Tag Archives: limite

Il metodo made in Italy per produrre Idrogeno

26 Lug

Da molti anni, ormai, sentiamo parlare di un futuro energetico incentrato sull’idrogeno. Molti, parlano di questo possibile combustibile addirittura speculando su un passaggio dall’era del petrolio a quella dell’idrogeno. Come tutti sappiamo, questa soluzione potrebbe essere utilizzata in tantissimi settori. Anche se il più noto, e lasciatemi dire su cui tante leggende sono state create, è quello delle macchine alimentate a idrogeno, questo elemento potrebbe servire per produrre corrente elettrica ed energia nei più svariati settori industriali, consentendo, finalmente, di mettere da parte i fortemente inquinanti idrocarburi ma, soprattutto, l’economia basata su questi oli che non ha fatto altro che creare centri di potere, in primis, e guerre per l’appropriazione e lo sfruttamento dei giacimenti sparsi per il mondo.

Perché, ancora oggi, visto che molti parlano di una panacea di tutti i mali, non utilizziamo l’idrogeno?

Come sapete, molti parlano di poteri forti in grado di bloccare lo sviluppo di queste tecnologie per puri fini economici. Da un lato, queste affermazioni sono corrette. Non voglio nascondermi dietro un dito e dire che viviamo in un mondo ideale. Come tutti sanno, i soldi fanno andare l’acqua in salita ma, soprattutto, decidono dove l’acqua deve passare e dove no. Questo lato economico-oscuro non è però materia del nostro blog. Quello su cui invece vorrei spingere tutti a ragionare è il discorso prettamente energetico e ambientale dell’idrogeno.

Anche molti tra i cosiddetti esperti dell’energia, un po’ per secondi fini ma, mi dispiace dirlo, a volte anche per ignoranza, quando parlano di fonti alternative, dunque non solo idrogeno, dimenticano sempre di prendere in considerazione l’intera filiera del settore che non comprende solo l’utilizzo della risorsa ma anche la sua estrazione o eventuale produzione, stoccaggio, distribuzione, ecc.

Che cosa intendo con questo?

Facciamo un esempio pratico ma inventato. Immaginate di trovare una nuova fonte energetica che possa essere utilizzata per alimentare le automobili. Questa risorsa rende la vostra macchina assolutamente non inquinante e costa 1/10 della benzina. Bene, annunciate la vostra scoperta su internet e immediatamente si formerà un esercito di internauti pronti a parlare della vostra genialata e del fatto che la ricerca, insieme con qualche burocrate in giacca, cravatta e occhiali scuri, vi sta ostacolando. Scommetto che questa storiella ve ne ricorda tante altre sentite in questi anni. Dov’è il problema? Semplice, anche se il nostro carburante costa poco e non inquina, come si produce? Dove si estrae? Se per produrre questo carburante dovete utilizzare carbone, oli o elementi chimici che produrrebbero un effetto sull’atmosfera peggiore di quella dell’uso del petrolio, la vostra invenzione sarebbe ancora molto conveniente? Direi proprio di no.

Bene, questo è quello che vorrei far capire. Ogni qual volta si parla di qualcosa legato all’energia e all’inquinamento, dovete sempre mettere in conto tutti gli aspetti legati a quella determinata risorsa. Esempio pratico? I pannelli solari producono energia dalla fonte rinnovabile per eccellenza, il Sole. Nessuno però vi racconta mai dei costi di produzione dei pannelli o, soprattutto, di quelli di smaltimento dei pannelli ormai esausti. Tenendo conto di questi fattori, si deve ridimensionare molto il vantaggio ottenuto con l’uso di pannelli commerciali. Per carità, non voglio dire che questa soluzione debba essere scartata. Il mio pensiero vuole solo mostrare gli altri aspetti che spesso, soprattutto tra i sostenitori di una tecnologia, vengono completamente taciuti.

Perdonate questa mia lunga introduzione, ma quanto detto è, a mio avviso, importante per inquadrare al meglio la situazione.

Tornando ora al discorso idrogeno, come forse avrete letto, un team di ricercatori del CNR, per essere precisi della sezione di Firenze, ha trovato un nuovo processo di produzione dell’idrogeno che riesce a sfruttare i cosiddetti oli rinnovabili.

Perché è così interessante questa notizia? Alla luce di quanto detto sopra, ad oggi, esistono due modi principali di produzione dell’idrogeno, entrambi con criticità molto importanti. Il primo metodo di produzione consiste nell’estrazione dell’idrogeno dal metano. Per poter avviare il processo è però necessario ossigenare l’ambiente. In questo caso, la produzione di idrogeno è accompagnata da quella di anidride carbonica. Risultato? La produzione di CO2, come è noto, è da evitare per le conseguenze sull’ambiente. Vedete come le considerazioni iniziali ci consentono di fare ora un’analisi critica dell’intero processo?

Il secondo metodo possibile per la produzione dell’idrogeno è semplicemente basato sull’elettrolisi dell’acqua, cioè nella scomposizione di questa fonte nota e ampiamente disponibile in idrogeno e ossigeno. Quale sarebbe ora il rovescio della medaglia? Per fare l’elettrolisi dell’acqua occorre fornire molta energia, energia che deve ovviamente essere messa in conto quando si calcola il rendimento della risorsa. Esempio pratico, se per innescare l’elettrolisi utilizzate energia prodotta da fonti rinnovabili, questo contributo inquinante deve essere contabilizzato e l’idrogeno non è più così pulito. Oltre al problema del costo energetico di produzione, nel caso dell’elettrolisi si deve considerare anche il fattore sicurezza. Idrogeno e ossigeno vengono prodotti ad alte pressioni. Se, per puro caso, i due elementi vengono in contatto tra loro, si crea una miscela fortemente esplosiva.

Alla luce di quanto detto, credo che ora sia più chiaro a tutti il perché, escluso il discorso economico legato al petrolio, ancora oggi la futuribile economia dell’idrogeno ancora stenta a decollare.

Bene, quale sarebbe allora questo metodo made in Italy che i ricercatori del CNR hanno inventato? Come anticipato, questo sistema di produzione sfrutta gli alcoli rinnovabili. Credo che tutti abbiamo bene in mente cosa sia un alcol, perché però parliamo di rinnovabili? Detto molto semplicemente, si tratta degli alcoli, glicerolo, metanolo, ecc., prodotti dalle biomasse, quindi sfruttabili, rinnovabili e anche assolutamente diffuse.

Come funziona questo metodo?

Come noto alla chimica, rompere la molecola d’acqua in presenza di alcoli richiede molta meno energia rispetto a quella necessaria in presenza di sola acqua. Nessuno però, fino ad oggi, aveva pensato di sfruttare questa evidenza per la produzione di idrogeno. La vera innovazione di questo processo è nell’aggiunta di elettrodi nanostrutturati ricoperti di palladio che fungono da catalizzatori per il processo e raccolgono l’idrogeno prodotto nella reazione. A questo punto, immergendo gli elettrodi in una soluzione acquosa di alcoli è possibile rompere la molecola di acqua producendo idrogeno, evitando la formazione di ossigeno libero e, soprattutto, risparmiando il 60% dell’energia rispetto all’elettrolisi.

Come annunciato anche dagli stessi ricercatori, questo sistema potrà servire in un primo momento per la produzione di batterie portatili in grado di fornire energia in luoghi isolati e, a seguito di ulteriori ricerche e perfezionamenti, potrà essere sfruttato anche per la realizzazione di generatori da qualche KWh fino a potenze più alte.

Apro e chiudo parentesi, non per essere polemico ma per mostrare l’ambito nel quale molto spesso le ricerche si svolgono. Il gruppo di ricerca è riuscito a trovare i finanziamenti per i suoi studi perché al progetto hanno partecipato alcuni enti privati finanziatori, tra cui il credito cooperativo di Firenze.

Solo per concludere, e giusto per ricalcare nuovamente il fatto che la ricerca non si è dimenticata dell’idrogeno, anche a livello governativo, nelle direttive per l’obiettivo 2020 è stato imposto un target di 45KWh per la produzione di 1 Kg di idrogeno. Obiettivo considerato futuribile fino ad oggi ma che richiedeva ricerca aggiuntiva sui sistemi di produzione. Bene, il metodo inventato dal CNR richiede soltanto 18.5KWh per produrre 1 Kg di idrogeno. Direi che questo rende sicuramente il processo economicamente vantaggioso e apre finalmente le porte a un utilizzo, che sarà sempre e comunque graduale, di questa risorsa nella vita di tutti i giorni.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Pubblicità

Il processo di decaffeinizzazione

8 Ago

Nella sezione:

Hai domande o dubbi?

una nostra cara lettrice ci chiede di parlare del “caffe’ decaffeinato”. Credo che questo argomento sia molto interessante perche’ molto spesso si sentono tantissime leggende su questa soluzione. Tutti noi, almeno una volta, avremo sentito dire: “fa bene”, “fa male”, “e’ cancerogeno”, “e’ buono”, “fa schifo”, ecc. Come al solito, tante opinioni in disaccordo tra loro. Cerchiamo dunque di capire meglio come viene realizzato questo caffe’, cioe’ quali sono le tecniche maggiormente utilizzate per la decaffeinizzazione e, soprattutto, che genere di risultato si ottiene.

Qualche tempo fa, avevamo gia’ parlato della cosiddetta “fisica del caffe'”, parlando del principio di funzionamento della moka, spesso ignorato da molti, anche tra gli addetti ai lavori:

La fisica del caffe’

A questo punto, non resta che parlare invece della materia prima necessaria!

