planck sta osservando l’universo quando aveva solo 380000 anni tramite la CMB o radiazione cosmica a microonde. Cosa sarebbe questa CMB?

Partiamo dall’origine. La teoria accettata sull’origine dell’universo e’ che questo si sia espanso inizialmente da un big bang. Un plasma probabilmente formato da materia e antimateria ad un certo punto e’ esploso, l’antimateria e’ scomparsa lasciando il posto alla materia che ha iniziato ad espandersi e, di conseguenza, si e’ raffreddata. Bene, la CMB sarebbe un po’ come l’eco del big bang e, proprio per questo, e’ considerata una delle prove a sostegno dell’esplosione iniziale.

Come si e’ formata la radiazione di fondo? Soltanto 10^(-37) secondi dopo il big bang ci sarebbe stata una fase detta di inflazione in cui l’espansione dell’universo ha subito una rapida accelerazione. Dopo 10^(-6) secondi, l’universo era ancora costituito da un plasma molto caldo di  fotoni, elettroni e protoni, l’alta energia delle particelle faceva continuamente scontrare i fotoni con gli elettroni che dunque non potevano espandersi liberamente. Quando poi la temperatura dell’universo e’ scesa intorno ai 3000 gradi, elettroni e protoni hanno cominciato a combianrsi formando atomi di idrogeno e i fotoni hanno potuto fuoriuscire formando una radiazione piu’ o meno uniforme. Bene, questo e’ avvenuto, piu’ o meno, quando l’universo aveva gia’ 380000 anni.

Capiamo subito due cose: la foto da cui siamo partiti e’ dunque relativa a questo periodo, cioe’ quando la materia (elettroni e protoni) hanno potuto separarsi dalla radiazione (fotoni). Stando a questo meccanismo, capite anche perche’ sui giornali trovate che questa e’ la piu’ vecchia foto che potrebbe essere scattata. Prima di questo momento infatti, la radiazione non poteva fuoriuscire e non esisteva questo fondo di fotoni.

Bene, dopo la separazione tra materia e radiazione, l’universo ha continuato ad espandersi, dunque a raffreddarsi e quindi la temperatura della CMB e’ diminuita. A 380000 anni di eta’ dell’universo, la CMB aveva una temperatura di circa 3000 gradi, oggi la CMB e’ nota come fondo cosmico di microonde con una temperatura media di 2,7 gradi Kelvin. Per completezza, e’ detta di microonde perche’ oggi la temperatura della radiazione sposta lo spettro appunto su queste lunghezze d’onda.

Capite bene come l’evidenza della CMB, osservata per la prima volta nel 1964, sia stata una conferma proprio del modello del big bang sull’origine del nostro universo.

E’ interessante spendere due parole proprio sulla scoperta della CMB. L’esistenza di questa radiazione di fondo venne predetta per la prima volta nel 1948 da Gamow, Alpher e Herman ipotizzando una CMB a 5 Kelvin. Successivamente, questo valore venne piu’ volte corretto a seconda dei modelli che venivano utilizzati e dai nuovi calcoli fatti. Dapprima, a questa ipotesi non venne dato molto peso tra la comunita’ astronomica, fino a quando a partire dal 1960 l’ipotesi della CMB venne riproposta e messa in relazione con la teoria del Big Bang. Da questo momento, inizio’ una vera e propria corsa tra vari gruppi per cercare di individuare per primi la CMB.

