Tag Archives: einstein

EMdrive: il motore che va contro i principi della fisica

11 Set

Dopo qualche giorno di pausa, purtroppo non per svago, eccoci di nuovo qui. Per iniziare alla grande, torniamo a parlare di scienza, o almeno di qualcosa che gli somiglia. Come ci ha segnalato un nostro lettore nella sezione:

Hai domande o dubbi?

in questi giorni si è molto parlato di un’invenzione davvero particolare. Di cosa si tratta? Detto “poco chiaramente”, stiamo parlando del “motore quantistico”.

Cosa sarebbe questo motore quantistico?

Cerchiamo di andare con ordine, capendo l’origine di questa storia. Partendo da parole più semplici , il motore quantistico è, appunto, un motore che produrrebbe una spinta senza propellente ma solo usando elettricità.

Una soluzione del genere, potrebbe essere utilizzata come thruster nello spazio, cioè come sistema per far muovere i satelliti o altri veivoli spaziali. Cosa c’è di strano in tutto questo? La risposta è semplice, sapete perchè ci vuole così tanto tempo per girovagare nello spazio? Perchè i velivoli che mandiamo si muovono per inerzia. Praticamente, vengono messi in moto tramite propulsori, poi questi vengono spenti e il mezzo continua a procedere lungo la sua direzione. Tutto questo è frutto di una delle leggi fondamentali della meccanica, cioè il principio di inerzia.

Perchè questo motore quantistico sarebbe così rivoluzionario? Detto semplicemente, per far andare qualcosa nello spazio, abbiamo bisogno di avere una spinta in senso contrario. Questo è noto come principio di conservazione della quantità di moto.

Facciamo un esempio per capire meglio.

Supponete di essere al centro di un lago ghiacciato. La superficie del lago è talmente liscia che, idealmente, non c’è nessun attrito tra voi e il ghiaccio. In questa condizione limite, non potete camminare. Sapete perchè? Il semplice camminare è possibile proprio grazie all’attrito tra i nostri piedi, o le nostre scarpe, e il terreno. Praticamente, camminando, il vostro piede è fermo grazie all’attrito statico tra voi e il terreno.

Se ora vi trovate al centro di questo lago, non potete quindi riuscire a camminare. Come fate a mettervi in salvo e raggiungere la riva?

Una buona soluzione potrebbe essere quella di togliervi un indumento e lanciarlo in una direzione. Come per magia, ma in realtà è fisica, voi vi muovete per reazione nella direzione opposta a quella del lancio.

Bene, nello spazio succede esattamente la stessa cosa. Questo è noto, appunto, come principio di conservazione della quantità di moto. Altra legge fondamentale della fisica. Dunque, se questo motore non spinge nulla, per la fisica non può andare avanti.

Come è possibile?

Per provare a rispondere a questa domanda, vediamo prima di tutto come è fatto questo motore. Ecco a voi una foto di quello che viene chiamato EMdrive:

EM drive

EM drive

Questo motore è stato inventato dallo scienziato inglese Roger Shawyer alcuni anni fa. Come funziona? Il principio di funzionamento, secondo il suo inventore, sarebbe il seguente: si tratta di una cavità asimettrica in cui la radiazione a microonde viene fatta rimbalzare sulle pareti producendo effetti di risonanza. A causa di effetti relativistici, si creerebbe una differenza di pressione tra i due estremi del motore con una conseguente spinta, appunto quella di cui parlavamo per far andare i razzi nello spazio.

A distanza di qualche anno, alcuni ricercatori cinesi decidono di costruire un loro proprio motore quantistico per verificare che quanto detto da Roger Shawyer fosse vero. Cosa riescono ad ottenere? Un motore che funziona secondo lo stesso principio e conferma quanto scoperto anni prima.

Di che spinte parliamo? Più o meno 720 milli Newton secondo i cinesi.

Cosa significa 720 milli Newton? Immaginate di prendere in mano un peso da 1 Kg e di tenerlo fermo. Come sapete questo oggetto è dotato di massa ed esercita una spinta sulla nostra mano, chiamata forza peso, risultato dell’attrazione della Terra verso l’oggetto (e mutuamente dell’oggetto verso la Terra). Con un peso da 1 Kg, la spinta è di circa 10 Newton. Dunque, qui abbiamo una spinta di 720 mN, cioè equivalente a quella che produrrebbe un oggetto da 72 grammi tenuto in mano.

Interessa a qualcuno il valore della spinta? L’importante è che questa ci sia e sia in grado di far andare i nostri satelliti.

In realtà, come vedremo, il valore della spinta non è trascurabile.

A questo punto, potremmo essere di fronte alla solita teoria rivoluzionaria che la scienza cerca di insabbiare perché mette in crisi le basi su cui abbiamo costruito tutti i nostri castelli di carte. Attenzione però, questa storia è leggermente diversa dalle solite. Sapete perché? Vista la possibile applicazione di questo motore, la NASA ha deciso di analizzarlo e di provare a verificare se i risultati sono corretti.

Cosa accade a questo punto?

La NASA fa le sue prove e ottiene un risultato in cui si ha una spinta che per la fisica non dovrebbe esserci! Dunque funziona tutto? Aspettiamo prima di dirlo.

Come visto, la spinta misurata era di 720 mN. I tecnici della NASA hanno ottenuto una spinta tra 30 e 50 micro Newton, dunque, circa un fattore 10000 in meno.

Come detto prima, ma chi se ne frega, l’importante è che la spinta ci sia!

Come potete immaginare, molti giornali internazionali hanno dato ampio risalto alla notizia, salvo però non dire tutto fino in fondo.

Cosa significa?

La NASA, dopo aver effettuato questi test, ha pubblicato un conference paper sulla questione. Ecco a voi il link dove leggere il lavoro:

NASA, EMdrive test

Come potete vedere, l’articolo sembra confermare quanto affermato. Attenzione però, leggete tutto fino in fondo. Verso la fine, gli autori scrivono una frase che tanti hanno fatto finta di non leggere. Questa:

Thrust was observed on both test articles, even though one of the test articles was designed with the expectation that it would not produce thrust. Specifically, one test article contained internal physical modifications that were designed to produce thrust, while the other did not (with the latter being referred to as the “null” test article).
Cosa significa? Nel test i tecnici hanno utilizzato anche un motore di controllo realizzato per non avere nessuna spinta. Durante il test però, quando hanno utilizzato questo motore, hanno osservato nuovamente questa spinta. Cioè? Dovete fare un test che porterà valori misurati molto piccoli. Come normale, costruite qualcosa che non dovrebbe invece funzionare. Poi ottenete che tutti e due misurano qualcosa paragonabile. Come concludere? E’ sbagliata la misura su quello buono o su quello che non dovrebbe funzionare?
Personalmente, come mia natura, voglio essere propositivo e, come si dice, “open mind”. Ad oggi, i risultati mostrano valori discordanti. Molto probabilmene, i valori della spinta che si vuole misurare sono troppo bassi per le incertezze derivanti dal metodo di misura stesso. Detto in modo statistico, il risultato ottenuto è compatibile con zero Newton di spinta ma anche con qualcosa diverso da zero.
Ovviamente, non voglio precludere nulla ma, allo stato attuale, questo motore non ha dato risultati che confermano quanto affermato. Visto l’interesse sulla cosa, sono sicuro che ci saranno ulteriori sviluppi nei prossimi mesi. Se così fosse, torneremo sull’argomento proprio per vedere se quanto affermato corrisponde al vero e, in tal caso, ragioneremo su effetti non considerati dalla fisica.
Annunci

17 equazioni che hanno cambiato il mondo

26 Ago

Nel 2013 Ian Stewart, professore emerito di matematica presso l’università di Warwick, ha pubblicato un libro molto interessante e che consiglio a tutti di leggere, almeno per chi non ha problemi con l’inglese. Come da titolo di questo articolo, il libro si intitola “Alla ricerca dello sconosciuto: 17 equazioni che hanno cambiato il mondo”.

Perchè ho deciso di dedicare un articolo a questo libro?

In realtà, il mio articolo, anche se, ripeto, è un testo che consiglio, non vuole essere una vetrina pubblicitaria a questo testo, ma l’inizio di una riflessione molto importante. Queste famose 17 equazioni che, secondo l’autore, hanno contribuito a cambiare il mondo che oggi conosciamo, rappresentano un ottimo punto di inizio per discutere su alcune importanti relazioni scritte recentemente o, anche, molti secoli fa.

Come spesso ripetiamo, il ruolo della fisica è quello di descrivere il mondo, o meglio la natura, che ci circonda. Quando i fisici fanno questo, riescono a comprendere perchè avviene un determinato fenomeno e sono altresì in grado di “predirre” come un determinato sistema evolverà nel tempo. Come è possibile questo? Come è noto, la natura ci parla attraverso il linguaggio della matematica. Modellizare un sistema significa trovare una o più equazioni che  prendono in considerazione i parametri del sistema e trovano una relazione tra questi fattori per determinare, appunto, l’evoluzione temporale del sistema stesso.

Ora, credo che sia utile partire da queste 17 equzioni proprio per riflettere su alcuni importanti risultati di cui, purtroppo, molti ignorano anche l’esistenza. D’altro canto, come vedremo, ci sono altre equazioni estremanete importanti, se non altro per le loro conseguenze, che vengono studiate a scuola senza però comprendere la potenza o le implicazioni che tali risultati hanno sulla natura.

Senza ulteriori inutili giri di parole, vi presento le 17 equazioni, ripeto secondo Stewart, che hanno cambiato il mondo:

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Sicuramente, ognuno di noi, in base alla propria preparazione, ne avrà riconosciute alcune.