Come sapete bene, la caffeina, il cui nome chimico e’ 1,3,7-trimetilxantina, fu isolata per la prima volta nel 1820 ed e’ contenuta in almeno 60 varieta’ di piante, tra cui, ovviamente, caffe’, the, guarana’, cacao, ecc. La caffeina e’ un potente stimolante ed interagisce sul nostro umore aumentando i livelli di dopamina e bloccando i recettori dell’adenosina. Per inciso, quando i livelli di quest’ultima raggiungono una certa soglia, avvertiamo la sensazione di sonno.

Queste caratteristiche sono purtroppo sia il pro che il contro della caffeina. L’assunzione di questa sostanza puo’ infatti avere effetti dannosi in persone ansiose, con problemi di sonnoloenza, tachicardia, ecc. Come anticipato, l’effetto della caffeina e’ tutt’altro che blando, a livello biologico, questa molecola e’ un vero e proprio veleno, che risulta letale sopra una certa soglia, ovviamente non raggiungibile assumendo tazzine di caffe’.

Ora pero’, molte persone, tra cui il sottoscritto, adorano il caffe’ anche solo per il suo sapore o per la ritualita’ dell’assunzione. Proprio per questo motivo, si sono affinate diverse tecniche per eliminare la caffeina dai chicchi di caffe’, ottenendo una bevanda non stimolante, appunto il caffe’ decaffeinato.

Il decaffeinato fu inventato a Brema nel 1905 dal tedesco Ludwig Roselius, figlio di un assaggiatore di caffè, per conto della azienda “Kaffee Handels Aktien Gesellschaft”. Proprio in onore del nome dell’azienda, questo tipo di caffe’ venne chiamato prendendo le iniziali e dunque commercializzato come Caffe’ HAG. Per ottenere questo risultato, i chicchi di caffe’ venivano cotti a vapore con una salamoia di acqua e benzene. Quest’ultimo era il solvente in grado di estrarre la caffeina dal chicco.

Successivamente, questo metodo venne abbandonato trovando soluzioni alternative da utilizzare prima della tostatura, cioe’ quando il fagiolo e’ ancora verde. La tecnica maggiormente utilizzata fino a pochi anni fa, era quella che prevedeva l’utilizzo di diclorometano per estrarre la caffeina. Successivamente a questo trattamento, il caffe’ veniva lavato a vapore per eliminare il diclorometano, che ha un punto di ebollizione di circa 40 gradi. A questo punto, si passava alla essiccatura e tostatura dei chicchi a 200 gradi.

Questo metodo presentava purtroppo alcuni problemi, che poi sono quelli che spingono ancora oggi le leggende di cui parlavamo all’inizio.

Il diclorometano e’ una sostanza cancerogena per l’essere umano. Come anticipato, successivamente al suo utilizzo, il caffe’ passava per altri due processi con temperature notevolmente superiori al punto di ebollizione del diclorometano. Questo trattamento assicurava la completa evaporazione del potenziale cancerogeno sui chicchi.

Perche’ allora e’ stata abbandonata la tecnica?

Il problema reale di questa tecnica di decaffeinizzazione e’ che durante il trattamento con diclorometano, oltre alla caffeina, venivano estratte altre sostanze chimiche dai chicchi che contribuiscono al sapore della bevanda finale. In tal senso, il decaffeinato ottenuto con questa soluzione, aveva un sapore molto diverso da quello originale. Inoltre, anche altre sostanze benefiche per l’organismo venivano estratte dal caffe’ mentre venivano prodotti oli contenenti molecole da alcuni ritenute dannose per l’uomo.

Detto questo, capite bene dove nascono le leggende da cui siamo partiti, circa il sapore del decaffeinato e la pericolosita’ del suo utilizzo.

Oggi, la tecnica con diclorometano e’ quasi completamente abbandonata a favore dell’utilizzo della CO2 supercritica. Con questo termine si intende solo una stato con pressioni e temperature tali da renderla una via di mezzo tra un gas e un fluido. Nel processo di decaffeinizzazione, i chicchi di caffe’ vengono prima inumiditi con vapore per rigonfiarli ed aumentare la percentuale di acqua. Questo sempre con fagioli verdi, cioe’ prima della tostatura. A questo punto, i chicchi passano in colonne di estrattori insieme alla CO2 ad una tempratura tra 40 e 80 gradi ed una pressione intorno alle 150 atmosfere. Questo passaggio permette all’anidride carbonica di portare via la caffeina, toccando in minima parte le altre sostanze contenute nel caffe’. A seguito di questo passaggio, si procede ovviamente alla tostatura.

Quali sono i vantaggi di questa tecnica rispetto alla precedente?

Prima di tutto, si utilizza solo CO2, cioe’ una sostanza non pericolosa per l’essere umano. Il processo consente di estrarre gran parte della caffeina contenuta nel caffe’. Per legge, un caffe’ decaffeinato non deve avere piu’ del 0,1% di caffeina. Non intaccando, se non in minima parte, le altre sostanze, il sapore del caffe’ rimane quasi invariato, e quindi e’ molto piu’ simile all’analogo con caffeina.

Oltre a questi aspetti, la CO2 in uscita dal processo e’ ovviamente ricca di caffeina. Questa sostanza e’ notevolmente utilizzata in diversi settori tra cui la medicina, la farmacologia, la botanica, ecc. Proprio per questo motivo, in virtu’ del processo utilizzato, e’ possibile estrarre caffeina pura dall’anidride carbonica mediante un abbassamento di temperatura o utilizzando carboni attivi.

Lo stesso processo viene utilizzato anche su altre piante, oltre che per l’estrazione del colosterolo dal burro o dell’essenza dai fiori di luppolo, utilizzata nella produzione della birra.

Concludendo, molte delle leggende intorno al decaffeinato nascono in virtu’ del precedente metodo utilizzato per l’estrazione della caffeina dai chicchi. Oggi, l’utilizzo di CO2 supercritica consente di estrarre la maggior parte della caffeina, che oltre tutto puo’ essere recuperata e utilizzata in altri settori, lasciando quasi del tutto inalterate le altre sostanze che contribuiscono la sapore di questa ottima bevanda.

 

”Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Caldo record? In Germania scoppiano le autostrade

23 Giu

Come volevasi dimostrare, dopo il freddo record, la primavera con temperature glaciali, il sole che sarebbe in procinto di impazzire, finalmente e’ arrivata l’estate. E di cosa si parla? Facile, di caldo record!

Tutti quei siti che fino a ieri parlavano di estate che non ci sarebbe stata e freddo che faceva presagire una nuova era glaciale, oggi parlano di caldo record e di anomalie ambientali.

Ormai, siamo abituati a questo genere di informazione, ma e’ comunque interessante vedere le motivazioni che spingono queste persone a parlare di temperature fuori dalla norma.

Tratto di autostrada in Germania con asfalto esploso

Tratto di autostrada in Germania con asfalto esploso

La notizia che sta facendo tanto discutere in rete in questi giorni, viene dalla Germania, dove, e la notizia e’ reale, per il caldo diversi tratti dell’autostrada stanno letteralmente scoppiando. Come anticipato, non si tratta di una burla. Improvvisamente e senza nessun segnale premonitore, l’asfalto di diversi tratti di autostrada, soprattutto nel sud della Germania, esplode sgretolandosi. Proprio a causa di questo problema, e’ morto anche un motociclista che e’ stato letteralmente sbalzato contro il guard-rail morendo sul colpo. Come riportato dai siti tedeschi, il problema sembra relativo a circa 3000 dei 13000 Km di autostrade tedesche e, come detto, non si e’ in grado di capire dove e quando lo scoppio potrebbe avvenire. Ad oggi, ci sono stati quasi 20 episodi di questo tipo.

Come vedete, si tratta di un problema serio e reale, soprattutto dopo la morte del motociclista. Cosa potete leggere in rete? Come potete immaginare, c’e’ chi parla di anomalie provenienti dal Sole che e’ in procinto di inviare flare estremamente potenti sulla Terra. In alternativa, c’e’ chi punta il dito contro eventi simici e geologici. Secondo queste ipotesi, la terra si muoverebbe respirando in diversi punti, come per presagire un forte terremoto in arrivo in quelle zone.

Ovviamente, come sempre, si tratta di ipotesi campate in aria e senza alcun fondamento scientifico. E’ interessante pero’ analizzare il fatto in se, per capire l’origine di questo curioso fenomeno.

Quello che avviene e’ una sempice e naturale conseguenza della dilatazione termica. Come sapete, i materiali, non tutti in realta’, quando vengono scaldati si dilatano. Proprio per questo motivo si parla di dilatazione termica. Ciascun materiale avra’ un coefficiente di dilatazione diverso, che dunque indica di quanto questo si dilata aumentando la temperatura. In base alla forma in esame, parliamo di dilatazione termica lineare, superficiale o volumica.

Come e’ fatto il manto autostradale?

Distanziatori utilizzati sui ponti

Distanziatori utilizzati sui ponti

Molto spesso, l’asfalto viene posto in opera utilizzando appositi lastroni lunghi 5 metri che vengono affiancati uno all’altro. Per contrastare la naturale dilatazione termica, tra una lastra e l’altra viene lasciato un piccolo spazio che serve appunto a consentire la dilatazione senza ostacoli. Lo stesso spazio viene lasciato anche qundo l’asfalto viene deposto direttamente in loco in forma semi fluida.

Un esempio noto a tutti di questa tecnica, e’ facilmente visibile sui ponti. Qui, poiche’ la dilatazione potrebbe essere ancora maggiore a causa dei volumi minori, ad intervalli regolari vengono lasciate apposite fughe che consentono di assorbire le dilatazioni. Ci si accorge facilmente di queste fughe quando, passando con la macchina sopra un viadotto, si sentono sobbalzi ad intervalli regolari.

Bene, anche per la stesa dell’asfalto viene utilizzata la stessa tecnica.

Cosa sta succedendo in Germania?