Penzias e Wilson davanti all'antenna dei Bell Laboratories

Penzias e Wilson davanti all’antenna dei Bell Laboratories

Con grande sorpresa pero’ la CMB non venne individuata da nessuno di questi gruppi, tra cui i principali concorrenti erano gli Stati Uniti e la Russia, bensi’ da due ingegneri, Penzias e Wilson, con un radiotelescopio pensato per tutt’altre applicazioni. Nel 1965 infatti Penzias e Wilson stavano lavorando al loro radiotelescopio ai Bell Laboratories per lo studio della trasmissione dei segnali attraverso il satellite. Osservando i dati, i due si accorsero di un rumore di fondo a circa 3 Kelvin che non comprendenvano. Diversi tentativi furono fatti per eliminare quello che pensavano essere un rumore elettronico del telescopio. Solo per darvi un’idea, pensarono che questo fondo potesse essere dovuto al guano dei piccioni sull’antenna e per questo motivo salirono sull’antenna per ripulirla a fondo. Nonostante questo, il rumore di fondo rimaneva nei dati. Il punto di svolta si ebbe quando l’astronomo Dicke venne a conoscenza di questo “problema” dell’antenna di Penzias e Wilson e capi’ che in realta’ erano riusciti ad osservare per la prima volta la CMB. Celebre divenne la frase di Dicke quando apprese la notizia: “Boys, we’ve been scooped”, cioe’ “Ragazzi ci hanno rubato lo scoop”. Penzias e Wilson ricevettero il premio Nobel nel 1978 lasciando a bocca asciutta tutti gli astronomi intenti a cercare la CMB.

Da quanto detto, capite bene l’importanza di questa scoperta. La CMB e’ considerata una delle conferme sperimentali al modello del Big Bang e quindi sull’origine del nostro universo. Proprio questa connessione, rende la radiazione di fondo un importante strumento per capire quanto avvenuto dopo il Big Bang, cioe’ il perche’, raffreddandosi, l’universo ha formato aggreggati di materia come stelle e pianeti, lasciando uno spazio quasi vuoto a separazione.

Le osservazioni del telescopio Planck, e dunque ancora la foto da cui siamo partiti, hanno permesso di scoprire nuove importanti dinamiche del nostro universo.

Prima di tutto, la mappa della radiazione trovata mostra delle differenze, o meglio delle anisotropie. In particolare, i due emisferi presentano delle piccole differenze ed inoltre e’ stata individuata una regione piu’ fredda delle altre, anche detta “cold region”. Queste differenze furono osservate anche con la precedente missione WMAP della NASA, ma in questo caso si penso’ ad un’incertezza strumentale del telescopio. Nel caso di Plack, la tecnologia e le performance del telescopio confermano invece l’esistenza di regioni “diverse” rispetto alle altre.

Anche se puo’ sembrare insignificante, l’evidenza di queste regioni mette in dubbio uno dei capisaldi dell’astronomia, cioe’ che l’universo sia isotropo a grande distanza. Secondo i modelli attualmente utilizzati, a seguito dell’espansione, l’universo dovrebbe apparire isotropo, cioe’ “uniforme”, in qualsiasi direzione. Le differenze mostrate da Planck aprono dunque lo scenario a nuovi modelli cosmologici da validare. Notate come si parli di “grande distanza”, questo perche’ su scale minori esistono anisotropie appunto dovute alla presenza di stelle e pianeti.

Ci sono anche altri importanti risultati che Planck ha permesso di ottenere ma di cui si e’ parlato poco sui giornali. In primis, i dati misurati da Planck hanno permesso di ritoccare il valore della costante di Hubble. Questo parametro indica la velocita’ con cui le galassie si allontanano tra loro e dunque e’ di nuovo collegato all’espansione dell’universo. In particolare, il nuovo valore di questa costante ha permesso di modificare leggermente l’eta’ dell’universo portandola a 13,82 miliardi di anni, circa 100 milioni di anni di piu’ di quanto si pensava. Capite dunque perche’ su alcuni articoli si dice che l’universo e’ piu’ vecchio di quanto si pensava.

Inoltre, sempre grazie ai risultati di Planck e’ stato possibile ritoccare le percentuali di materia, materia oscura e energia oscura che formano il nostro universo. Come saprete, la materia barionica, cioe’ quella di cui siamo composti anche noi, e’ in realta’ l’ingrediente meno abbondante nel nostro universo. Solo il 4,9% del nostro universo e’ formato da materia ordinaria che conosciamo. Il 26,8% dell’universo e’ invece formato da “Materia Oscura”, qualcosa che sappiamo che esiste dal momento che ne vediamo gli effetti gravitazionali, ma che non siamo ancora stati in grado di indentificare. In questo senso, un notevole passo avanti potra’ essere fatto con le future missioni ma anche con gli acceleratori di particelle qui sulla terra.

Una considerazione, 4,9% di materia barionica, 26,8% di materia oscura e il resto? Il 68,3% del nostro universo, proprio l’ingrediente piu’ abbondante, e’ formato da quella che viene detta “Energia Oscura”. Questo misterioso contributo di cui non sappiamo ancora nulla si ritiene essere il responsabile proprio dell’espansione e dell’accelerazione dell’universo.