Passiamo attraverso questa lista per descrivere, anche solo brevemente, il significato e le implicazioni di questi importanti risultati.

Teorema di Pitagora

Tutti a scuola abbiamo appreso questa nozione: la somma dell’area dei quadrati costruiti sui cateti, è pari all’area del quadrato costruito sull’ipotenusa. Definizione semplicissima, il più delle volte insegnata come semplice regoletta da tenere a mente per risolvere esercizi. Questo risultato è invece estremamente importante e rappresenta uno dei maggiori assunti della geometria Euclidea, cioè quella che tutti conoscono e che è relativa al piano. Oltre alla tantissime implicazioni nello spazio piano, la validità del teorema di Pitagora rappresenta una prova indiscutibile della differenza tra spazi euclidei e non. Per fare un esempio, questo risultato non è più vero su uno spazio curvo. Analogamente, proprio sfruttando il teorema di Pitagora, si possono fare misurazioni sul nostro universo, parlando proprio di spazio euclideo o meno.

 

Logaritmo del prodotto

Anche qui, come riminescenza scolastica, tutti abbiamo studiato i logaritmi. Diciamoci la verità, per molti questo rappresentava un argomento abbastanza ostico e anche molto noioso. La proprietà inserita in questa tabella però non è affatto banale e ha avuto delle importanti applicazioni prima dello sviluppo del calcolo informatizzato. Perchè? Prima dei moderni calcolatori, la trasformazione tra logaritmo del prodotto e somma dei logaritmi, ha consentito, soprattutto in astronomia, di calcolare il prodotto tra numeri molto grandi ricorrendo a più semplici espedienti di calcolo. Senza questa proprietà, molti risultati che ancora oggi rappresentano basi scientifiche sarebbero arrivati con notevole ritardo.

 

Limite del rapporto incrementale

Matematicamente, la derivata di una funzione rappresenta il limite del rapporto incrementale. Interessante! Cosa ci facciamo? La derivata di una funzione rispetto a qualcosa, ci da un’indicazione di quanto quella funzione cambi rispetto a quel qualcosa. Un esempio pratico è la velocità, che altro non è che la derivata dello spazio rispetto al tempo. Tanto più velocemente cambia la nostra posizione, tanto maggiore sarà la nostra velocità. Questo è solo un semplice esempio ma l’operazione di derivata è uno dei pilastri del linguaggio matematico utilizzato dalla natura, appunto mai statica.

 

Legge di Gravitazione Universale

Quante volte su questo blog abbiamo citato questa legge. Come visto, questa importante relazione formulata da Newton ci dice che la forza agente tra due masse è direttamente proporzionale al prodotto delle masse stesse e inversamente proporzionale al quadrato della loro distanza. A cosa serve? Tutti i corpi del nostro universo si attraggono reciprocamente secondo questa legge. Se il nostro Sistema Solare si muove come lo vediamo noi, è proprio per il risultato delle mutue forze agenti sui corpi, tra le quali quella del Sole è la componente dominante. Senza ombra di dubbio, questo è uno dei capisaldi della fisica.

 

Radice quadrata di -1

Questo è uno di quei concetti che a scuola veniva solo accennato ma che poi, andando avanti negli studi, apriva un mondo del tutto nuovo. Dapprima, siamo stati abituati a pensare ai numeri naturali, agli interi, poi alle frazioni infine ai numeri irrazionali. A volte però comparivano nei nostri esercizi le radici quadrate di numeri negativi e semplicemente il tutto si concludeva con una soluzione che “non esiste nei reali”. Dove esiste allora? Quei numeri non esistono nei reali perchè vivono nei “complessi”, cioè in quei numeri che arrivano, appunto, da radici con indice pari di numeri negativi. Lo studio dei numeri complessi rappresenta un importante aspetto di diversi settori della conoscenza: la matematica, l’informatica, la fisica teorica e, soprattutto, nella scienza delle telecomunicazioni.

 

Formula di Eulero per i poliedri

Questa relazione determina una correlazione tra facce, spigoli e vertici di un poliedro cioè, in parole semplici, della versione in uno spazio tridimensionale dei poligoni. Questa apparentemente semplice relazione, ha rappresentato la base per lo sviluppo della “topologia” e degli invarianti topologici, concetti fondamentali nello studio della fisica moderna.

 

Distribuzione normale

Il ruolo della distribuzione normale, o gaussiana, è indiscutibile nello sviluppo e per la comprensione dell’intera statistica. Questo genere di curva ha la classica forma a campana centrata intorno al valore di maggior aspettazione e la cui larghezza fornisce ulteriori informazioni sul campione che stiamo analizzando. Nell’analisi statistica di qualsiasi fenomeno in cui il campione raccolto sia statisticamente significativo e indipendente, la distribuzione normale ci fornisce dati oggettivi per comprendere tutti i vari trend. Le applicazioni di questo concetto sono praticametne infinite e pari a tutte quelle situazioni in cui si chiama in causa la statistica per descrivere un qualsiasi fenomeno.

 

Equazione delle Onde

Questa è un’equazione differenziale che descrive l’andamento nel tempo e nello spazio di un qualsiasi sistema vibrante o, più in generale, di un’onda. Questa equazione può essere utilizzata per descrivere tantissimi fenomeni fisici, tra cui anche la stessa luce. Storicamente poi, vista la sua importanza, gli studi condotti per la risoluzione di questa equazione differenziale hanno rappresentato un ottimo punto di partenza che ha permesso la risoluzione di tante altre equazioni differenziali.

 

Trasformata di Fourier

Se nell’equazione precedente abbiamo parlato di qualcosa in grado di descrivere le variazioni spazio-temporali di un’onda, con la trasformata di Fourier entriamo invece nel vivo dell’analisi di un’onda stessa. Molte volte, queste onde sono prodotte dalla sovrapposizione di tantissime componenti che si sommano a loro modo dando poi un risultato finale che noi percepiamo. Bene, la trasformata di Fourier consente proprio di scomporre, passatemi il termine, un fenomeno fisico ondulatorio, come ad esempio la nostra voce, in tante componenti essenziali più semplici. La trasformata di Fourier è alla base della moderna teoria dei segnali e della compressione dei dati nei moderni cacolatori.

 

Equazioni di Navier-Stokes

Prendiamo un caso molto semplice: accendiamo una sigaretta, lo so, fumare fa male, ma qui lo facciamo per scienza. Vedete il fumo che esce e che lentamente sale verso l’alto. Come è noto, il fumo segue un percorso molto particolare dovuto ad una dinamica estremamente complessa prodotta dalla sovrapposizione di un numero quasi infinito di collissioni tra molecole. Bene, le equazioni differenziali di Navier-Stokes descrivono l’evoluzione nel tempo di un sistema fluidodinamico. Provate solo a pensare a quanti sistemi fisici includono il moto di un fluido. Bene, ad oggi abbiamo solo delle soluzioni approssimate delle equazioni di Navier-Stokes che ci consentono di simulare con una precisione più o meno accettabile, in base al caso specifico, l’evoluzione nel tempo. Approssimazioni ovviamente fondamentali per descrivere un sistema fluidodinamico attraverso simulazioni al calcolatore. Piccolo inciso, c’è un premio di 1 milione di dollari per chi riuscisse a risolvere esattamente le equazioni di Navier-Stokes.

 

Equazioni di Maxwell

Anche di queste abbiamo più volte parlato in diversi articoli. Come noto, le equazioni di Maxwell racchiudono al loro interno i più importanti risultati dell’elettromagnetismo. Queste quattro equazioni desrivono infatti completamente le fondamentali proprietà del campo elettrico e magnetico. Inoltre, come nel caso di campi variabili nel tempo, è proprio da queste equazioni che si evince l’esistenza di un campo elettromagnetico e della fondamentale relazione tra questi concetti. Molte volte, alcuni soggetti dimenticano di studiare queste equazioni e sparano cavolate enormi su campi elettrici e magnetici parlando di energia infinita e proprietà che fanno rabbrividire.

 

La seconda legge della Termodinamica

La versione riportata su questa tabella è, anche a mio avviso, la più affascinante in assoluto. In soldoni, la legge dice che in un sistema termodinamico chiuso, l’entropia può solo aumentare o rimanere costante. Spesso, questo che è noto come “principio di aumento dell’entropia dell’universo”, è soggetto a speculazioni filosofiche relative al concetto di caos. Niente di più sbagliato. L’entropia è una funzione di stato fondamentale nella termodinamica e il suo aumento nei sistemi chiusi impone, senza mezzi termini, un verso allo scorrere del tempo. Capite bene quali e quante implicazioni questa legge ha avuto non solo nella termodinamica ma nella fisica in generale, tra cui anche nella teoria della Relatività Generale di Einstein.

 

Relatività

Quella riportata nella tabella, se vogliamo, è solo la punta di un iceberg scientifico rappresentato dalla teoria della Relatività, sia speciale che generale. La relazione E=mc^2 è nota a tutti ed, in particolare, mette in relazione due parametri fisici che, in linea di principio, potrebbero essere del tutto indipendenti tra loro: massa ed energia. Su questa legge si fonda la moderna fisica degli acceleratori. In questi sistemi, di cui abbiamo parlato diverse volte, quello che facciamo è proprio far scontrare ad energie sempre più alte le particelle per produrne di nuove e sconosciute. Esempio classico e sui cui trovate diversi articoli sul blog è appunto quello del Bosone di Higgs.