Il problema dell’asfalto che esplode, come anticipato, e’ relativo solo a circa 3000 Km di autostrade, cioe’ quelle costruite alla fine degli anni 80. In quegli anni, non veniva utilizzato materiale di riempimento sotto l’asfalto in grado di diminuire la dilatazione ma, soprattutto, i lastroni impiegati avevano uno spessore minore, 22 cm, rispetto a quelli utilizzati in seguito, 28 cm. Lo spessore minore permette una maggiore dilatazione termica che potrebbe, in casi eccezionali, essere maggiore delle fughe lasciate durante la posa in opera.

Perche’ il fenomeno si sta verificando ora?

Nei giorni scorsi, si sono registrate temperature molto alte in Germania, che hanno toccato anche 5-7 gradi sopra la media. Questo ovviamente ha portato una notevole dilatazione termica delle lastre. Inoltre, il problema principale della Germania e’ la grande escursione termica che si registra tra estate ed inverno. Se, da un lato, durante l’estate l’asfalto si dilata, durante l’inverno si avra’ un accorciamento dovuto all’abbassamento delle temperature. In particolare, gli asfalti tedeschi devono resistere a variazioni anche di 60 gradi nel corso dell’anno, da -30 a +30 gradi centigradi.

Cosa c’entra questo?

Come anticipato, nella posa dell’asfalto si devono lasciare vie di fuga tra le lastre. Questi spazi devono essere in grado di assorbire le dilatazioni estive, ma non devono lasciare uno spazio troppo ampio nei mesi freddi. In alternativa, si potrebbero avere danni ai veicoli a causa degli intervalli troppo ampi.

Bene, a causa delle elevate temperature e dell’invecchiamento dell’asfalto le vie di fuga sulle autostrade tedesche non sono state in grado di assorbire le dilatazioni. In questo modo, due lastre possono spingere una contro l’altro fino ad arrivare allo sbriciolamento dell’asfalto che viene sollevato quando la spinta e’ troppo eccessiva.

Purtroppo, fenomeni del genere non sono prevedibili, nel senso che le esplosioni potrebbero verificarsi da un momento all’altro in un punto qualsiasi di maggiore assolazione.

Per il momento, i tecnici tedeschi sono in stato di allerta, pronti ad intervenire ad ogni segnalazione. Si sta anche pensando, come soluzione limite, di imporre limiti di velocita’ molto stringenti nei tratti interessati fino ad arrivare anche alla chiusura dei tratti maggiormente problematici.

Concludendo, la notizia delle autostrade tedesche che esplodono in questi giorni e’ reale. Ad oggi, si sono verificati circa 20 episodi. Come visto, si tratta di un problema dovuto alla dilatazione termica delle lastre di asfalto utilizzate che non viene contenuta dalle vie di fuga lasciate nella messa in opera. Quelle che invece sono completamente false, sono le tante ipotesi catastrofiste che non potevano certo mancare su una notizia di questo tipo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Aumento di uragani per il 2013

2 Giu

In questi giorni, diversi giornali e siti internet hanno pubblicato le previsioni per la stagione degli uragani 2013. Per chi non lo sapesse, il periodo piu’ propizio per la formazione di questi eventi atmosferici va dal 1 Giugno al 30 Novembre e, come e’ noto, interessa principalmente la parte centrale degli Stati Uniti oltre ovviamente ai paesi caraibici.

Purtroppo, come spesso avviene, ho letto tantissime inesattezze su questi articoli, a volte per confusione fatta nell’interpretazione delle previsioni, altre volte, purtroppo, per il solito catastrofismo che, soprattutto sulla rete, imperversa.

Cosa trovate scritto? Semplicemente che il numero di uragani aumentera’ del 70% rispetto alla norma e che in particolar modo ci sara’ un aumento sostanziale del numero di uragani maggiori che dunque potrebbero arrecare forti danni nelle zone interessate. Senza aggiungere altro, vi lascio immaginare la feroce speculazione che si e’ creata sulla rete parlando ovviamente di geoingegneria, modificazioni del clima, HAARP, Nibiru, e compagnia bella, che tanto ormai sono la cuase di tutto quello che avviene nel mondo.

Cerchiamo di andare con ordine e di capire meglio la cosa.

Prima di tutto, qui trovate il bollettino ufficiale rilasciato dal NOAA, l’ente americano che, tra le altre cose, si occupa anche di eseguire previsioni e simulazioni per il fenomeno degli uragani:

NOAA, Uragani 2013

Cosa troviamo? Prima di tutto leggiamo molto attentamente i numeri che vengono riportati, perche’ proprio su questi c’e’ la maggior confusione in assoluto. Partiamo dalle medie registrate. Normalmente, dove “normalmente” significa “in media”, ci sono 12 “named storms” all’anno, cioe’ tempeste con venti che superano i 63 Km/h e a cui viene attribuito un nome. Tra queste, e attenzione “tra queste” non significa “oltre a queste”, ci sono, sempre in media, 6 uragani, cioe’ tempeste i cui venti superano i 118 Km/h. Bene, ora non perdete il filo, tra questi 6 uragani ce ne sono, sempre in media, 3 che vengono classificati come “uragani maggiori”, cioe’ con venti oltre i 180 Km/h.

Cerchiamo di riassumere. Ogni anno in media ci sono 12 tempeste con venti che superano i 63 Km/h e a cui viene assegnato un nome. Tra tutte queste che superano questo limite, ce ne sono, sempre in media, 6 che superano i 118 Km/h e che quindi vengono chiamati uragani e di questi 6 ce ne sono 3 che superano i 180 Km/h e che quindi vengono chiamati “uragani maggiori”.

Bene, quanti sono in tutto gli eventi? Ovviamente la risposta e’ sempre 12, e questo numero comprende tempeste, uragani e uragani maggiori.

Cosa ci si aspetta per il 2013?

Come potete leggere nel bollettino del NOAA, dai calcoli statistici effettuati, si e’ evidenziata una probabilita’ del 70% che il numero di tempeste possa essere superiore alla media, in particolare, compreso tra 13 e 20. Cosa significa? Prima di tutto che vi e’ una probabilita’ di questo aumento, non una certezza come vorrebbero farvi credere. Inoltre, viene fornito un intervallo piuttosto largo di ipotesi. Le 12 tempeste sono il numero medio registrato negli anni, dare un intervallo tra 13 e 20, significa andare da un valore praticamente in media, 13, ad uno superiore ai trascorsi, 20.

Questo solo per smentire subito tutte quelle fonti che parlano di aumento certo.

Ora, in questo numero compreso tra 13 e 20, viene fornito anche un quadro della composizione. Come visto, questo e’ il numero totale di eventi con venti superiori ai 63 Km/h. Come riportato dal NOAA, le previsioni sulla composizione sono: un numero compreso tra 7 e 11 di tempeste che potrebbero arrivare ad uragani e un numero compreso tra 3 e 6 che potrebbero sfociare in uragani maggiori.

Analizziamo questi numeri. Nel caso piu’ favorevole, si avrebbero 13 tempeste, di cui 7 uragani e 3 uragani maggiori. Praticamente questi numeri sono nelle medie riportate all’inizio. Nel caso piu’ sfavorevole invece, si avrebbero 20 tempeste di cui 11 uragani e 6 uragani maggiori. In questo caso invece tutte le categorie subirebbero un forte aumento rispetto ai valori medi.

Come vedete, questi numeri occupano un intervallo molto largo in cui e’ difficile fare previsioni precise. Ovviamente, il NOAA diffonde questi dati come indicazione per la stagione che sta inziando. Data la larghezza degli intervalli considerati, non e’ possibile fare previsioni esatte ne’ tantomeno fare analisi dettagliate.

Perche’ allora vengono fornite queste previsioni?

In realta’, il compito di questi calcoli e’ molto importante e serve per analizzare in termini statistici il comportamento di alcuni rilevanti parametri ambientali e climatici. Come riportato nel bollettino del NOAA, queto risultato superiore alla media viene spinto da alcune evidenze molto importanti:

– il forte monsone sull’Africa occidentale responsabile dell’aumento degli uragani nell’Atlantico iniziato a partire dal 2005

– le temperature leggermente piu’ alte nell’Atlantico tropicale e nel Mar dei Caraibi

– il ritardo nello sviluppo de “El Niño” che potrebbe non incrementarsi quest’anno

Attenzione, anche su questo ultimo punto, potete leggere notizie inesatte su diverse fonti. Non e’ che El Niño e’ scomparso o non si forma, semplicemente, al solito a causa di molti fattori correlati tra loro, quest’anno questo fenomeno atmosferico, che mitiga notevolmente gli uragani, potrebbe non aumentare. Questo non significa che e’ scomparso. Nella figura riportata vedete proprio l’andamento di El Niño negli ultmi mesi ottenuto monitorando la temperatura del Pacifico.

Temperature del Pacifico delle ultime settimane. Fonte: ENSO

Temperature del Pacifico delle ultime settimane. Fonte: ENSO

Concludendo, cosa abbiamo ottenuto? I risultati delle simulazioni condotte dal NOAA mostrano una probabilita’ del 70% che ci sia quest’anno un aumento del numero di tempeste. Questo aumento comporta un numero di fenomeni compreso tra 13 e 20 rispetto ad una media degli anni di 12. Il largo intervallo utilizzato non e’ utilizzabile per fare previsioni specifiche, ma l’indicazione dei modelli e’ importante per valutare diversi aspetti climatici di interesse mondiale. Proprio per concludere, ricordiamo che si tratta di calcoli statistici, forniti sulla base di modelli. Il numero medio utilizzato per il confronto viene da un database comprendente decine di anni di osservazione. Condizione per cui, sul singolo anno, variazioni rispetto a questa media sono del tutto normali e statisticamente possibili.