Da questa ultima considerazione, capite bene quanto ancora abbiamo da imparare. Non possiamo certo pensare di aver carpito i segreti dell’universo conoscendo solo il 5% di quello che lo compone. In tal senso, la ricerca deve andare avanti e chissa’ quante altre cose strabilinati sara’ in grado di mostrarci in futuro.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

La materia oscura

19 Dic

Abbiamo iniziato a parlare di questa “materia oscura”, commentando un articolo catastrofista, e permettemi di dire alquanto bizzarro, apparso oggi su alcuni quotidiani:

Venerdi finisce il mondo!

Come visto, secondo queste fonti, un ammasso di materia oscura, sotto forma di corpo esteso e massivo, sarebbe in rotta di collisione con la Terra per il 21/12.

Nell’articolo citato, abbiamo gia’ discusso delle assurdita’ scientifiche prospettate come ipotesi di partenza, ma per offrire un quadro piu’ chiaro, dobbiamo necessariamente parlare di materia oscura.

Ovviamente, come capite bene, questo articolo e’ solo un corollario a quello citato, ma ho deciso di metterlo come post isolato, vista l’importanza della divulgazione di argomenti come questi.

Prima di iniziare, vorrei fare una premessa importate. Come piu’ volte dichiarato, in questo blog vogliamo fare divulgazione scientifica approfittando delle profezie del 2012. Per questa ragione, cerchiamo di fare una divulgazione semplice e che lasci intendere i concetti fondamentali. Questo punto e’ importante, perche’ vogliamo dare risposte accessibili a tutti. Non sono qui per fare una lezione universitaria, ne tantomeno per fare un esercizio di stile scientifico. Cerchero’ di essere molto chiaro, esplorando solo i concetti fondamentali. Mi scuso da subito con quanti di voi hanno gia’ conoscenza dell’argomento e potrebbero considerare questo post troppo semplice.

Cominciamo dalle cose ovvie.

In questo post:

Piccolo approfondimento sulla materia strana

abbiamo gia’ parlato di modello standard. In particolare, abbiamo visto come le particelle fondamentali, cioe’ non formate da pezzetti piu’ piccoli, siano in realta’ poche e descrivibili attraverso delle famiglie. Mescolando insieme queste particelle, che altro non sono i componenti di quello che chiamiamo “modello standard”, possiamo capire la materia che ci circonda e le interazioni, cioe’ le forze, che questa subisce.

Fin qui tutto chiaro.

Ora, cosa c’entra la materia oscura?

Prima di tutto un po’ di storia. Nel 1933 l’astronomo Zwicky fece il seguente esercizio. Studiando l’ammasso della Chioma, sommo’ tutte le masse galattiche, cioe’ le masse di tutti gli oggetti che componevano l’ammasso, e ottenne in questo modo la massa totale della Chioma. Fin qui, niente di speciale. Ora pero’, e’ possibile ricavare la massa anche in modo indiretto, cioe’ misurando la dispersione delle velocita’ delle galassie che costituivano l’ammasso. In questo secondo modo, ottenne un’altra misura della massa totale, questa volta in modo indiretto. Il problema fu che la seconda stima era maggiore della prima di circa 400 volte. Detto in parole povere, la somma non faceva il totale.

Questa discrepanza venne poi studiata in dettaglio solo negli anni ’70, quando si capi’ che questa differenza non era dovuta ad errori di calcolo, bensi’ era un qualcosa ancora non capito dalla scienza.

Proprio in questo contesto, si comincio’ a parlare di materia oscura, cioe’ materia non visibile dagli strumenti ma dotata di massa, che era in grado di risolvere le discrepanze trovate.

A questo punto, ognuno di noi potrebbe pensare che si sta cercando solo di farsi tornare i conti. In realta’ non e’ cosi’. La materia oscura e’ importante anche per capire e spiegare molte leggi di natura estremamente importanti del nostro universo. Piu’ che un artificio di calcolo e’ qualcosa in grado spiegare il funzionamento stesso di quello che osserviamo.

Cerchiamo di capire meglio con qualche altro esempio.