 

Equazione di Schrodinger

Senza mezzi termini, questa equazione rappresenta il maggior risultato della meccanica quantistica. Se la relatività di Einstein ci spiega come il nostro universo funziona su larga scala, questa equazione ci illustra invece quanto avviene a distanze molto molto piccole, in cui la meccanica quantistica diviene la teoria dominante. In particolare, tutta la nostra moderna scienza su atomi e particelle subatomiche si fonda su questa equazione e su quella che viene definita funzione d’onda. E nella vita di tutti i giorni? Su questa equazione si fondano, e funzionano, importanti applicazioni come i laser, i semiconduttori, la fisica nucleare e, in un futuro prossimo, quello che indichiamo come computer quantistico.

 

Teorema di Shannon o dell’informazione

Per fare un paragone, il teorema di Shannon sta ai segnali così come l’entropia è alla termodinamica. Se quest’ultima rappresenta, come visto, la capicità di un sistema di fornire lavoro, il teorema di Shannon ci dice quanta informazione è contenuta in un determinato segnale. Per una migliore comprensione del concetto, conviene utilizzare un esempio. Come noto, ci sono programmi in grado di comprimere i file del nostro pc, immaginiamo una immagine jpeg. Bene, se prima questa occupava X Kb, perchè ora ne occupa meno e io la vedo sempre uguale? Semplice, grazie a questo risultato, siamo in grado di sapere quanto possiamo comprimere un qualsiasi segnale senza perdere informazione. Anche per il teorema di Shannon, le applicazioni sono tantissime e vanno dall’informatica alla trasmissione dei segnali. Si tratta di un risultato che ha dato una spinta inimmaginabile ai moderni sistemi di comunicazione appunto per snellire i segnali senza perdere informazione.

 

Teoria del Caos o Mappa di May

Questo risultato descrive l’evoluzione temporale di un qualsiasi sistema nel tempo. Come vedete, questa evoluzione tra gli stati dipende da K. Bene, ci spossono essere degli stati di partenza che mplicano un’evoluzione ordinata per passi certi e altri, anche molto prossimi agli altri, per cui il sistema si evolve in modo del tutto caotico. A cosa serve? Pensate ad un sistema caotico in cui una minima variazione di un parametro può completamente modificare l’evoluzione nel tempo dell’intero sistema. Un esempio? Il meteo! Noto a tutti è il cosiddetto effetto farfalla: basta modificare di una quantità infinitesima un parametro per avere un’evoluzione completamente diversa. Bene, questi sistemi sono appunto descritti da questo risultato.

 

Equazione di Black-Scholes

Altra equazione differenziale, proprio ad indicarci di come tantissimi fenomeni naturali e non possono essere descritti. A cosa serve questa equazione? A differenza degli altri risultati, qui entriamo in un campo diverso e più orientato all’uomo. L’equazione di Black-Scholes serve a determinare il prezzo delle opzioni in borsa partendo dalla valutazione di parametri oggettivi. Si tratta di uno strumento molto potente e che, come avrete capito, determina fortemente l’andamento dei prezzi in borsa e dunque, in ultima analisi, dell’economia.

 

Bene, queste sono le 17 equazioni che secondo Stewart hanno cambiato il mondo. Ora, ognuno di noi, me compreso, può averne altre che avrebbe voluto in questa lista e che reputa di fondamentale importanza. Sicuramente questo è vero sempre ma, lasciatemi dire, questa lista ci ha permesso di passare attraverso alcuni dei più importanti risultati storici che, a loro volta, hanno spinto la conoscenza in diversi settori. Inoltre, come visto, questo articolo ci ha permesso di rivalutare alcuni concetti che troppo spesso vengono fatti passare come semplici regolette non mostrando la loro vera potenza e le implicazioni che hanno nella vita di tutti i giorni e per l’evoluzione stessa della scienza.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’espansione metrica dell’universo

8 Apr

In questo blog, abbiamo dedicato diversi articoli al nostro universo, alla sua storia, al suo destino, alla tipologia di materia o non materia di cui e’ formato, cercando, come e’ ovvio, ogni volta di mettere il tutto in una forma quanto piu’ possibile comprensibile e divulgativa. Per chi avesse perso questi articoli, o solo come semplice ripasso, vi riporto qualche link riassuntivo:

E parliamo di questo Big Bang

Il primo vagito dell’universo

Universo: foto da piccolo

La materia oscura

Materia oscura intorno alla Terra?

Due parole sull’antimateria

Flusso oscuro e grandi attrattori

Ascoltate finalmente le onde gravitazionali?

Come e’ ovvio, rendere questi concetti fruibili a fini divulgativi non e’ semplice. Per prima cosa, si deve evitare di mettere formule matematiche e, soprattutto, si deve sempre riflettere molto bene su ogni singola frase. Un concetto che potrebbe sembrare scontato e banale per un addetto ai lavori, potrebbe essere del tutto sconosciuto a chi, non avendo basi scientifiche solide, prova ad informarsi su argomenti di questo tipo.

Perche’ faccio questo preambolo?

Pochi giorni fa, un nostro lettore mi ha contatto via mail per chiedermi di spiegare meglio il discorso dell’espansione dell’universo. Per essere precisi, la domanda era relativa non all’espansione in se, ma a quella che viene appunto definita “espansione metrica” dell’universo. Cosa significa? Come visto varie volte, l’idea comunemente accettata e’ che l’universo sia nato da un Big Bang e durante questa espansione si sono prima formate le forze, il tempo, le particelle, poi i pianeti, le galassie e via dicendo. Ci sono prove di questo? Assolutamente si e ne abbiamo parlato, anche in questo caso, piu’ volte: la radiazione cosmica di fondo, lo spostamento verso il rosso delle galassie lontane, le conclusioni stesse portate dalla scoperta del bosone di Higgs e via dicendo. Dunque? Che significa espansione metrica dell’universo? In parole povere, noi diciamo che l’universo si sta espandendo, e che sta anche accelerando, ma come possiamo essere certi di questo? Che forma ha l’universo? Per quanto ancora si espandera’? Poi cosa succedera’? Sempre nella domanda iniziale, veniva posto anche un quesito molto interessante: ma se non fosse l’universo ad espandersi ma la materia a contrarsi? L’effetto sarebbe lo stesso perche’ la mutua distanza tra due corpi aumenterebbe nel tempo dando esattamente lo stesso effetto apparente che vediamo oggi.

Come potete capire, di domande ne abbiamo fin troppe a cui rispondere. Purtroppo, e lo dico in tutta sincerita’, rendere in forma divulgativa questi concetti non e’ molto semplice. Come potete verificare, raccontare a parole che il tutto sia nato da un Big Bang, che ci sia stata l’inflazione e si sia formata la radiazione di fondo e’ cosa abbastanza fattibile, parlare invece di forma dell’universo e metrica non e’ assolutamente semplice soprattutto senza poter citare formule matematiche che per essere comprese richiedono delle solide basi scientifiche su cui ragionare.

Cerchiamo dunque di andare con ordine e parlare dei vari quesiti aperti.

Come visto in altri articoli, si dice che il Big Bang non e’ avvenuto in un punto preciso ma ovunque e l’effetto dell’espansione e’ visibile perche’ ogni coppia di punti si allontana come se ciascun punto dell’universo fosse centro dell’espansione. Cosa significa? L’esempio classico che viene fatto e’ quello del palloncino su cui vengono disegnati dei punti:

Esempio del palloncino per spiegare l'espansione dell'universo

Esempio del palloncino per spiegare l’espansione dell’universo

Quando gonfiate il palloncino, i punti presenti sulla superficie si allontanano tra loro e questo e’ vero per qualsiasi coppia di punti. Se immaginiamo di essere su un punto della superficie, vedremo tutti gli altri punti che si allontanano da noi. Bene, questo e’ l’esempio del Big Bang.

Ci sono prove di questo? Assolutamente si. La presenza della CMB e’ proprio un’evidenza che ci sia stato un Big Bang iniziale. Poi c’e’ lo spostamento verso il rosso, come viene definito, delle galassie lontane. Cosa significa questo? Siamo sulla Terra e osserviamo le galassie lontane. La radiazione che ci arriva, non necessariamente con una lunghezza d’onda nel visibile, e’ caratteristica del corpo che la emette. Misurando questa radiazione ci accorgiamo pero’ che la frequenza, o la lunghezza d’onda, sono spostate verso il rosso, cioe’ la lunghezza d’onda e’ maggiore di quella che ci aspetteremmo. Perche’ avviene questo? Questo effetto e’ prodotto proprio dal fatto che la sorgente che emette la radiazione e’ in moto rispetto a noi e poiche’ lo spostamento e’ verso il rosso, questa sorgente si sta allontanando. A questo punto sorge pero’ un quesito molto semplice e comune a molti. Come sapete, per quanto grande rapportata alle nostre scale, la velocita’ della luce non e’ infinita ma ha un valore ben preciso. Questo significa che la radiazione emessa dal corpo lontano impiega un tempo non nullo per raggiungere la Terra. Come spesso si dice, quando osserviamo stelle lontane non guardiamo la stella come e’ oggi, ma come appariva quando la radiazione e’ stata emessa. Facciamo l’esempio classico e facile del Sole. La luce emessa dal Sole impiega 8 minuti per arrivare sulla Terra. Se noi guardiamo ora il Sole lo vediamo come era 8 minuti fa. Se, per assurdo, il sole dovesse scomparire improvvisamente da un momento all’altro, noi ce ne accorgeremmo dopo 8 minuti. Ora, se pensiamo ad una stella lontana 100 anni luce da noi, quella che vediamo e’ la stella non come e’ oggi, ma come era 100 anni fa. Tornando allo spostamento verso il rosso, poiche’ parliamo di galassie lontane, la radiazione che ci arriva e’ stata emessa moltissimo tempo fa. Domanda: osservando la luce notiamo uno spostamento verso il rosso ma questa luce e’ stata emessa, supponiamo, mille anni fa. Da quanto detto si potrebbe concludere che l’universo magari era in espansione 1000 anni fa, come da esempio, mentre oggi non lo e’ piu’. In realta’, non e’ cosi’. Lo spostamento verso il rosso avviene a causa del movimento odierno tra i corpi e dunque utilizzare galassie lontane ci consente di osservare fotoni che hanno viaggiato piu’ a lungo e da cui si ottengono misure piu’ precise. Dunque, da queste misure, l’universo e’ in espansione e’ lo e’ adesso. Queste misurazioni sono quelle che hanno portato Hubble a formulare la sua famosa legge da cui si e’ ricavata per la prima volta l’evidenza di un universo in espansione.