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Come misurare distanza e velocita’ di una stella

16 Mag

Diverse volte ci siamo trovati a parlare di stelle e molto spesso abbiamo fatto riferimento alla loro distanza dalla Terra. Questo parametro e’ di fondamentale importanza in tantissime misure fisiche che vengono fatte e, ad esempio, quando abbiamo studiato il caso della WR104. La distanza tra noi e questa stella risultava determinante nell’analisi dell’eventuale Gamma Ray Burst che potrebbe investirci:

WR104: un fucile puntato verso la Terra?

Ora, nella sezione:

Hai domande o dubbi?

Un nostro caro lettore, ragionando su questo parametro, ha espresso un dubbio molto interessante. In particolare, la domanda fatta era mirata a capire come mai, eventualmente, lo spostamento verso il rosso delle stelle poteva essere simultaneamente utilizzato sia per misurare la distanza che lo spettro di una stella. Detto in termini matematici, come facciamo a ricavare due incognite da una sola equazione?

Cerchiamo di rispondere a questa domanda, spiegando anche cosa sarebbe questo spostamento verso il rosso, o redshift, ma soprattutto come vengono misurate le distanze in astronomia.

Questi concetti sono molto interessanti ed in genere trascurati in contesti divulgativi. Quando sentiamo parlare qualche astronomo, vengono tranquillamente citate distanze di anni luce da noi, senza pero’ far capire come sia possibile misurare questi parametri.

Andiamo con ordine, partendo proprio da questa prima riflessione. Come si misurano distanze cosi’ grandi, ma soprattutto distanze di oggetti che non possiamo toccare con mano?

La prima semplice tecnica e’ basata su misure di parallasse. Cosa significa? Per spiegare questo importante concetto, partiamo subito con un esempio. Supponente di guardare qualcosa distante da voi qualche metro. Potete proprio realizzare questo esperimento guardando gli oggettti che avete intorno. Bene, adesso scegliamo un oggetto piccolo o grande a piacere e facciamo un eperimento. Mettete un dito davanti ad i vostri occhi, distante appena l’apertura del braccio, guardando sempre l’oggetto scelto come campione. Bene se adesso chiudete prima un occhio e poi l’altro, vedete che l’oggetto sembra sposarsi a destra e sinistra rispetto al vostro dito.

Non c’e’ nulla di magico in questo, si tratta solo della sovrapposizione della vista dei vostri occhi che forma poi il campo visivo. Sfruttiamo questa caratteristica per calcolare geometricamente la distanza dell’oggetto. Se volete, siamo di fonte ad uno schema del genere:

Triangoli simili

Triangoli simili

Geometricamente, misurando un lato e gli angoli dei due triangoli simili, siamo in grado di ricavare l’altezza, dunque la distanza del corpo da noi.

Attenzione pero’, se provate a ripetere l’eperimento per oggetti sempre piu’ lontani, vi accorgete che la loro dimensione spaziale diventa sempre piu’ piccola. Questo e’ il problema nel cercare di misurare la distanza delle stelle. Si tratta di corpi molto grandi, ma posti ad una distanza tale da noi da impedirci di essere sensibili alla loro estensione spaziale. Prorpio per questo motivo, le stelle ci appaiono come punti luminosi in cielo.

Per farvi capire questo concetto, vi mostro un’immagine:

Come apparirebbe il Sole a diverse distanze

Come apparirebbe il Sole a diverse distanze

Il numero 1 indica l’estensione spaziale del Sole come lo vediamo dalla Terra. Nel punto 2, ecco come ci apparirebbe invece la nostra stella se la distanza con noi sarebbe pari a quella Giove-Terra. Ancora piu’ spinto e’ il caso dei disegni 3 e 4, in cui, in quest’ultimo, viene riportato come ci apparirebbe il Sole se questo fosse ad una distanza da noi pari a quella Terra-Proxima Centauri, cioe’ circa 4 anni luce.

Concentriamoci ancora un secondo su questo ultimo disegno. Il nostro Sole e’ una stella, cosi’ come ce ne sono tantissime nell’universo. Il fatto che il Sole ci appaia cosi’ grande mentre le stelle in cielo sono solo dei punti, e’ dunque solo legato alla distanza dal nostro pianeta.

Per corpi cosi’ distanti, non e’ piu’ sufficiente fare misure di parallasse con gli occhi, ma c’e’ bisogno di aumentare a dismisura la distanza tra le osservazioni. Prorpio per questo motivo, si sfrutta il movimento della Terra intorno al Sole, sfruttando quindi la nostra traiettoria come punti in cui estrapolare la parallasse:

Parallasse lungo l'orbita terrestre

Parallasse lungo l’orbita terrestre

Conoscendo l’asse dell’orbita terrestre, e’ dunque possibile ricavare l’altezza del triangolo, quindi la distanza della stella dalla Terra.

Ovviamente, per costruzione, questo metodo e’ applicabile solo fino ad una certa distanza, in genere fissata a 300 anni luce da noi. Oltre questo limite, i lati del triangolo di parallasse non sono piu’ distinguibili e non si riesce ad estrapolare il dato sulla distanza.

Dunque? Come misurare distanze maggiori?

Ora, arriviamo al gia’ citato “Spostamento verso il Rosso”. Per capire di cosa si tratta, facciamo un esempio semplice. Tutti avranno ascoltato una sirena che si dirige verso di noi. Bene, la frequenza percepita dal nostro orecchio, risulta diversa se l’oggetto si sta avvicinando o allontanando. Perche’ avviene questo? Semplicemente, come mostrato da questa figura:

Fronti d'onda di un corpo in movimento

Fronti d’onda di un corpo in movimento

Nei due versi, il numero di fronti d’onda sonori che ascoltiamo dipende dalla velocita’ della sorgente. Anche se sembra difficile, questo effetto e’ facilmente comprensibile. Proviamo con un altro esempio. Immaginate di essere sulla spiaggia e di contare il numero di creste di onda che arrivano sulla battigia in una unita’ di tempo. Questo parametro e’ molto piu’ simile di quello che immaginate al discorso del suono percepito. Ora, se entrate in acqua e andate incontro alle onde, sicuramente conterete piu’ creste d’onda rispetto al caso precedente. Situazione opposta si ha se vi allontanate. Bene questo e’ quello che si chiama Effetto Doppler.

Lo spostamente veso il rosso e’ una diretta conseguenza dell’effetto Doppler, ma non si parla di onde sonore, bensi’ di onde elettromagnetiche. Equivalentemente al caso della sirena, lo spettro luminoso di un corpo puo’ risultare spostato rispetto al normale se il corpo in questione si avvicina o si allontana. Si parla di redshift perche’ per un oggetto che si allontana da noi, il suo spettro sara’ piu’ spostato verso le basse frequenze.

Immaginate di avere una stella di un certo tipo di fronte a voi. Ora, se la stella si allontana, siamo in grado di misurare il suo spostamento verso il rosso, proprio partendo dallo spettro di altri corpi della stessa famiglia ma a distanza minore. Da questa misura potete dunque ottenere informazioni sulla velocita’ relativa con cui voi e la stella vi state allontanando. Questo importante risultato e’ noto come Legge di Hubble. Questa equazione lega proprio, attraverso una costante detta appunto di Hubble, lo spostamento verso il rosso della sorgente e la sua velocita’. Sempre attraverso la legge di Hubble, siamo poi in grado di ricavare la distanza della sorgente e dunque di estrapolare la distanza della stella dall’osservatore.

Notiamo prima di tutto una cosa, anche questo metodo ha un limite inferiore oltre il quale la distanza diviene  non misurabile, anche se in questo caso il limite e’ molto piu’ grande di quello ottenuto dalla parallasse.

Ritornando alla domanda iniziale, il metodo della parallasse ci consente di misurare distanze fino a qualche centinaio di anno luce da noi. Per distanze maggiori, ci viene in aiuto la legge di Hubble, attraverso la quale possiamo misurare non solo la distanza di un corpo lontano, ma anche la sua velocita’ di allontanamento da noi.

Inoltre, questa legge rappresenta un altro importante risultato a sostegno dell’ipotesi del Big Bang. Come visto in questo articolo:

E parliamo di questo Big Bang

il nostro universo e’ ancora in espansione e questo puo’ essere evidenziato molto bene dai risultati ottenuti mediante la legge di Hubble.

Concludendo, la misura delle distanze a cui si trovano le stelle rappresenta sicuramente un qualcosa di fondamentale negli studi del nostro universo. A tal proposito, abbiamo a disposizione diversi metodi e due di questi, parallasse e redshift, ci consentono, con limiti diversi, di poter estrapolare in modo indiretto questi valori. Oltre ad una mappa dei corpi a noi vicini, la legge di Hubble rappresenta un importante prova a sostegno dell’ipotesi del Big Bang. Ad oggi, il nostro universo e’ ancora in espansione e per questo motivo vediamo gli spettri spostati verso il rosso.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Londra-New York in un’ora?

6 Mag

Molto spesso leggo delle notizie interessanti sui giornali, che pero’ vengono rovinate dalla continua ricerca del sensazionalismo giornalistico che fa trascendere gli articoli nel ridicolo. E’ questo il caso del test effettuato dall’aviazione americana sul protopipo X-51 proprio pochi giorni fa.

Come forse avrete letto, il 3 Maggio e’ stato effettuato un nuovo test di volo per il velivolo sperimentale X-51 che e’ riuscito a volare alla velocita’ di mach 5.1, cioe’ 5.1 volte la velocita’ del suono. Detto in unita’ di misura comprensibili a tutti, alla velocita’ di 6240 Km/h.

Dov’e’ l’assurdita’ della notizia? Ovviamente, la notizia del test e’ reale, cosi’ come e’ veritiera la velocita’ raggiunta, l’assurdo e’ nel fatto che si dichiara di aver raggiunto la piu’ alta velocita’ mai registrata e che in un futuro molto prossimo potremo viaggiare tra Londra e New York in un’ora.