Una delle evidenze principali della materia oscura e’ nell’osservazione e nella parametrizzazione delle galassie a spirale. Cos’e’ una galassia a spirale? Sono galassie formate da una parte interna, detta bulbo, e d alcune braccia che si avvolgono intorno a questa parte centrale.

Esempio di galassia spirale

Esempio di galassia spirale

Ora, immaginiamo di voler misurare la velocita’ delle stelle che compongono la galassia. In linea di principio, per la terza legge di Keplero, piu’ ci allontaniamo dal centro, minore dovrebbe essere la velocita’ delle stelle. Se immaginate di fare un grafico in cui riportate la velocita’ in funzione della distanza dal centro, cosa vi aspettereste? Se la velocita’ delle stelle periferiche e’ piu’ bassa, dovremmo avere un grafico che decresce all’aumentare della distanza.

Velocita' di rotazione delle stelle in funzione della distanza dal centro. A: aspettato B:osservato

Velocita’ di rotazione delle stelle in funzione della distanza dal centro. A: aspettato B:osservato

In realta’ osservate che la velocita’ delle stelle lontane e’ paragonabile a quelle interne, cioe’ il grafico e’ “piatto”. Perche’ avviene questo? Semplicemente perche’ non possiamo stimare la massa della galassia semplicemente sommando le singole stelle, ma dobbiamo mettere dentro anche la materia oscura. Rifacendo il calcolo considerando la materia oscura ottenete il grafico sperimentale visto in figura. Ma e’ veramente necessaria questa massa aggiuntiva? In realta’ si. Se la massa fosse solo quella delle stelle visibili, le stelle piu’ lontane, e che dunque ruotano piu’ velocemente di quello che ci aspettiamo, sarebbero espulse dalla galassia. Dal momento che vediamo con i nostri occhi che le stelle sono sempre li senza essere espulse, significa che la materia oscura ci deve essere.

Se siete riusciti ad arrivare fino a questo punto, ormai siamo in discesa.

Restano due domande fondamentali a cui rispondere. Quanta materia oscura c’e’ nell’universo? Ma soprattutto, cos’e’ questa materia oscura?

Il “quanta ce n’e'” potrebbe sorprendervi. Dalle stime fatte nel nostro universo, si trova che circa l’85% totale della massa e’ composta da materia oscura. Detto in altri termini abbiamo circa 6 volte piu’ materia oscura che materia barionica. Questa cosa puo’ sorprendere molto. Pensateci bene, parlando di modello standard, abbiamo visto la materia barionica, cioe’ quella che forma la materia che vediamo. Bene, l’85% della massa che compone l’universo e’ fatta di qualcosa di diverso rispetto alla materia che conosciamo.

A questo punto, cerchiamo di capire cos’e’ la materia oscura.

In realta’, non posso darvi una risposta certa e definitiva, perche’ in questo caso stiamo esplorando campi ancora aperti della scienza moderna. Esistono ovviamente diverse ipotesi riguardo alla composizione della materia oscura, ma non una certezza sperimentale.

Ragioniamo un secondo. Da quanto detto, la materia oscura ha una massa, produce effetti gravitazionali, come nel caso delle galassie a spirale viste, ma non e’ visibile ad occhio nudo. Fino ad oggi, sappiamo della sua esistenza solo attraverso misure indirette, cioe’ attraverso gli effetti che produce.

Quali sono le ipotesi per la materia oscura?

L’ipotesi principale ‘e che la maggior parte della materia oscura sia composta da materia non barionica molto massiva. Ci si riferisce a questa categoria come WIMP, cioe’ “particelle massive debolmente interagenti”. Cosa significa debolmente interagenti? Semplicemente che questo genere di materia non reagisce facilmente con la materia barionica. Nonostante questo, le WIMP avrebbero una massa molto elevata e dunque una forte interazione gravitazionale.Il fatto che sia poco interagente, rende la sua osservazione molto difficile, dal momento che non emette a nessuna lunghezza d’onda e dunque non e’ visibile neanche fuori dal visibile.