Bene, l’universo e’ in espansione, ma se ci pensate questo risultato e’ in apparente paradosso se pensiamo alla forza di gravita’. Perche’? Negli articoli precedentemente citati, abbiamo piu’ volte parlato della gravita’ citando la teoria della gravitazione universale di Newton. Come e’ noto, due masse poste a distanza r si attraggono con una forza che dipende dal prodotto delle masse ed e’ inversamente proporzionale al quadrato della loro distanza. Ora, nel nostro universo ci sono masse distribuite qui a la in modo piu’ o meno uniforme. Se pensiamo solo alla forza di gravita’, una coppia qualunque di queste masse si attrae e quindi le due masse tenderanno ad avvicinarsi. Se anche pensiamo ad una spinta iniziale data dal Big Bang, ad un certo punto questa spinta dovra’ terminare controbilanciata dalla somma delle forze di attrazione gravitazionale. In altre parole, non e’ possibile pensare ad un universo che si espande sempre se abbiamo solo forze attrattive che lo governano.

Questo problema ha angosciato l’esistenza di molti scienziati a partire dai primi anni del ‘900. Lo stesso Einstein, per cercare di risolvere questo problema dovette introdurre nella Relativita’ Generale quella che defini’ una costante cosmologica, a suo avviso, un artificio di calcolo che serviva per bilanciare in qualche modo l’attrazione gravitazionale. L’introduzione di questa costante venne definita dallo stesso Einstein il piu’ grande errore della sua vita. Oggi sappiamo che non e’ cosi’, e che la costante cosmologica e’ necessaria nelle equazioni non come artificio di calcolo ma, in ultima analisi, proprio per giustificare la presenza di componenti non barioniche, energia oscura in primis, che consentono di spiegare l’espansione dell’universo. Se vogliamo essere precisi, Einstein introdusse la costante non per avere un universo in espansione bensi’ un universo statico nel tempo. In altre parole, la sua costante serviva proprio a bilanciare esattamente l’attrazione e rendere il tutto fermo. Solo osservazioni successive, tra cui quella gia’ citata dello stesso Hubble, confermarono che l’universo non era assolutamente statico bensi’ in espansione.

Ora, a questo punto, potremmo decidere insieme di suicidarci dal punto di vista divulgativo e parlare della metrica dell’universo, di coordinate comoventi, ecc. Ma questo, ovviamente, implicherebbe fogli di calcoli e basi scientifiche non banali. Abbiamo le prove che l’universo e’ in espansione, dunque, ad esempio, guardando dalla Terra vediamo gli altri corpi che si allontanano da noi. Come si allontanano? O meglio, di nuovo, che forma avrebbe questo universo?

L’esempio del palloncino fatto prima per spiegare l’espansione dell’universo, e’ molto utile per far capire questi concetti, ma assolutamente fuoriviante se non ci si riflette abbstanza. Molto spesso, si confonde questo esempio affermando che l’universo sia rappresentato dall’intero palloncino compreso il suo volume interno. Questo e’ concettualmente sbagliato. Come detto in precedenza, i punti si trovano solo ed esclusivamente sulla superficie esterna del palloncino che rappresenta il nostro universo.

A complicare, o a confondere, ancora di piu’ le idee c’e’ l’esempio del pane con l’uvetta che viene usato per spiegare l’espansione dell’universo. Anche su wikipedia trovate questo esempio rappresentato con una bella animazione:

Esempio del pane dell'uvetta utilizzato per spiegare l'aumento della distanza tra i punti

Esempio del pane dell’uvetta utilizzato per spiegare l’aumento della distanza tra i punti

Come vedete, durante l’espansione la distanza tra i punti cresce perche’ i punti stessi, cioe’ i corpi presenti nell’universo, vengono trascinati dall’espansione. Tornado alla domanda iniziale da cui siamo partiti, potremmo penare che in realta’ lo spazio resti a volume costante e quello che diminuisce e’ il volume della materia. Il lettore che ci ha fatto la domanda, mi ha anche inviato una figura esplicativa per spiegare meglio il concetto:

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Confronto tra il modello di aumento dello spazio e quello di restringimento della materia

Come vedete, pensando ad una contrazione della materia, avremmo esattamente lo stesso effetto con la distanza mutua tra i corpi che aumenta mentre il volume occupato dall’universo resta costante.

Ragioniamo pero’ su questo concetto. Come detto, a supporto dell’espansione dell’universo, abbiamo la legge di Hubble, e anche altre prove, che ci permettono di dire che l’universo si sta espandendo. In particolare, lo spostamento verso il rosso della radiazione emessa ci conferma che e’ aumentato lo spazio tra i corpi considerati, sorgente di radiazione e bersaglio. Inoltre, la presenza dell’energia oscura serve proprio a spiegare questa evoluzione dell’universo. Se la condizione fosse quella riportata nell’immagine, cioe’ con la materia che si contrae, non ci sarebbe lo spostamento verso il rosso, e anche quello che viene definito Modello Standard del Cosmo, di cui abbiamo verifiche sperimentali, non sarebbe utilizzabile.

Resta pero’ da capire, e ritorno nuovamente su questo punto, che forma dovrebbe avere il nostro universo. Non sto cercando di volta in volta di scappare a questa domanda, semplicemente, stiamo cercando di costruire delle basi, divulgative, che ci possano consentire di capire questi ulteriori concetti.

Come detto, parlando del palloncino, non dobbiamo fare l’errore di considerare tutto il volume, ma solo la sua superificie. In particolare, come si dice in fisica, per capire la forma dell’universo dobbiamo capire che tipo di geometria assegnare allo spazio-tempo. Purtroppo, come imparato a scuola, siamo abituati a pensare alla geometria Euclidea, cioe’ quella che viene costruita su una superifice piana. In altre parole, siamo abituati a pensare che la somma degli angoli interni di un traiangolo sia di 180 gradi. Questo pero’ e’ vero solo per un triangolo disegnato su un piano. Non e’ assolutamente detto a priori che il nostro universo abbia una geometria Euclidea, cioe’ che sia piano.

Cosa significa?

Come e’ possibile dimostrare, la forma dell’universo dipende dalla densita’ di materia in esso contenuta. Come visto in precedenza, dipende dunque, come e’ ovvio pensare, dall’intensita’ della forza di attrazione gravitazionale presente. In particolare possiamo definire 3 curvature possibili in funzione del rapporto tra la densita’ di materia e quella che viene definita “densita’ critica”, cioe’ la quantita’ di materia che a causa dell’attrazione sarebbe in grado di fermare l’espasione. Graficamente, le tre curvature possibili vengono rappresentate con tre forme ben distinte:

Curvature possibili per l'universo in base al rapporto tra densita' di materia e densita' critica

Curvature possibili per l’universo in base al rapporto tra densita’ di materia e densita’ critica

Cosa significa? Se il rapporto e’ minore di uno, cioe’ non c’e’ massa a sufficienza per fermare l’espansione, questa continuera’ per un tempo infinito senza arrestarsi. In questo caso si parla di spazio a forma di sella. Se invece la curvatura e’ positiva, cioe’ la massa presente e’ maggiore del valore critico, l’espansione e’ destinata ad arrestarsi e l’universo iniziera’ ad un certo punto a contrarsi arrivando ad un Big Crunch, opposto al Big Bang. In questo caso la geometria dell’universo e’ rappresentata dalla sfera. Se invece la densita’ di materia presente e’ esattamente identica alla densita’ critica, in questo caso abbiamo una superficie piatta, cioe’ Euclidea, e l’espansione si arrestera’ ma solo dopo un tempo infinito.

Come potete capire, la densita’ di materia contenuta nell’universo determina non solo la forma di quest’ultimo, ma anche il suo destino ultimo in termini di espansione o contrazione. Fate pero’ attenzione ad un altro aspetto importante e molto spesso dimenticato. Se misuriamo questo rapporto di densita’, sappiamo automaticamente che forma ha il nostro universo? E’ vero il discorso sul suo destino ultimo, ma le rappresentazioni grafiche mostrate sono solo esplicative e non rappresentanti la realta’.

Perche’?

Semplice, per disegnare queste superifici, ripeto utilizzate solo per mostrare graficamente le diverse forme, come si e’ proceduto? Si e’ presa una superficie bidimensionale, l’equivalente di un foglio, e lo si e’ piegato seguendo le indicazioni date dal valore del rapporto di densita’. In realta’, lo spazio tempo e’ quadrimensionale, cioe’ ha 3 dimensioni spaziali e una temporale. Come potete capire molto facilmente, e’ impossibile sia disegnare che immaginare una superificie in uno spazio a 4 dimensioni! Questo significa che le forme rappresentate sono esplicative per far capire le differenze di forma, ma non rappresentano assolutamnete la reale forma dell’universo dal momento che sono ottenute eliminando una coordinata spaziale.