Cominciamo proprio dall’ultima parte. Semplicemente, i moderni caccia raggiungono velocita’ intorno a 2 volte quella del suono. Per poter sopportare queste accelerazioni, i piloti devono godere di uno stato di salute ottimale, oltre ovviamente a sostenere un pesante e continuo allenamento per resistere a questi parametri di volo. Secondo voi, un passeggero normale, potrebbe mai viaggiare a 5 volte la velocita’ del suono? Io direi di no, a meno di arrivare a New York con la maggior parte dei passeggeri morti ancora legati ai sedili. Spesso, basterebbe ritornare a fare il mestiere di giornalista piuttosto che di profeta per evitare di sparare strafalcioni di questo tipo.

Passando invece al discorso velocita’, dobbiamo fare qualche considerazione piu’ tecnica. Prima di tutto, mach 5.1 non e’ la massima velocita’ raggiunta in sistemi di questo tipo. In passato, altri velivoli sperimentali, come ad esempio X-43, hanno raggiunto velocita’ intorno a mach 10. Il risultato importante del test sul X-51 e’ stato raggiungere questi picchi di velocita’ per tempi piu’ lunghi, intorno ai 4 minuti. I precedenti test avevano ottenuto velocita’ maggiori, ma per tempi brevisimi. Proprio questo fatto, aveva poi spinto la ricerca nello studio di soluzioni piu’ “lente” ma che consentissero di mantenere le velocita’ per periodi piu’ lunghi.

Credo che a questo punto sia interessante parlare un po’ piu’ in dettaglio di questo X-51. Questo prototipo nasce da una collaborazione tra l’aviazione americana, la NASA, la Boeing e la Darpa. Scopo finale dello sviluppo e’ raggiungere una velocita’ di mach 7 per tempi dell’ordine di cinque minuti.

Come e’ possibile raggiungere queste velocita’? Per prima cosa, il lancio avviene con l’X-51 fissato sotto l’ala di un B-52H che lo porta fino alla quota di 50000 piedi.

X51 posizionato sotto l'ala del B52H

X51 posizionato sotto l’ala del B52H

A questo punto, il velivolo viene sganciato e, dopo 4 secondi di caduta libera, viene acceso un razzo MGM-140 che arriva fino alla velocita’ di mach 4.5. Arrivati a questa velocita’, l’X-51, anche detto WaveRider, viene sganciato e accelera fino alla velocita’ massima, nominalmente mach 7.

L’accelerazione del WaveRider e’ assicurata da un motore sperimentale chiamato Scramjet. A differenza dei normali motori a turbina, che sono limitati ad una velocita’ di punta di mach 2.5, lo scramjet e’ un propulsore privo di parti mobili. L’aria entra, viene miscelata con il carburante e brucia automaticamente. L’elevato calore e la velocita’ del flusso in uscita determinano la spinta del velivolo. Ovviamente, per poter funzionare, il motore ha bisogno di aria che entra ad alta pressione e, per questo motivo, e’ necessaria la fase di lancio con un razzo MGM.

Perche’ e’ importante sviluppare questo tipo di tecnologia? Per prima cosa, come potete immaginare, questo tipo di test viene fatto in ambito militare per la continua ricerca su razzi supersonici o per droni capaci di viaggiare ad altissima velocita’ e dunque piu’ difficili da intercettare.

Oltre all’ambito militare, applicazioni di questo tipo potrebbero essere importanti anche per il futuro dei voli spaziali, come dimostra la collaborazione della NASA al progetto. Attenzione pero’, anche su questo punto si leggono molte cose inesatte in rete. Prima di tutto, lo scramjet per poter funzionare necessita’ di un flusso di aria in ingresso. Detto questo, e’ impensabile utilizzare il motore al di fuori della nostra atmosfera. Lo scramjet potrebbe pero’ essere utilizzato come stadio di lancio dei velivoli spaziali. Dalla descrizione fatta, appare evidente che questo motore ha il vantaggio enorme di un dover trasportare il comburente. In questo senso, si avrebbe una notevole riduzione del carico dei velivoli spaziali per la spinta fino ai confini della nostra atmosfera. Come e’ facilmente intuibili, minor carico equivale a voli piu’ economici.

Ovviamente, per poter utilizzare questi sistemi in voli commerciali, sia a terra che nelle missioni spaziali, sara’ necessaria ancora molta sperimentazione, soprattutto per rendere competitivi questi lanci rispetto alle altre soluzioni di cui abbiamo parlato in questi post:

I lanci Spaziali del Futuro

Dove andiamo in vacanza? Nello spazio!

Dal turismo al traferimento nello spazio

Come visto, il notevole interesse di compagnie private, e ovviamente l’afflusso di capitali, in queste ricerche, sta determinando una spinta non indifferente nella sviluppo di questi settori. Sicuramente, in un futuro molto prossimo, potremo sfruttare sistemi che fino a ieri sembravano soltanto fantascientifici.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Il Muos di Niscemi

2 Apr

Diversi lettori del blog mi hanno scritto per chiedere il mio punto di vista sul sistema MUOS la cui costruzione era prevista a Niscemi in Sicilia.

Per chi fosse completamente a digiuno, il MUOS e’ un sistema di comunicazione satellitare che prevede 4 satelliti in orbita e 4 stazioni di terra. Questo sistema e’ direttamente gestito e voluto dal Dipartimento della Difesa degli Stati Uniti e servira’ per gestire, comandare e controllare in ogni parte del globo, le unita’ marine, aeree e di terra. Il sistema prevede diversi servizi tra cui la comunicazione vocale, lo scambio dati e la connessione di rete, tutto ad accesso riservato per scopi militari e di coordinamento. Le stazioni di terra verranno utilizzate per comunicare direttamente con i satelliti in orbita e la costruzione era prevista nelle Hawaii, in Australia, in Virginia e, come anticipato, a Niscemi a circa 60 Km dalla base militare di Sigonella.

Le stazioni di terra prevedono la costruzione di antenne operanti ad altissima frequenza e a banda stretta. Ecco una foto dell’installazione nelle isole Hawaii:

MUOS: stazione di terra nelle Hawaii

MUOS: stazione di terra nelle Hawaii

Perche’ stiamo parlando di questo sistema? Per quanto riguarda la costruzione della stazione di Niscemi, per diverso tempo ci sono stati dibattiti e scontri circa l’eventuale pericolo che queste antenne avrebbero costituito per la popolazione del posto. Nel corso degli anni, si sono formati comitati cittadini creati per impedire la costruzione di questa stazione e il dibattito ha riempito le pagine di molti quotidiani anche a livello nazionale. Ovviamente non e’ mancata la discussione politica. Diverse volte l’aministrazione regionale ha tentato di bloccare i lavori causando una discussione tra Parlamento Italiano, regione Sicilia e governo degli Stati Uniti. Come forse avrete letto, solo pochi giorni fa, l’amministrazione Crocetta ha bloccato definitivamente la costruzione della stazione ma, almeno a mio avviso, la discussione durera’ ancora per molto tempo.

Detto questo, non voglio assolutamente entrare in discussioni politiche sul MUOS e sulla regione Sicilia. Quello che molti utenti mi hanno richiesto e’ solo un parere scientifico sull’inquinamento elettromagnetico della stazione MUOS. Ovviamente, non entrero’ nel merito della discussione politica, degli accordi bilaterali tra Italia e USA ne tantomeno sull’eventuale valutazione di impatto ambientale che una stazione del genere sicuramente comporta sul panorama della zona.

A questo punto, la domanda su cui vorrei aprire una discussione e’: il MUOS e’ dannoso per la salute della popolazione?

A livello scientifico, ci sono due voci principali che si sono mosse parlando del MUOS. Da un lato Antonino Zichichi sostiene che l’installazione non e’ assolutamente dannosa per la popolazione vista la bassa potenza in gioco, dall’altro il Prof. Massimo Zucchetti del politecnico di Torino afferma che questa installazione potrebbe comportare seri rischi per la salute dei cittadini.

Come vedete, l’inizio non e’ dei migliori. Siamo di fronte a due punti di vista completamente opposti.

Ora, mentre Zichichi si e’ limitato a rilasciare interviste a diversi quotidiani, Zucchetti ha preparato una relazione tecnica sull’installazione che potete leggere a questo indirizzo:

Zucchetti, relazione MUOS

Come vedete anche dalla pagina, la relazione di Zucchetti viene pubblicizzata proprio da uno dei comitati cittadini nati per impedire l’installazione del MUOS a Niscemi, il comitato NoMuos.

Detto questo, proviamo a commentare la relazione di Zucchetti per cercare di capire se e come il MUOS potrebbe rappresentare un pericolo per la popolazione.

Prima di tutto, ci tengo a sottolineare che Zucchetti e’ esperto di radioprotezione ma e’ importante ragionare su quanto scritto per capire le motivazioni che spingono questa relazione nella direzione di considerare il MUOS come pericoloso.

Per prima cosa, dove doveva sorgere il nuovo impianto e’ gia’ presente un sistema radar detto NRTF le cui antenne sono in funzione dal 1991. Le analisi quantitative presentate nella relazione di Zucchetti riguardano proprio questo esistente impianto e vengono fatte considerazioni circa l’eventuale aggiunta del MUOS alle emissioni del NRTF.

Nella relazione vengono mostrate misure di campo elettrico fatte in diverse zone dell’impianto e che possiamo riassumere in questa tabella:

5,9 ± 0,6 V/m in località Ulmo (centralina 3)
4,0 ± 0,4 V/m in località Ulmo (centralina 8)
2 ± 0,2 V/m in località Martelluzzo (centralina 1)
1 ± 0,1 V/m in località del fico (centralina 7)

Come potete leggere nella relazione, queste misure, fatte dall’ARPA della Sicilia, potrebbero essere affette da un’incertezza al livello del 10%. Ora, per chi non lo sapesse, i limiti per la legislazione italiana impongono un campo inferiore a 6 V/m. Come potete vedere, anche considerando un’incertezza del 10%, solo il primo valore, se l’incertezza tendesse ad amentare la misura, sarebbe leggermente superiore al limite.