Spesso sentite parlare di WIMP anche come neutralini, neutrini massivi, assioni, ecc. Questi sono solo i nomi di alcune particelle predette nella categoria delle WIMP e su cui si sta incentrando la ricerca. Sotto questo aspetto, si cerca appunto di identificare la materia oscura in diversi modi. I principali sono cercando di produrla negli acceleratori di particelle, oppure cercando di rivelare i prodotti, barionici questa volta, dunque visibili, prodotti nell’interazione tra particelle di materia oscura.

Spero di essere stato abbastanza chiaro nella trattazione, ma soprattutto spero che questi pochi concetti permettano di capire meglio l’articolo che stiamo discutendo sulla presunta scoperta di un pianeta di materia oscura in rotta di collisione con noi.

La divulgazione della scienza passa anche attraverso argomenti come questo. Partire dalle profezie del 2012, ci consente di divulgare la vera scienza e di mostrare argomenti attuali e ancora in corso di investigazione scientifica. Per leggere un libro divulgativo semplice e adatto a tutti, non perdete in libreria ”Psicosi 2012. Le risposte della scienza”.

Venerdi finisce il mondo!

19 Dic

Che dire? Il titolo promette molto bene. In realta’, il titolo cosi’ sensazionalistico non e’ farina del mio sacco, ma quello che un nostro lettore ci ha segnalato e che potevate leggere oggi sul giornale “Notizia Oggi Vercelli”. Trovate la segnalazione nei commenti di questo post:

Scontro Terra-Nibiru a Luglio?

e potete leggere la notizia di cui vi voglio parlare seguendo questo link:

Notizia oggi Vercelli

Ora, dal momento che la visione di questo articolo ha scatenato non pochi sospetti ed ansie, credo sia giusto prendere sul serio la cosa ed analizzare i diversi punti portati come tesi in questo articolo.

Iniziamo proprio la nostra analisi dalla prima riga. “Federico Caldera, consulente scientifico della NASA, bla bla”. Chi e’ Federico Caldera? Assolutamente non lo so! Come potete verificare da soli, non si trova nessun riferimento su web a questo tizio, ne’ tantomeno alla sua professione di consulente scientifico. Anche cercando direttamente sul sito NASA e guardando tra i dipendenti, consulenti, ecc, non vi e’ nessuna traccia di Federico Caldera.

Il telescopio spaziale WISE

Il telescopio spaziale WISE

Gia’ questo ci insospettisce moltissimo. La notizia, che avrebbe come fonte la NASA, viene data da uno che non esiste o che non e’ un consulente NASA.

Nonostante questo, andiamo avanti nelle lettura dell’articolo e vediamo cosa dice.

“Nel lugio 2011, il telescopio della NASA WISE avrebbe rivelato uno sciame di anomalie gravitazionali in rotta di collisione con la Terra”.

Attenzione, WISE e’ veramente un telescopio della NASA che opera nella regione dell’infrarosso, e di cui abbiamo parlato in questi post:

Scontro Terra-Nibiru a Luglio?

Finalmente le foto di Nibiru!

Peccato che WISE sia stata lanciato in orbita nel novembre 2009 e la missione sia durata 10 mesi in tutto. Questo significa che nel 2011, la missione era gia’ conclusa e dunque WISE era spento e senza energia elettrica. Dopo questa, abbiamo gia’ capito che si tratta di una bufala colossale, ma voglio lo stesso andare avanti per mostrare tutto il ragionamento, ma soprattutto perche’ una notizia del genere ci consente di parlare di argomenti scientifici reali, non ancora trattati.

Premesso che WISE era spento nel 2011, leggiamo che si sarebbero osservate una scia di anomalie gravitazionali. Cosa sarebbe una scia di anomalie gravitazionali? Come visto in questi articoli:

Storia astronomica di Nibiru

Nibiru: la prova del trattore gravitazionale

parliamo di anomalie gravitazionali per descrivere l’influenza di un corpo estraneo in un sistema stabile sotto l’effetto dell’attrazione gravitazionale. Mi spiego meglio. Prendiamo come esempio il Sistema Solare. I pianeti orbitano su traiettorie precise dettate dall’interazione gravitazionale con il Sole, principale, ma anche modificate dalla presenza degli altri pianeti. Se ora inserite un corpo nuovo nel Sistema, la massa di questo modifichera’ l’equilibrio gravitazionale, scombussolando la situazione preesistente. Queste sono le anomalie grvitazionali. Capite bene parlare di una scia di anomalie, non significa assolutamente nulla dal punto di vista scientifico. Inoltre, le anomalie, per definizione, non collidono con i pianeti, se proprio vogliamo, e’ il corpo che le provoca ad urtare qualcos’altro.