Qual e’ oggi il valore di questo rapporto di densita’? Come e’ ovvio, questo valore deve essere estrapolato basandosi sui dati raccolti da misure osservative nello spazio. Dal momento che sarebbe impossibile “contare” tutta la materia, questi valori vengono utilizzati per estrapolare poi il numero di barioni prodotti nel Big Bang. I migliori valori ottenuti oggi danno rapporti che sembrerebbero a cavallo di 1 anche se con incertezze ancora troppo elevate per avere una risposta definitiva.

Concludendo, affrontare queste tematiche in chiave divulgativa non e’ assolutamente semplice. Per quanto possibile, e nel limite delle mie possibilita’, spero di essere riuscito a farvi capire prima di tutto quali sono le verifiche sperimentali di cui disponiamo oggi e che sostengono le teorie di cui tanto sentiamo parlare. Queste misure, dirette o indirette che siano, ci permettono di capire che il nostro universo e’ con buona probabilita’ nato da un Big Bang, che sta attualmente espandendosi e questa espansione, almeno allo stato attuale, e’ destinata a fermarsi solo dopo un tempo infinito. Sicuramente, qualunque sia il destino ultimo del nostro universo, questo avverra’ in un tempo assolutamente molto piu’ grande della scala umana e solo la ricerca e la continua osservazione del cosmo ci possono permettere di fare chiarezza un poco alla volta.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Ascoltate finalmente le onde gravitazionali?

19 Mar

Sicuramente, io non posso attaccare o denigrare la divulgazione della scienza e il voler diffondere la conoscenza, sempre troppo scarsa, e le ultime scoperte alle, cosiddette, persone di strada. Per poter fare questo pero’, mia opinione personale, si deve fare un lavoro immenso di modellamento delle informazioni e si deve essere in grado di immedesimarsi in colui che legge quello che scriviamo. Questo non significa assolutamente dire cose false ma solo fare in modo che le informazioni che passano possano appassionare ed essere comprese da coloro che non hanno una base scientifica di supporto. Credetemi, a volte questo lavoro non e’ semplice. Senza voler essere presuntuosi, molte volte un ricercatore abituato a lavorare su delle tematiche, tende a dare per scontate molte cose quando si interfaccia con qualcuno. Il risultato di questo e’, ovviamente, una impossibilita’ di comprensione da chi non ha la stessa base di chi parla.

Perche’ faccio questo preambolo?

La notizia di questi giorni, che sicuramente avrete letto su siti, blog, forum e giornali, e’ quella della conferenza stampa fatta dall’universita’ di Harvard per mostrare i dati raccolti dall’esperimento americano Bicep-2 che si trova in Antartide.

Bene, sulla maggior parte dei giornali che ho letto, e ci metto dentro anche i siti internet, ho visto una quantita’ di cavolate tali da far rabbrividire. Ovviamente, non faccio di tutte l’erba un fascio, ma, da una mia stima, circa il 10% delle notizie aveva senso, il restante era pieno di una quantita’ di idiozie che mai avrei pensato di leggere. Questa volta abbiamo superato di gran lunga gli articoli sulla scoperta del bosone di Higgs. L’unica cosa vera letta e’ che la notizia era attesa ed ha avuto un grandissimo risalto nella comunita’ scientifica, il resto lo potete buttare nel secchio.

Apro e chiudo parentesi: perche’ dobbiamo procedere in tal senso? Cari giornalisti che vi cimentate a scrivere di scienza, chiedete lumi, intervistate addetti ai lavori, non scrivete assurdita’ che non fanno altro che creare confusione su confusione in chi legge.

Detto questo, cerchiamo di capire di cosa si sta parlando.

Dunque, di Big Bang, nascita dell’universo, radiazione di fondo, ecc., abbiamo parlato in questi articoli:

E parliamo diquesto Big Bang

Il primo vagito dell’universo

Universo: foto da piccolo

La materia oscura

Materia oscura intorno alla Terra?

Due parole sull’antimateria

Flusso oscuro e grandi attrattori

Ipotizziamo che l’universo sia nato da un Big Bang, che ad un certo punto materia e antimateria si siano separate, poi, circa 380000 anni dopo il botto, si sono separate materia e radiazione ed e’ nata la Radiazione Cosmica di Fondo, o CMB. Proprio questa radiazione, di cui abbiamo parlato, e’ la prova sperimentale a supporto del Big Bang. Come scritto altre volte, possiamo vedere la CMB come una radiazione fossile di un preciso momento dell’universo. Prima di questo istante, c’e’ il buio perche’ la radiazione non riusciva a “scappare” e rimaneva intrappolata con la materia.

Primo punto fondamentale, la Radiazione Cosmica di Fondo esiste e l’abbiamo gia’ trovata. La prima osservazione della CMB risale al 1964 ad opera di Arno Penzias e Robert Wilson che vinsero poi il nobel nel 1978. Questo per rispondere alle notizie false che girano secondo le quali Bicep-2 avrebbe “scoperto” l’essitenza della radiazione di fondo.

Bene, l’esperimento Bicep-2 serve invece per “rilevare” con altissima precisione la CMB. Perche’ allora si parla di onde gravitazionali?

Non voglio neanche commentare le notizie i cui autori si lanciano a parlare di tensori e modi B perche’ il mio punto di vista e’ stato espresso all’inizio dell’articolo parlando di come, a mio avviso, si deve fare divuilgazione.

Cosa sono le onde gravitazionali?

Come giustamente detto da alcune fonti, questa tipologia di onde e’ stata predetta da Einstein nella sua relativita’ generale anche se queste non sono mai state osservate in maniera “diretta”. Dunque, ad Harvard hanno osservato le onde gravitazionali? Assolutamente no. Le hanno “scoperte” come qualcuno sostiene? Assolutamente no, anche in questo caso.

Per cercare di capire cosa sono le onde gravitazionali, proviamo a fare un esempio molto semplice. Immaginate lo spazio-tempo, concetto di per se molto vago ma supponete, sempre per semplicita’ , che si tratti dell’universo, come un materasso. Si, avete capito bene, un materasso come quello che avete in casa e su cui andate a dormire. Non sono impazzito, vorrei solo farvi capire questo importante concetto in modo semi-intuitivo. Dunque, ora immaginate di mettere un corpo molto pesante, ad esempio una palla da bowling, sul materasso. Cosa succede? Semplice, il materasso si “curva” in prossimita’ del corpo pesante. Bene, il materasso e’ lo spazio tempo, la palla da bowling e’ un pianeta, una galassia, ecc.. Parlando scientificamente, lo spazio tempo quadri-dimensionale e’ curvato dalla massa.

Ora, immaginate di far rotolore o togliere la vostra massa. Cosa succede? La curvatura si sposta insieme alla massa oppure, nel secondo caso, lo spazio tempo torna al suo posto. Le “piegature” dello spazio-tempo che fine fanno? Semplice, succede esattamente quello che avviene se tirate un sassolino dentro uno stagno. Queste “increspature” si propagano partendo dalla sorgente, nel nostro caso la massa, verso l’esterno.

Finalmente ci siamo. Il movimento delle masse, l’esplosione delle Supermovae, lo scontro tra Galassie, sono tutti fenomeni che deformano lo spazio tempo. Effetto di queste deformazioni, cosi’ come avviene per il sasso nello stagno, e’ la formazione di onde che si propagano liberamente nello spazio. Come potete immaginare, queste sono le cosiddette onde gravitazionali.

Ora, la teoria e’ compresa. Le abbiamo viste sperimentalmente? Purtroppo ancora no. Rimanendo ad un approccio divulgativo, lo spazio tempo e’ molto rigido e dunque le onde che si creano hanno intensita’ molto molto piccole. Questo rende le onde gravitazionali estremamente difficili da essere “ascoltate”. In termini di ricerca scientifica, a partire dagli anni ’50 del secolo scorso, diversi esperimenti sono stati realizzati per cercare di captare queste onde. Dapprima, e sono ancora in funzione, si costruivano antenne risonanti, cioe’ una sorta di elemento in grado di vibrare al passaggio dell’onda, ora si procede con interferometri, strumenti che segnano il passaggio dell’onda osservando le minime variazioni meccaniche su strutture molto lunghe in cui vengono fatti passare dei laser. In un modo o nell’altro pero’, queste onde non sono mai state osservate in modo “diretto”.

Perche’ continuo a scrivere insistentemente “in modo diretto”? Semplice, perche’ sappiamo, con buona certezza, che queste onde esistono dal momento che sono state osservate in vari casi in modo “indiretto” cioe’ attraverso gli effetti che queste onde producono. La prima osservazione indiretta, fatta mediante l’osservazione di una pulsar binaria con il radio-telescopio di Arecibo, e’ valsa agli astronomi Taylor e Hulse il premio nobel nel 1993.

Bene, la CMB esiste e dimostra qualcosa, le onde gravitazionali sono state predette da Einstein e sono state osservate in modo indiretto, Bicep-2, come detto prima, non le ha osservate in modo diretto, ma, allora, di cosa stiamo parlando? Perche’ si parla di scoperta cosi’ importante?

Torniamo un attimo alla nascita del nostro universo. Abbiamo detto che c’e’ stato il Big Bang e abbiamo parlato di quando, 380000 anni dopo, materia e radiazione si sono separate. Secondo i modelli cosmologici accettati, c’e’ stato un momento nei primi istanti di vista dell’universo, precisamente 10^(-34) secondi dopo il Big Bang, in cui l’universo ha subito una rapidissima accelerazione dell’espansione a cui si da il nome di “inflazione”. Questo e’ un momento del tutto particolare in cui si e’ registrata un’espansione violentissima al punto, come dicono i cosmologi, da andare oltre l’orizzonte degli eventi. Proprio grazie a questo movimento cosi’ brusco si ha un universo cosi’ uniforme ed e’ tanto difficile registrare fluttuazioni nella distribuzione della radiazione di fondo.