Cosa comporterebbe superare i 6 V/m? In realta’ assolutamente nulla. Cerchiamo di capire bene questo punto. Ad oggi, vi sono molte voci anche molto discordi sui reali effetti dell’inquinamento elettromagnetico. Mentre ci sono particolari frequenze ed esposizioni per cui e’ stato accertato un reale rischio per la salute, in moltissimi altri casi il discorso e’ ancora aperto e non si e’ giunti ad una conclusione. Pensate solo un attimo al discorso cellulari: fanno male? Non fanno male? Causano problemi al cervello? Tutte domande su cui spesso viene posta l’attenzione e su cui non esistono ancora dati certi. Con questo non voglio assolutamente tranquillizzare nessuno, ma solo far capire l’enorme confusione ancora presente su queste tematiche.

Tornando al discorso limiti di legge, superare di poco i 6 V/m non comporta assolutamente nulla. Perche’? Come detto siamo di fronte a fenomeni non ancora capiti dal punto di vista medico. Proprio per questo motivo esiste il “principio di precauzione”, cioe’ in caso di fenomeni scientificamente controversi si deve puntare ad una precauzione maggiore. Detto in altri termini, se non sappiamo se una determinata cosa fa male o meno, meglio mettere limiti molto stringenti.

Nel caso dei campi elettrici, il limite dei 6 V/m e’ nettamente inferiore a quello di altre nazioni europee, anche se, ad esempio, nel Canton Ticino il limite e’ di 3 V/m, e circa 500 volte inferiore al valore in cui ci si dovrebbero aspettare effetti diretti. Detto questo, se invece di 6 V/m, ne abbiamo 6,5 V/m, non succede assolutamente nulla. Non siamo ovviamente in presenza di un effetto a soglia, sotto il limite non succede nulla, appena sopra ci sono effetti disastrosi. Fermo restando che stiamo pensando l’incertezza del 10% sulla misura tutta nel verso di aumentarne il valore.

Detto questo, nella relazione da cui siamo partiti, si afferma pero’ che queste misure potrebbero essere sottistimate perche’ la strumentazione utilizzata non era sensibile alle emissioni a bassa frequenza intorno ai 45 KHz. In realta’, su questo punto non possono essere assolutamente d’accordo. La legge italiana stabilisce i limiti di cui abbiamo parlato per frequenze sopra i 100 KHz. Sotto questo valore, le onde elettromagnetiche sono assorbite pochissimo dal corpo umano per cui la loro emissione non viene neanche regolamentata. Questo solo per dire come le misure riportate nella relazione e fatte dall’ARPA della Sicilia sono del tutto attendibili e assolutamente non sottostimate.

Fin qui dunque, i valori misurati per l’installazione gia’ in funzione non mostrano nessun superamento dei limiti di legge italiani e potrebbero dunque essere considerati sicuri.

Andiamo ora invece, sempre seguendo la relazione da cui siamo partiti, al MUOS vero e proprio.

Per come dovrebbero essere fatte le antenne, e se la fisica non e’ un’opinione, il campo prodotto da un’antenna parabolica ha una forma cilindrica con una divergenza molto bassa. Detto in altri termini, il campo e’ all’interno dell’area della parabola e tende molto poco ad allargarsi appunto per non disperdere potenza. Detto questo, al di fuori del cilindro prodotto delle antenne, il campo e’ praticamente nullo e non comporta nessun problema nelle vicinanze.

Proviamo a fare due calcoli. Alla potenza di 1600 W, cioe’ la massima prevista per le antenne, il campo all’interno del cilindro sarebbe di circa 50 W/m^2. Questo valore e’ abbondantemente al di sopra dei limiti di legge di 1 W/m^2, ma per l’esposizione delle persone. Come potete facilmente immaginare, le antenne devono essere puntate verso il cielo per poter funzionare e per comunicare con i satelliti. Da quanto detto per la dispersione angolare fuori-cilindro, lontano dalle antenne il campo e’ praticamente nullo, diminuendo molto rapidamente.

Da questi numeri, e’ ovvio che se le antenne venissero puntate verso l’abitato, l’inquinamento elettromagnetico sarebbe elevatissimo, ma antenne di questo tipo hanno dei ferma-corsa meccanici che impediscono l’avvicinarsi dell’antenna troppo vicino all’orizzonte, oltre ovviamente a limitazioni software pensate appositamente per impedire queste esposizioni.

Detto in questo senso, le antenne del MUOS non dovrebbero essere un pericolo per la popolazione.

Sempre secondo la relazione e secondo le voci del web, le antenne del MUOS entrerebbero in funzione insieme a quelle gia’ discusse del NRTF. Cosa comporta questo? Ovviamente i due contributi si sommano, ma non linearmente come qualcuno potrebbe erroneamente pensare. Premesso che il MUOS sarebbe in funzione simultaneamente al NRTF solo inizialmente per poi sostituirlo del tutto, i due sistemi, alla luce dei calcoli fatti, non dovrebbero superare il limite di legge neanche quando sono simultaneamente accesi.

Se proprio vogliamo essere pignoli, resta quella misura dell’ARPA quasi al limite di legge. Sicuramente quella zona dovrebbe essere monitorata per capire meglio se il limite viene sistematicamente superato oppure no, ma solo a scopo di precauzione. Inoltre, bisognerebbe valutare la presenza di altre installazioni minori e il loro contributo totale, anche se non possono che rappresentare una piccola aggiunta al totale, oltre ovviamente ad eventuali fluttuazioni fuori asse delle emissioni. Questo genere di problematiche necessiterebbero di un monitoraggio continuo e completo dell’intera zona al fine di costruire una mappa del campo e valutare eventuali zone di picchi anomali.

Detto questo, se ci limitiamo al puro aspetto scientifico, il MUOS non dovrebbe rappresentare un pericolo per la popolazione della zona. Ovviamente, siamo in un campo molto difficile e ancora poco noto sia della scienza ma soprattutto della medicina. Non voglio assolutamente schierarmi a favore o contro il MUOS anche perche’ restano da valutare, indipendentemente da questa installazione, eventuali danni alla salute derivanti da un’esposizione prolungata nel tempo anche a limiti inferiori a quelli di legge. Come anticipato, questa tematica e’ ancora molto discussa e non si e’ ancora giunti ad un quadro completo.

Nella discussione, ho appositamente non valutato problematiche di natura diversa da quella dei campi elettromagnetici. Perche’ dobbiamo costruire una stazione radar degli USA in Italia? E’ giusto? Non e’ giusto? Questa installazione rovina il paesaggio della zona? I valori dichiarati per il progetto saranno quelli veri di esercizio?

Concludendo, alla luce dei dati analizzati, per l’installazione MUOS i limiti di legge sarebbero ampiamente soddisfatti. L’unico problema potrebbe derivare, anche se impossibile tenendo conto dei limiti meccanici imposti, da un puntamento diretto verso le abitazioni. L’ingresso del MUOS sostituirebbe il pre-esistente NTRF sicuramente piu’ vecchio ed operante a potenze e frequenze diverse. Purtroppo, il discorso non puo’ limitarsi a queste considerazioni, ma deve necessariamente racchiudere tematiche ambientali, politiche e mediche a cui non e’ possibile dare una risposta univoca in questo momento.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Siamo fuori dal sistema solare … o forse no?

26 Mar

Oggi come oggi, siamo abituati a vedere immagini provenienti dalle nostre sonde e dai nostri telescopi che riguardano corpi e porzioni di cielo sempre piu’ lontane. Grazie a questa tecnologia siamo abituati, sbagliando, a pensare di conoscere ormai tutto cio’ che ci circonda e ad avver ormai avviato un programma di conquista spaziale ben oltre i limiti che solo fino a pochi anni fa potevamo immaginare.

Ora proviamo a farci una domanda: qual’e’ la distanza massima a cui abbiamo mandato un oggetto prodotto da noi? Abituati a ragionare come visto sopra, magari qualcuno potrebbe pensare che le nostre sonde viaggiano tranquillamente verso l’universo profondo inviando immagini. In relta’ non e’ cosi’.

Perche’ dico questo?

Qualche giorno fa, c’e’ stato un comunicato dell’American Geophysical Union che dava l’annuncio che la sonda Voyager 1 era finalmente uscita dal nostro Sistema Solare. Si tratterebbe in realta’ del primo oggetto terrestre che ha attraversato il confine del Sistema Solare.

Peccato che questo annuncio ha richiesto la smentita ufficiale della NASA.

La sonda Voyager 1

La sonda Voyager 1

L’equivoco e’ nato da un interpretazione sbagliata di questo articolo pubblicato dalla NASA:

NASA Intensity change

in cui si parla di variazione dei parametri osservati dalla sonda e dunque , secondo alcune interpretazioni, dell’attraversamento del limite ultimo del Sistema Solare.

Ecco la smentita della NASA, sotto forma di aggiornamento della posizione della Voyager:

NASA Voyager update

Ad oggi, la sonda si trova a circa 18 miliardi di kilometri dal Sole, ben oltre l’orbita dei pianeti del Sistema Solare, ma ancora all’interno di quest’ultimo.

Perche’ e’ nato questo sbaglio?

In realta’, tutto dipende da cosa intendiamo per confine del Sistema Solare. Ovviamente, non possiamo certo pensare che ci sia una linea di demarcazione netta o un cartello con la scritta “Sistema Solare” sbarrata.