Proseguendo nella lettura, troviamo la solita trama complottista che vede come protagonista un file segretissimo e di cui si e’ venuti a conoscenza per un motivo che non si puo’ dire, la NASA che lo sa gia’ da tanti mesi, ecc. Ma attenzione perche’ poi arriviamo al piatto forte dell’articolo: “i corpi in rotta di collisione con la Terra sarebbero aggregati di materia oscura”!

Qui, si rasenta veramente la follia anche dal punto di vista fantascientifico.

Parallelamente a questo articolo, ho pubblicato anche quest’altro post:

La materia oscura

in cui ho cercato di spiegare in modo molto semplice cos’e’ la materia oscura e quali sono i punti su cui si sta concentrando la ricerca. Se non lo avete fatto, vi consiglio di leggere questo articolo a questo punto, prima di andare avanti nella lettura.

Cosa sappiamo sulla materia oscura? Sappiamo che, nell’ipotesi piu’ accreditata dalla scienza, esiste perche’ ne vediamo gli effetti. Al momento, non sappiamo di cosa si tratta, abbiamo varie ipotesi ma non una risposta definitiva. Bene, come potrebbe un qualcosa che non conosciamo formare una “palla” di materia oscura?

Capite bene che questo articolo, ripeto comparso su un giornale online, e’ stato scritto o per prendere in giro le profezie del 21/12, o da uno completamente ignorante in astronomia. Come visto nel post riportato, per la materia oscura parliamo di materia molto debolmente interagente. E’ assurdo pensare che particelle di questo tipo possano formare un sistema aggregato che si muove nell’universo.

Perche’ si parla di materia oscura? Semplice, perche’ in questo modo si concentra l’attenzione su un argomento ancora dibattuto dalla scienza e su cui la risposta defiitiva ancora manca. In questo modo si ottengono due risultati importanti. In primis, si alimenta il sospetto sulla scienza e sul complottismo sempre presente che vedrebbe scienza e governi andare a braccetto per salvare una piccola casta di eletti, ma, soprattutto, parlare di materia oscura alimenta il terrore nelle persone che sentono parlare di qualcosa completamente misterioso e di cui si sa veramente poco. Al solito, la non conoscenza di taluni argomenti genera mostri nella testa della gente.

Spero che il breve articolo sulla materia oscura, possa essere utile per dare a tutti un’infarinata su questi concetti e per evitare di cadere in tranelli, come questo articolo, del tutto campati in aria dal punto di vista scientifico.

Solo per completezza, la cosa peggiore dell’articolo e’ scrivere dove dovrebbero impattare questi corpi di materia oscura. Ma ci rendiamo conto di cosa significa? Anche se fosse, sarebbe impossibile calcolare le traiettorie in modo cosi’ preciso. Nell’articolo manca solo l’indirizzo esatto con via e numero civico dove impatteranno. Piu’ volte abbiamo parlato di traiettorie, trattando, ad esempio, di asteroidi:

2012 DA14: c.v.d.

E alla fine Nibiru e’ un asteroide

La cosa piu’ importante che abbiamo capito, e che ora siamo in grado di riconoscere, e’ l’impossibilita’ di fare un calcolo esattamente preciso dell’orbita completa di un corpo. Ogni interazione con un altro corpo, determina una variazione della  traiettoria, e questo rende senza dubbio impossibile calcolare con la precisione profetizzata nell’articolo gli eventuali punti di impatto con la Terra.

Come anticipato qualche giorno fa, pian piano che le idee catastrofiste sul 21/12 cedono il passo al ragionamento scientifico, dobbiamo aspettarci ancora qualche teoria assolutamente campata in aria e messa su internet solo per alimentare il sospetto e, nella peggiore delle ipotesi, la paura delle persone. Prima di credere a qualsiasi teoria, ragionate sempre con la vostra testa. Per un’analisi scientifica e seria di tutte le profezie del 2012, non perdete in libreria ”Psicosi 2012. Le risposte della scienza”.