Ora, per l’inflazione abbiamo dei modelli che la includono e la spiegano ma manca una prova, anche indiretta, dell’esistenza di questo momento. Come detto, studiando la CMB arriviamo fino ad un preciso istante prima del quale non possiamo andare perche’ materia e radiazione non erano separate. Attenzione, non erano separate ma, ovviamente, erano presenti. Se ripensiamo a quanto detto in precedenza per le onde gravitazionali, sicuramente un’espansione cosi’ violenta come quella dell’inflazione ne ha generate moltissime. Bene, queste onde avrebbero a loro volta interagito con la CMB lasciando una inconfondibile firma del loro pasaggio. Trovare evidenza di questa segnatura sarebbe molto importante e utile per la comprensione del modelli dell’universo che abbiamo sviluppato.

Detto questo, cosa avrebbe trovato Bicep-2?

Ovviamente quello a cui state pensando, l’effetto primordiale lasciato sulla CMB dalle onde gravitazionali dell’inflazione, dunque una misura indiretta dell’esistenza di questo periodo. Capite la portata di una misura di questo tipo? Questa evidenza ci fa capire che i modelli che prevedono un periodo inflazionario durante i primi istanti di vita del nostro universo potrebbero essere corretti. Inoltre, la tipologia dei segnali trovati riesce gia’ ad escludere alcuni dei modelli formulati in questi anni.

Come avrete letto sulle varie fonti, gia’ molti parlano di nobel per questa misura. In realta’, anche in questo caso, si sta esagerando, non per l’importanza di una misura del genere ma, semplicemente, perche’ parliamo di “evidenza”. Dopo tutte le varie storie sentite sul bosone di Higgs, come sapete bene, prima di poter parlare scientificamente di scoperta e’ necessario che il segnale atteso abbia una certa “significanza statistica” che ci faccia affermare che quanto visto corrisponde al vero. In questo caso, statisticamente ripeto, parliamo ancora di “evidenza” non di “scoperta”. Ovviamente, una misura del genere non puo’ che spingere a migliorare e perfezionare una ricerca di questo tipo, anche da parte di altri esperimenti in grado di captare e raccogliere i dati relativi alla radiazione di fondo a microonde.

Concludendo, l’annuncio fatto dall’universita’ di Harvard e’ importantissimo dal punto di vista della fisica. Purtroppo, come spesso avviene, nel raccontare cose di questo tipo si fa molta confusione e si finisce col dire cose non veritiere e che non permettono ai non addetti ai lavori di comprendere la rilevanza di notizie del genere. Come detto, quanto osservato e’ una prova indiretta dell’esistenza dell’inflazione per il nostro universo. Questo e’ un momento assolutamente unico previsto nella teoria dell’esansione dell’universo, in cui quest’ultimo si e’ stirato in modo impensabile anche solo da immaginare. Come spesso avviene, per ogni piccolo passo avanti fatto nella comprensione, si aprono ogni volta decine di nuove domande in cerca di una risposta. Non resta che andare avanti e continuare ad osservare il cosmo consapevoli di quanti misteri ancora ci siano da scoprire.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Noi dormiamo ma lo smartphone NO!

12 Mar

Torniamo ora a parlare un po’ di tecnologia. Come sapete, ormai, nel bene o nel male, la maggior parte delle persone possiede uno smartphone. Questi piccoli strumenti nascondono al loro interno una capacita’ di calcolo impressionante se paragonata con le ridotte dimensioni, ma soprattutto, per quelli non proprio giovanissimi, se paragonata con quella dei personal computer piu’ costosi che si potevano acquistare anche solo 10 anni fa. Da un lato, questo e’ impressionante ma anche completamente comprensibile. Come sapete, l’elettronica e le capacita’ di calcolo seguono leggi esponenziali di crescita, di riduzione del prezzo e delle dimensioni dei dispositivi e l’insieme di questi parametri fa si che, di volta in volta, esca un prodotto nuovo che faccia impallidire i suoi predecessori.

Ora pero’, quanti di quelli che utilizzano uno smartphone lo utilizzano a pieno delle sue capacita’? In verita’, credo io, davvero un numero esiguo di persone riesce a sfruttare a pieno le capacita’ del proprio telefono se non facendo andare in contemporanea diversi programmi richiedenti la rete internet.

Oltre a questo poi, c’e’ un altro aspetto da considerare. Mediamente, questi piccoli oggetti sono molto energivori e le loro batterie difficilmente durano anche solo una giornata se sfruttati a pieno. Conseguenza di questo e’ che tutte le notti dobbiamo ricaricare la batteria lasciando, come spesso accade, il telefono acceso con la connessione dati o wireless accesa. Durante questa fase di standby, anche se non del tutto, il nostro dispositivo e’ fermo e la sua enorme capacita’ di calcolo non viene sfruttata.

Perche’ faccio questo preambolo iniziale?

Molto semplice, in questi giorni, su diversi giornali, e’ stata lanciata una notizia che ha suscitato il mio interesse se non altro perche’ rilancia le problematiche appena discusse. Come avrete sicuramente letto, un team di ricercatori austriaci ha trovato, almeno da come raccontano i giornali, il modo di sfruttare questa potenza di calcolo per un nobile scopo. Questo gruppo di ricerca e’ coinvolto nello studio dei dati del database Simap, un enorme catalogo contenente al suo interno la struttura di tutte le proteine conosciute. Scopo di questa ricerca e’ quello di studiare le somiglianze tra le proteine con il fine ultimo, tra i tanti altri, di poter trovare cure per alcune delle malattie piu’ critiche che riguardano il genere umano. Gestire una mole di dati cosi’ impressionante non e’ affatto semplice e richiede una capacita’ di calcolo molto elevata. Ovviamente, una capacita’ di calcolo elevata significa un costo altrettanto elevato. Per farvi capire questa relazione, pensate che il costo computazionale aumenta con il quadrato del numero di proteine contenute nel database.

Come gestire una mole cosi’ elevata di dati con costi che non siano insostenibili?

Semplice, stando a quanto riporta la notizia sui giornali, e’ stata programmata una App, uno dei piccoli programmini che girano sui nostri smartphone, che consente di sfruttare lo smartphone per analizzare questi dati. Il nome della App e’ Power Sleep appunto perche’ si tratta di una normale sveglia che puo’ essere impostata all’ora in cui desideriamo alzarci. Al contrario di una normale sveglia, Power Sleep ha pero’ una funzione aggiuntiva. Prima di andare a dormire, mettete il vostro smartphone sotto carica lasciando la connessione WiFi accesa. Non appena la batteria avra’ raggiunto la carica completa, il telefono comunichera’ con un server centrale dando inizio al vero scopo del software. Il server invia paccheti da 1Mb che vengono analizzati dal processore dello smartphone. Il tempo richiesto per questa analisi e’ compreso tra 30 e 60 minuti a seconda della potenza di calcolo. Quando il processo e’ completato, il telefono invia il risultato al server e scarica un altro pacchetto da analizzare. Questa comunicazione dura fino a quando non arriva l’ora impostata per la sveglia e il telefono e’ di nuovo disponibile completamente per l’utente.

Detta in questo modo, sembra una scoperta rivoluzionaria che ci permettera’ di contribuire senza spendere un soldo alla ricerca scientifica.

Perche’ dico “sembra”?

Molto semplice, ovviamente si tratta di un’applicazione utilissima per lo scopo della ricerca scientifica in se, ma questo genere di applicazioni non sono assolutamente una novita’. Questo processo di analisi dei dati e’ quello che viene comunemente definito “calcolo distribuito”. Si tratta di un procedimento molto semplice in cui un processo principale viene diviso in tante parti assegnate a processori diversi che poi comunicheranno il loro singolo risultato ad un server centrale. Grazie al calcolo distribuito e’ possibile sfruttare una rete di computer, o smartphone come in questo caso, invece di investire cifre spropositate in una singola macchina in cui far girare l’intera analisi. Di esempi di questo tipo ce ne sono a bizzeffe anche indietro negli anni. Sicuramente tutti avrete sentito parlare del programma SETI@Home per la ricerca di vita extraterrestre nell’universo. In questo caso, si utilizzavano radiotelescopi per cercare segnali non naturali. L’enorme mole di dati veniva analizzata da chiunque decidesse di installare un piccolo software sul proprio computer per contribuire a questa ricerca.