Qual’e’ dunque il confine del Sistema Solare? Cosa c’e’ oltre i pianeti piu’ esterni?

Come possiamo immaginare, anche la definizione di questo parametro dipende ovviamente dal Sole e dalla sua influenza nello spazio che lo circonda. In un precedente articolo, abbiamo parlato di una zona molto lontana dal Sole, la nube di Oort, al bordo del del Sistema Solare e definita come il punto di origine di molte comete:

Cos’e’ una cometa

Bene, per poter definire il confine del Sistema Solare e’ necessario considerare due parametri fondamentali: il vento solare e la gravitazione, cioe’ la forza di attrazione esercitata dal Sole. Il limite esterno tracciato dal vento solare, arriva a circa 4 volte la distanza di Plutone dalla nostra Stella. Se invece ragioniamo sulla forza gravitazionale, matematicamente questa forza avrebbe un raggio d’azione infinito, ma si definisce una “sfera di Hill” come lo spazio in cui l’interazione puo’ essere considerata non nulla. Nel caso del Sole, la sfera di Hill avrebbe un raggio circa 1000 volte maggiore della distanza Sole-Plutone.

Come vedete, la definizione di confine del Sistema Solare non e’ affatto univoca ne tantomeno ben determinata. Nonostante questo, si e’ soliti definire il passaggio tra il Sistema Solare e lo spazio interstellare come il punto in cui l’influenza magnetica del Sole non viene piu’ esercitata.

Secondo questa definizione operativa, la Voyager 1 non avrebbe ancora superato il confine del Sistema Solare. Come potete leggere nel comunicato stampa della NASA, la sonda si trova in una regione, definita “magnetic highway”, in cui le particelle cariche subiscono una brusca variazione del moto a causa della variazione dell’intensita’ del campo magnetico. Se c’e’ ancora un campo magnetico, siamo ancora nel sistema solare.

A conferma di questo, sempre nel comunicato NASA si legge: una variazione dell’orientazione del campo magnetico e’ l’ultimo indicatore che segna il passaggio nello spazio interstellare. Dunque, la Voyager 1 e’ ancora nel nostro sistema solare.

Se vogliamo, questa e’ una discussione di forma o di definizione di parametri. E’ comunque molto interessante ragionare su quello che dovrebbe essere il confine del nostro Sistema Solare.

Nonostane le definizioni, due parole vanno spese sulle sonde Voyager che sono state lanciate nel 1977 con lo scopo di misurare importanti parametri di Giove e Saturno. Dopo 36 anni di navigazione nello spazio, queste eccezionali sonde ci hanno permesso di studiare molti aspetti del sistema solare e di aumentare senza dubbio le nostre conoscenze dello spazio. Di questa eccezionale missione abbiamo parlato anche in questi altri post:

Storia astronomica di Nibiru

Il vaticano a caccia di Nibiru

Proprio il fatto che queste sonde abbiano attraversato l’orbita dei pianeti esterni ha portato molti a metterle in relazione con la scoperta di Nibiru. Come sappiamo bene, di questo corpo non c’e’ assolutamente traccia. Per chi lo avesse perso, nell’articolo riportato in precedenza sulla storia del pianeta, potete leggere come quella del Decimo Pianeta fu veramente un’ipotesi scientifica del passato, ma che oggi abbiamo potuto mettere da parte grazie all’aumentata conoscenza proprio del Sistema Solare.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

 

Bosone di Higgs … ma che sarebbe?

25 Mar

In tanti mi avete chiesto informazioni circa la scoperta del bosone di Higgs. Come sapete bene, negli ultimi mesi, molto si e’ parlato di questa probabile scoperta, dando ampio spazio su giornali e telegiornali al CERN, all’acceleratore LHC e agli esperimenti principali, Atlas e CMS, che hanno lavorato alla ricerca di questa particella.

La scoperta, ripeto probabile come vedremo in seguito, del bosone di Higgs e’ stata fondamentale per la fisica e per la nostra conoscenza della materia e, lasciatemelo dire, mi ha riempito di gioia avendo lavorato per circa quattro anni alla costruzione proprio dell’esperimento Atlas.

Quello che pero’ molti mi chiedono e’: si parla tanto di questo bosone di Higgs, tutti ne parlano dicendo che e’ “quello che spiega la massa delle particelle”, ma, in soldoni, di cosa si tratta? Perche’ spiegherebbe la massa delle particelle?

Purtroppo le domande sono ben poste, dal momento che spesso, girando per la rete, non si trovano risposte semplicissime a questi quesiti. Cerchiamo dunque, per quanto possibile, di rispondere a queste domande, mantenendo sempre un profilo divulgativo e accessibile a tutti.

Detto nel linguaggio della fisica, la spiegazione sarebbe piu’ o meno questa:

L’universo e’ permeato da un campo a spin zero, detto campo di Higgs, doppietto in SU(2) e con ipercarica U(1), ma privo di colore. I bosoni di gauge e i fermioni interagiscono con questo campo acquisendo massa.

Chiaro? Ovviamente no.

Cerchiamo di capirci qualcosa di piu’.

In questi post:

Piccolo approfondimento sulla materia strana

Due parole sull’antimateria

Abbiamo parlato del “Modello Standard” delle particelle. Come visto, la materia ordinaria, anche se apparentemente sembrerebbe molto variegata, e’ in realta’ composta di pochi ingredienti fondamentali: i quark, i leptoni e i bosoni messaggeri. Niente di difficile, andiamo con ordine.

Le particelle del Modello Standard

Le particelle del Modello Standard

Protoni e neutroni, ad esempio, non sono particelle fondamentali, ma sono composti da 3 quark. Tra i leptoni, sicuramente il piu’ conosciuto e’ l’elettrone, quello che orbita intorno ai nuclei per formare gli atomi. E i bosoni messaggeri? In fisica esistono delle interazioni, chiamiamole anche forze, che sono: la forza gravitazionale, la forza elettromagnetica, la forza forte e la forza debole. La forza forte, ad esempio, che viene scambiata mediante gluoni, e’ quella che tiene insieme i quark nelle particelle. Il fotone invece e’ quello che trasporta la forza elettromagnetica, responsabile, in ultima analisi, delle interazioni chimiche e delle forze meccaniche che osserviamo tutti i giorni.

Bene, fin qui sembra tutto semplice. L’insieme di queste particelle forma il Modello Standard. Ci sono gli ingredienti per formare tutte le particelle ordinarie e ci sono i bosoni messaggeri che ci permettono di capire le forze che avvengono. Dunque? Con il Modello Standard abbiamo capito tutto? Assolutamente no.

Il Modello Standard funziona molto bene, ma presenta un problema molto importante. Nella trattazione vista, non e’ possibile inserire la massa delle particelle. Se non c’e’ la massa, non c’e’ peso. Se un pezzo di ferro e’ composto di atomi di ferro e se gli atomi di ferro sono fatti di elettroni, protoni e neutroni, le particelle “devono” avere massa.

Dunque? Basta inserire la massa nel modello standard. Facile a dirsi ma non a farsi. Se aggiungiamo a mano la massa nelle equazioni del modello standard, le equazioni non funzionano piu’. I fisici amano dire che l’invarianza di Gauge non e’ rispettata, ma e’ solo un modo complicato per spiegare che le equazioni non funzionano piu’.

Se non possiamo inserire la massa, e noi sappiamo che la massa c’e’ perche’ la testiamo tutti i giorni, il modello standard non puo’ essere utilizzato.

A risolvere il problema ci ha pensato Peter Higgs negli anni ’60. Ora la spiegazione di Higgs e’ quella che ho riportato sopra, ma cerchiamo di capirla in modo semplice. Supponiamo che effettivamente le particelle non abbiano massa. Hanno carica elettrica, spin, momento angolare, ma non hanno massa intrinseca. L’universo e’ pero’ permeato da un campo, vedetelo come una sorta di gelatina, che e’ ovunque. Quando le particelle passano attraverso questa gelatina, vengono frenate, ognuna in modo diverso. Proprio questo frenamento sarebbe responsabile della massa che le particelle acquisiscono.

Tradotto in equazioni, questo ragionamento, noto come “meccanismo di Higgs”, funzionerebbe benissimo e il modello standard sarebbe salvo. Perche’ dico funzionerebbe? Come facciamo a dimostrare che esiste il campo di Higgs?

Il campo di Higgs, se esiste, deve possedere un quanto, cioe’ un nuovo bosone la cui esistenza non era predetta nel modello standard, detto appunto “bosone di Higgs”. Detto proprio in termini semplici, riprendendo l’esempio del campo di Higgs come la gelatina di frenamento, questa gelatina ogni tanto si dovrebbe aggrumare formando una nuova particella, appunto il bosone di Higgs.

Dunque, se esiste il bosone di Higgs, allora esite il campo di Higgs e dunque possiamo spiegare la massa delle particelle.

Capite dunque l’importanza della ricerca di questa particella. La sua scoperta significherebbe un notevole passo avanti nella comprensione dell’infinitamente piccolo, cioe’ dei meccanismi che regolano l’esistenza e la combinazione di quei mattoncini fondamentali che formano la materia che conosciamo.

Oltre a questi punti, il bosone di Higgs e’ stato messo in relazione anche con la materia oscura di cui abbiamo parlato in questo post:

La materia oscura

In questo caso, la scoperta e lo studio di questa particella potrebbe portare notevoli passi avanti ad esempio nello studio delle WIMP, come visto uno dei candidati della materia oscura.

Dunque? Cosa e’ successo al CERN? E’ stato trovato o no questo bosone di Higgs?

In realta’ si e no. Nella prima conferenza stampa del CERN si parlava di evidenza di una particella che poteva essere il bosone di Higgs. In questo caso, le affermazioni non sono dovute al voler essere cauti dei fisici, semplicemente, l’evidenza statistica della particella non era ancora sufficiente per parlare di scoperta.

L’ultimo annuncio, solo di pochi giorni fa, ha invece confermato che si trattava proprio di “un” bosone di Higgs. Perche’ dico “un” bosone? In realta’, potrebbero esistere diverse tipologie di bosoni di Higgs. Ad oggi, quello trovato e’ sicuramente uno di questi, ma non sappiamo ancora se e’ proprio quello di cui stiamo parlando per il modello standard.

Anche se tutte le indicazioni fanno pensare di aver fatto centro, ci vorranno ancora diversi anni di presa dati per avere tutte le conferme e magari anche per evidenziare l’esistenza di altri bosoni di Higgs. Sicuramente, la scoperta di questa particella apre nuovi orizzonti nel campo della fisica delle particelle e prepara il campo per una nuova ricchissima stagione di misure e di scoperte.

Onde evitare commenti del tipo: “serviva spendere tutti questi soldi per una particella?”, vi segnalo due post molto interessanti proprio per rispondere a queste, lasciatemi dire lecite, domande:

Perche’ la ricerca: scienza e tecnologia

Perche’ la ricerca: economia

In realta’, LHC ed i suoi esperimenti, oltre a portare tantissime innovazioni tecnologiche che non possiamo ancora immaginare, sono state un importante volano per l’economia dei paesi europei. Investendo nel CERN, l’Italia, e soprattutto le nostre aziende, hanno avuto un ritorno economico molto elevato e sicuramente superiore a quanto investito.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

WISE scopre e ritiriamo fuori Nibiru

13 Mar

La natura stessa di questo blog e’ molto semplice e ormai la conoscete tutti: partiamo dal catastrofismo per parlare di scienza. Questa apparentemente strana chiave di lettura della divulgazione e’ in realta’ un punto di forza. Come sappiamo bene, specialmente negli ultimi tempi, il catastrofismo ed il complottismo riempono non solo le pagine internet ma anche gli articoli dei giornali e alcune, purtroppo note, trasmissioni televisive.

Perche’ dico questo?

Oggi apro le riviste scientifiche e trovo che WISE, il telescopio infrarosso della NASA di cui abbiamo parlato anche in altri post, ha scoperto un sistema binario di nane brune distante soltanto 6,5 anni luce dal nostro Sole, si tratta del sistema stellare piu’ vicino scoperto dal 1916. Bene, notizia molto interessante.

Poi pero’, apro alcuni siti catastrofisti, i soliti noti di cui non voglio neanche fare il nome, e vedo che la notizia di questa scoperta e’ stata subito presa d’assalto. Ovviamente, in questo caso non si parla assolutamente di scienza ma indovinate di cosa? Ovviamente di Nibiru!

Meno male, cominciavo a preoccuparmi, erano gia’ alcune settimane che non sentivamo parlare di Nibiru. Se credevate che i soliti noti lo avessero dimenticato, vi sbagliavate di grosso.

Per chi avesse perso le ultime “puntate” della telenovela Nibiru, vi segnalo gli ultimi post, ovviamente in ognuno di questi trovate poi i link ad altri post e ad altri ancora, proprio per giustificare il termine “telenovela”:

Il Vaticano a caccia di Nibiru

Nibiru, il pianeta degli innamorati

Nibiru e’ vicino, la prova delle orbite

Nibiru e la deviazione delle Pioneer

Nibiru: la prova del trattore gravitazionale

Asteroide Nibiru: considerazioni scientifiche

Storia astronomica di Nibiru

La NASA torna a parlare di Nibiru

2012, la NASA non smentisce?

Bene, cerchiamo di andare con ordine partendo proprio dal catastrofismo per arrivare invece alla scienza.

Stando a quanto potete leggere in rete, Wise avrebbe scoperto questo sistema binario di nane brune molto vicine al Sole, come detto sopra, soltanto 6,5 anni luce da noi. Per chi non fosse pratico, vi ricordo che l’anno luce e’ semplicemente una misura di distanza, corrispondente al percorso che la luce compie in un anno. Per avere la conversione in Km, anche se corrisponde ad un numero molto grande, basta sapere che la luce percorre circa 300000 Km ogni secondo.

Fin qui tutto bene. Ora, questo sistema di stelle sembrerebbe spostarsi molto velocemente nello spazio e proprio da questo particolare si puo’ insinuare il dubbio. Come sappiamo bene, una delle tante ipotesi campate in aria era appunto quella che Nibiru fosse una nana bruna e proprio questo lo renderebbe invisibile ai nostri telescopi anche se gia’ presente nel sistema solare e magari in rotta di collisione con la Terra. A parte il fatto che ora stiamo parlando dell’osservazione con un telescopio di nane brune, dunque cade subito l’ipotesi di invisibilita’, come visto tante volte, magari sarebbe il caso di sfogliare un libro di astronomia prima di sparare assurdita’ scientifiche.

Perche’ dico questo? Semplice, la frase che trovate su alcuni siti catastrofisti e’ piu’ o meno questa, mentre si parla appunto della velocita’ di spostamento delle nane brune:

cambiano la loro posizione molto rapidamente, il che fa supporre che sono molto vicine al nostro sistema solare. Esse possono essere anche un pericolo per il fatto che durante il loro spostamento rapido possono spingere comete e asteroidi verso il nostro sistema planetario.

Finalmente ci siamo arrivati, Nibiru e’ una nana bruna, due nane brune sono state scoperte vicine al Sole, le stelle si muovono molto rapidamente e dunque possono scagliare comete e asteroidi verso di noi. Perfetto, in questa frase c’e’ davvero tutto. Come sappiamo e come visto in altri post, dopo il caso del meteorite di Cheliabynsk di cui abbiamo parlato in questi post:

Se fosse stato il meteorite di Roma?

Pioggia di meteore in Russia

Meteorite anche a Cuba e Dark Rift

una notevole speculazione e’ partita su questo argomento:

Lezione n.1: come cavalcare l’onda

La scoperta di Wise ha dunque offerto l’assist per continuare a parlare di queste tematiche e ovviamente far tornare tutti i conti.

Questo e’ il lato catastrofista, ora parliamo di scienza.

Come detto all’inizio, la scoperta di Wise e’ reale e veramente il sistema binario e’ stato individuato molto vicino al nostro Sole, soltanto 6,5 anni luce. Questa distanza e’ del tutto paragonabile a quella del sistema stellare a noi piu’ vicino che e’ Alpha Centauri a soli 4,4 anni luce.

Davvero le stelle mostrano una cosi’ elevata velocita’ di movimento?

Assolutamente no, gli astronomi hanno detto questo solo per indicare la vicinanza delle nane brune. Mi spiego meglio. Immaginiamo di essere sul ciglio della strada, di guardare dritto di fronte a noi e di veder passare un’automobile a 50 Km/h. Ovviamente, senza muovere la testa cioe’ senza seguire il movimento della macchina, il passaggio nel vostro campo visivo durerebbe veramente poco. Ora, se invece vediamo una macchina passare sempre a 50 Km/h ma questa volta, ad esempio, a 100 metri di distanza, allora il tempo del passaggio sara’ piu’ lungo. In altri termini, il periodo trascorso dell’automobile nel vostro campo visivo sara’ piu’ lungo in questo secondo caso. Bene, questo e’ esattamente quello che gli astronomi hanno detto per indicare la vicinanza del sistema binario. Il fatto di vedere le stelle muoversi molto velocemente ha appunto fatto capire che la distanza doveva essere molto piccola.

Per completezza, e’ stato ovviamente assegnato un nome a questo sistema binario che e’ stato chiamato WISE J104915.57-531906. Questa e’ una foto scattata da Wise, in cui si vede il dettaglio del sistema binario con le due nane brune di cui stiamo parlando:

Immagine catturata da WISE delle due nane brune vicine al Sole

Immagine catturata da WISE delle due nane brune vicine al Sole

A questo punto pero’, la domanda lecita che possiamo farci e’: ma cosa sono queste nane brune? Molto brevemente, si tratta di oggetti con massa piu’ grande rispetto a quella di un pianeta ma inferiore a 0,08 volte quella del Sole. Questo rappresenta il limite astronomico, ma in realta’ nucleare, per poter innescare le potenti reazioni di fusione. In questo senso, le nane brune sono corpi celesti relativamente freddi e molto spesso vengono infatti chiamate “stelle mancate”. Proprio la bassa luminosita’ di queste stelle le rende difficilmente osservabili.

Il telescopio Wise, lanciato dalla NASA nel 2009, era specializzato proprio nella ricerca di oggetti di scarsa luminosita’, come asteroidi e nane brune. Wise comprende un telescopio sensibile all’infrarosso con uno specchio di 40 cm di diametro. Proprio la finestra di sensibilita’ dello strumento lo rende adatto a questo tipo di ricerche.

Purtroppo, come detto all’inizio dell’articolo, la grande mole di immagini catturate da Wise, ma soprattutto le particolari ricerche su cui questo telescopio e’ specializzato, lo rendono una delle missioni piu’ amate dai catastrofisti. Questi sono solo alcuni dei post in cui ne abbiamo parlato:

Scontro Terra-Nibiru a Luglio?

Venerdi finisce il mondo!

Finalmente le foto di Nibiru

Concludendo, anche in questo caso, le notizie riportate su internet dai soliti noti non sono altro che una distorsione della realta’ scientifica da cui sono estropolate. Il telescopio Wise della NASA e’ stato in grado di osservare un sistema binario di nane brune a soli 6,5 anni luce dal Sole e questa rappresenta una notevole scoperta in campo astronomico. Queste stelle pero’ non sono assolutamente pericolose, non sono in rotta di collisione con noi ma soprattutto non sono le responsabili di nessuna pioggia di meteoriti, tra l’altro completamente inesistente, lanciata verso la Terra.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.