Nel caso di Power Sleep, i ricercatori austriaci si sono affidati ad una societa’ che si occupa proprio di calcolo distribuito e si chiama BOINC. Vi riporto anche il link alla loro pagina italiana in cui compare, proprio in prima pagina, una descrizione sul funzionamento e sull’importanza del calcolo distribuito:

BOINC Italia

Come potete leggere, esistono decine di applicazioni per il calcolo distribuito gestite da BOINC e molte di queste riguardano proprio analisi scientifiche dei dati. Il perche’ di questo e’ facilmente comprensibile, le applicazioni scientifiche sono quelle che producono la maggior mole di dati e che richiederebbero super-computer sempre piu’ potenti per la loro analisi. Grazie a BOINC e al calcolo distribuito, e’ possibile sfruttare a titolo gratuito computer, smartphone e tablet privati per velocizzare il calcolo e risparmiare notevoli capitali che incidono fortemente sul costo della ricerca. Visto che lo abbiamo citato, BOINC nacque qualche anno fa proprio per gestire il progetto SETI@Home. Tra i programmi disponibili ora trovate ad esempio: LHC@Home per l’analisi dei dati del collisore LHC del CERN, Orbit@Home per l’analisi delle traiettorie degli asteroidi vicini alla Terra, Einstein@Home per la ricerca di onde gravitazionali e cosi’ via. Per una lista piu’ completa dei programmi scientifici di calcolo distribuito potete far riferimento alla pagina di Wikipedia che ne parla:

Wiki, esempi calcolo distribuito

Concludendo, al solito la notizia e’ stata data sui maggiori giornali con toni enfatici volti piu’ a impressionare che non ha mostrare l’importanza scientifica di applicazioni di questo tipo. Esempi di calcolo distribuito ce ne sono tantissimi e molti di questi sfruttano il servizio BOINC per dialogare con gli utenti che volontariamente decidono di sostenere un programma piuttosto che un altro. Power Sleep ha sicuramente un nobile scopo se pensiamo all’importanza del mantenimento del database Simap e per i risultati che ricerche di questo tipo dovrebbero portare per l’intero genere umano.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Dafne e KLOE: alte energie in Italia

31 Ago

In questi mesi, diversi lettori mi hanno chiesto di cosa mi occupassi precisamente. Come abbiamo imparato a conoscere attraverso alcuni articoli specifici, la fisica delle alte energie e’ molto vasta, con diversi esperimenti sparsi per il mondo. Nel mio caso specifico, ho partecipato e partecipo tutt’ora a diversi progetti in Italia, in Svizzera e negli Stati Uniti. Per darvi un’idea piu’ precisa, vorrei in questo articolo parlarvi di uno di questi progetti, KLOE, al quale sono per motivi affettivi piu’ legato, e che si trova ai Laboratori Nazionali di Frascati dell’Istituto Nazionale di Fisica Nucleare. Perche’ sono affezionato a questo esperimento? Semplice, oltre a trovarsi nel paese in cui sono nato, cresciuto ed in cui tutt’ora vivo, proprio su questo esperimento ho iniziato la mia carriera di fisico nel 2003, prima con la tesi di laurea, poi con il dottorato di ricerca e su cui, ancora oggi, lavoro.

Prima di tutto, e’ necessario che vi dia qualche informazione aggiuntiva. Purtroppo, mentre tutti hanno sentito parlare di CERN e LHC, pochi sanno che anche in Italia si fanno studi importanti e molto sofisticati di fisica delle alte energie. I laboratori Nazionali di Frascati sono il piu’ grande laboratorio di Fisica delle alte energie dell’INFN. Sono stati fondati nel 1955 e proprio qui e’ nata la fisica degli acceleratori. Da un’intuizione di Bruno Touschek proprio a Frascati e’ stata realizzata AdA nel 1960. Cosa sarebbe Ada? Come sapete, nei moderni acceleratori quello che si fa e’ far girare fasci di particelle ad altissima energia per farli poi scontrare in un punto preciso. Da questo scontro, grazie alla relazione di Einstein E=mc^2, possiamo creare particelle diverse da studiare per comprendere importanti meccanismi della natura. Facendo aumentare l’energia, possiamo di volta in volta scoprire particelle nuove. Fino al 1960, quest’idea nemmeno esisteva. Grazie all’esperimento AdA, che sta per Anello di Accumulazione, venne dimostrato come fosse possibile impacchettare fasci di particelle, farle muovere su orbite circolari e poi farle scontrare in un punto deciso a priori. Grazie proprio ad AdA vennero compresi importanti effetti di fisica dei fasci, importanti ancora oggi, tra questi, ad esempio, il cosiddetto Effetto Touchek dovuto all’interazione delle particelle nello stesso pacchetto.

Dal punto di vista delle particelle, AdA non scopri’ nessuna particella nuova. Questo e’ naturale se vedete la foto:

AdA: anello di accumulazione

AdA: anello di accumulazione

L’esperimento aveva un diametro di poco superiore al metro ed un’energia bassissima. Nonostante questo, AdA apri’ la strada ai futuri acceleratori. Subito dopo AdA, sempre a Frascati, si inizio’ a studiare qualcosa di piu’ grande, un vero e proprio collissore si particelle che oltre a far circolare i fasci, potesse accelerarli e curvarli. Nel 1967 venne dunque innaugurato Adone, che sta appunto per Big-AdA. Eccovi una foto di Adone:

Adone ai Laboratori Nazionali di Frascati

Adone ai Laboratori Nazionali di Frascati

Si tratta di un anello vero e proprio, molto piu’ simile a quelli attuali, con un diametro inferiore ai 100 metri e che poteva raggiungere la folle energia per l’epoca di 3GeV, ottenuta facendo scontrare fasci di elettroni e positroni. Per fare un confronto, oggi LHC e’ stato progettato per avere un’energia di 14TeV, cioe’ 14000GeV. Adone e’ stato il primo acceleratore moderno della storia. Capite dunque che la fisica dei collissori e’ nata a Frascati, laboratorio con una grandissima tradizione in questo settore e che, ancora oggi, ricopre un ruolo importante nei laboratori di tutto il mondo.

Ora cosa si studia a Frascati? Oggi in questi laboratori ci sono tantissimi gruppi che si occupano di fisica nucleare, fisica delle alte energie, astrofisica, astroparticelle, fisica della materia, fisica medica. Tra questi settori, un ruolo fondamentale e’ ricorperto ancora oggi dala fisica degli acceleratori e dal progetto KLOE a Dafne.

Dafne, il collisore attualmente in funzione ai Laboratori di Frascati

Dafne, il collisore attualmente in funzione ai Laboratori di Frascati

Dafne e’ l’attuale collissore dei laboratori che ha preso i primi dati utili nel 2000. Si tratta di sistema costituito da due anelli, uno per elettroni ed uno per positroni, che vengono fatti scontrare ad un’energia di poco superiore ad 1GeV. Perche’ un’energia cosi’ bassa? Al contrario di LHC, che e’ un esperimento di scoperta, in cui dunque si deve raggiungere la massima energia possibile per creare nuove particelle, Dafne e’ una macchina di precisione. Questa categoria di anelli, lavorano ad un’energia ben precisa, calibrata per massimizzare la produzione di determinate particelle. Nel caso di Dafne, la macchina e’ una fabbrica di mesoni Phi, Phi-factory.

Di modello standard, materia strana, antimateria, ecc, abbiamo parlato in questi post:

Piccolo approfondimento sulla materia strana

Due parole sull’antimateria

Antimateria sulla notra testa!

Bosone di Higgs … ma che sarebbe?

La materia oscura

Cosa sarebbe invece la Phi? Detto molto semplicemente, si tratta di una risonanza, cioe’ uno stato legato tra due quark (uno strange ed un anti-strange), che vive un tempo brevissimo dopo di che decade in qualche altra cosa. Tra i possibili canali di decadimento, tra i piu’ probabili ci sono quelli in coppie di Kaoni. Attenzione, il discorso sembra complicato, ma non lo e’. In fisica, ogni particella ha il suo nome. I kaoni sono soltanto una famiglia di particelle in cui rientrano diversi elementi: K carichi, K neutri, K lunghi, K corti, ecc.

Bene, a Dafne si vogliono studiare questi Kaoni e per produrli e’ necessario avere una macchina in grado di creare tantissime Phi. Perche’?

In questo articolo:

E parliamo di questo Big Bang

abbiamo parlato del meccanismo del Big Bang, vedendo come in seguito a questa esplosione, si e’ verificato uno sbilancio tra materia ed antimateria, che ha portato alla scomparsa della seconda e alla formazione di un universo di materia. Se ben ricordate, abbiamo anche detto come, dal punto di vista teorico, questo meccanismo e’ teoricamente possibile supponendo che siano avvenute determinate condizioni, dette di Sacharov. Tra queste, vi e’ una violazione di CP, cioe’ proprio uno squilibrio tra materia ed antimateria che porta nei decadimenti a preferire stati finali piu’ ricchi di materia.

Cosa c’entrano i kaoni con la violazione di CP?

Nel 1974, decadimenti con violazione di CP venero osservati per la prima volta per un membro della famiglia dei Kaoni, il K long. Ad oggi, oltre che nei Kaoni, la violazione di CP e’ stata osservata anche nei mesoni B. Detto questo, capite bene l’importanza di questi studi. Comprendere a fondo la violazione di CP e le sue conseguenze, ci permette di capire meglio l’origine stessa dell’universo.

L’esperimento operante a Dafne e che studia proprio i decadimenti delle particelle e’ KLOE, un complesso sistema di rivelatori pensato per registrare ed osservare tutte le particelle che entrano nei vari decadimenti.

L'esperimento KLOE installato all'interno di Dafne

L’esperimento KLOE installato all’interno di Dafne

Attraverso i dati raccolti e’ possibile ricostruire l’intero evento e capire che tipologia di decadimento e’ avvenuto. Per fare questo sono necessari diversi rivelatori, ognuno specializzato per determinate particelle, pensati e realizzati in modo del tutto unico direttamente ai laboratori di Frascati.

Perche’ ancora oggi a distanza di anni KLOE e Dafne sono in funzione?

Vista la rarita’ dei decadimenti che si vogliono studiare, e’ necessario raccogliere un campione molto vasto di dati. Detto in altri termini, poiche’ la probabilita’ di avere il decadimento che cercate e’ molto bassa, dovete raccogliere un campione molto grande di Phi per poter avere la statistica necessaria a fare questi studi.

KLOE ha preso dati fino al 2006 raccogliendo un campione cospicuo di Phi. Oltre alla violazione di CP,  KLOE ha posto importanti limiti in tantissimi decadimenti, studiato la gravita’ quantistica, osservato per la prima volta decadimenti mai visti prima, ecc. Tutti risultati di prim’ordine che hanno dato lustro alla fisica delle alte energie in Italia.

Nel 2008 e’ stato poi pensato, sempre a Frascati, un nuovo meccanismo di collissione dei fasci che permetterebbe a KLOE di raggiungere “luminosita’” piu’ elevate, cioe’, modificando solo la zona di interazione dei fasci, si potrebbero accumulare molti piu’ dati a partita’ di tempo. Questa modifica e’ importantissima per un esperimento di precisione come KLOE che dunque potrebbe andare a studiare nuovi settori e migliorare notevolmente i canali gia’ studiati. Proprio per questo motivo, si e’ deciso di iniziare un nuovo periodo di presa dati per KLOE.

Cosa e’ successo tra il 2009 e il 2013?

In questo periodo di tempo, KLOE, costruito come detto un decennio prima, ha pensato di realizzare nuovi rivelatori da installare vicino alla zona di interazione, proprio per migliorare la sua sensibilita’ sfruttando idee nuove e le ultime migliorie pensate in questi anni. Questi nuovi dispositivi sono rivelatori molto complessi e compatti che hanno richiesto diversi anni prima di essere ottimizzati e realizzati. Prima di questa estate, i nuovi rivelatori sono stati installati con successo ed in questi giorni si sta lavorando per ottimizzare il tutto e prepararci alla nuova presa dati dell’esperimento KLOE, ora chiamato KLOE-2. L’accensione di tutto il sistema e’ prevista per il 9 settembre, giorno di inizio di una lunga presa dati che portera’ sicuramente a nuovi ed importanti studi.

Come potete capire, la fisica delle alte energie non e’ riservata al CERN. I fisici italiani, oltre ad avere ruoli importanti nei grandi laboratori del mondo, sono anche attivi nel nostro paese con esperimenti di precisione, importantissimi per capire come funziona il nostro universo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

EniGma con Nadir Mura

21 Mag

Dopo l’intervista per “Catastrofi nel Mondo” su Rai 2, in cui avevamo parlato di Nibiru:

Catastrofi nel mondo

Nella trasmissione EniGma, in onda in Albania sul canale Digitalb, e’ andata in onda un’intervista che avevo rilasciato qualche tempo fa.

Nell’intervista si parlava dei viaggi nel tempo. In particolare, veniva affrontato il discorso della misura sui neutrini del Gran Sasso e di John Titor. Come potete ascoltare, i miei condizionali si sono poi rivelati giusti. La misura del Gran Sasso e’ stata poi smentita perche’ causata da un errore sperimentale, difficile da prevedere e che ha falsato completamente il risultato.

Ecco il video dell’intervista con Nadir Mura, conosciuto anche in Italia perche’ ha lavorato per diverso tempo in Rai:

Se non conoscete l’albanese, potete andare direttamente al minuto 35:40 per ascoltare il mio pezzo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Il sistema di posizionamento Galileo

21 Mar

Notizia fresca di questi giorni, che forse avrete letto anche sui  giornali, e’ stato lanciato il quarto satellite del sistema di navigazione e localizzazione Galileo. L’insieme dei quattro satelliti ha dato ufficialmente il via alla ricezione di questo sistema di localizzazione europeo.

Il principio di funzionamento, cosi’ potete leggere, e’ come quello del GPS americano, ma in questo caso si tratta di un sistema tutto europeo. Al momento sono in orbita 4 dei 30 satelliti previsiti che formerano la costellazione appunto del sistema Galileo.

Bello direte voi, ma questa notizia dovrebbe suscitare un po’ di curiosita’ e soprattutto una serie di domande lecite che vorrei condividere con voi: come funziona il GPS? Perche’ se c’era quello americano ne dobbiamo fare uno europeo? Che vantaggi comporta?

Tutte domande lecite a cui proveremo a dare una risposta semplice e accessibile a tutti.

Al solito, provate a fare un esperimento-intervista. Chiedete, anzi chiedetevi, come funziona il GPS che avete in macchina, sul cellulare, sul portatile, ecc. Molto spesso la risposta data e’ la seguente: semplice, si accende un antenna, questa comunica con un satellite che ci localizza e il gioco e’ fatto, otteniamo un puntino su una mappa che indica la nostra posizione “esatta”. Una risposta del genere e’ completamente sbagliata in diversi punti. Se questa e’ stata la vostra risposta, forse e’ il caso di continuare la lettura.

Partiamo dall’inizio. Abbiamo il problema di localizzare la nostra posizione in un punto qualsiasi della Terra. Come facciamo? Semplice, utilizziamo dei satelliti. Se non altro, l’utilizzo di satelliti ci permette, in linea di principio, di essere sempre localizzabili indipendentemente dalla posizione. In Europa, in Asia, nell’oceano, se alzate la testa vedete il cielo e quindi potenzialmente il satellite.

Satelliti visibili dal ricevitore nel tempo

Satelliti visibili dal ricevitore nel tempo

In realta’, non e’ proprio esattamente cosi’. Un solo satellite che gira intorno alla Terra non sarebbe sempre visibile. Per dirla tutta, un solo satellite non consentirebbe neanche di localizzarci, ma ne servono ben quattro visibili da dove siamo. Su questo torneremo tra poco. Dunque, un solo satellite non basta ne servono 4. Per questo motivo, la costellazione di satelliti GPS e’ formata da un numero grande di oggetti in orbita in modo da poter garantire sempre ed in ogni punto la visibilita’ di almeno 4 satelliti. L’immagine riportata permette di chiarire molto bene questo concetto. Come vedete, mentre i satelliti girano intorno alla Terra, viene riportato in ogni istante il numero di satelliti visibili. Affinche’ la vostra rete sia funzionale, questo numero non deve mai essere minore di quattro.

Fin qui ci siamo. Abbiamo bisogno di 4 satelliti. Non abbiamo ancora risposto alle domande iniziali, anzi ne abbiamo aggiunta un’altra: perche’ 4 satelliti?

Cerchiamo ora di capire come funziona il GPS. In realta’, l’antenna del vostro sistema non comunica affatto con i satelliti, ma e’ solo un “ricevitore” di segnali. In ogni istante, i satelliti inviano verso la terra dei segnali che l’antenna e’ in grado di ricevere. Questi segnali sono di tipo orario, cioe’ contengono l’informazione sull’ora del loro invio. Il metodo di localizzazione si basa appunto sulla differenza di tempo tra l’invio del segnale da parte del satellite e la sua ricezione dall’antenna. Conoscendo la velocita’di propagazione del segnale, dalla differenza di tempo possiamo ricavare la distanza del ricevitore dal satellite.

Ora, dovendo posizionare un punto sulla mappa corrispondente al ricevitore, avete bisogno di 3 informazioni: latitudine, longitudine e altitudine. Avete cioe’ 3 incognite da calcolare. Come ricorderete dalla matematica, per risolvere un sistema di 3 incognite c’e’ bisogno di 3 equazioni indipendenti. 3 equazioni significa dunque avere l’informazione contemporaneamente da 3 satelliti. Proprio per questo motivo si parla di “triangolazione” della posizione.

Ricapitoliamo: 3 incognite per la posizione esatta, 3 equazioni che sono i 3 satelliti, e fin qui ci siamo. Perche’ prima parlavamo di 4 satelliti?

Abbiamo detto che tutto il gioco si basa sulla misura del tempo impiegato dal segnale per andare dal satellite al ricevitore. Detto proprio semplicemente, il satellite manda un segnale dicendo sono le 12.00 il ricevitore ascolta il segnale, vede che sono le 12.01 e quindi capisce che e’ passato un minuto (in realta’ la differenza temporale e’ tipicamente dell’ordine dei millisecondi). Facile a dirsi ma non a farsi. Affinche’ questo gioco funzioni, i satelliti ed il ricevitore devono essere perfettamente sincronizzati.

I satelliti del GPS utilizzano degli orologi atomici al Cesio o al Rubidio, estremamente precisi, ma che costano piu’ o meno 200000 euro l’uno. Il nostro piccolo e economico ricevitore certamente non dispone di un sistema del genere. Dunque, per localizzare il punto non servono piu’ 3 incognite bensi’ 4, compreso il tempo. Il quarto satellite serve appunto per determinare anche l’informazione temporale.

images

Solo per completezza di informazione, la localizzazione GPS sarebbe impossibile senza le dovute correzioni date dalla relativita’ di Einstein. Il tempo sul satellite scorre ad un ritmo leggermente piu’ veloce rispetto alla Terra (dilatazione dei tempi). Se questo effetto non fosse incluso, le misure dei tempi di percorrenza sarebbero sistematicamente sbagliate. La funzionalita’ del GPS e’, se vogliamo, anche una conferma pratica dell’esistenza della relativita’.

Dunque, abbiamo capito come avviene la localizzazione. Torniamo ora al discorso satelliti. In ogni istante ed in ogni punto della Terra devo dunque poter vedere almeno 4 satelliti. Quello che oggi chiamiamo GPS sfrutta, come detto all’inizio, la costellazione di satelliti americani chiamata NAVSTAR GPS costituita in tutto da 31 satelliti. Questi sono disposti su sei piani orbitali con un’inclinazione di 55 gradi sul piano equatoriale. Maggiore e’ il numero di satelliti utilizzati simultaneamente, minore e’ l’incertezza con cui si possono ricavare le incognite, e dunque la posizione del ricevitore.

La precisione attuale del NAVSTAR e’ dell’ordine di qualche metro. Fino a prima del 2000, la qualita’ del sistema per uso civile era dell’ordine dei 200 metri a causa dela distorsione fatta appositamente sui segnali per uso civile, mentre per gli usi militari veniva data qualita’ massima. Questa distinzione, detta anche “disponibilita’ selettiva” e’ stata eliminata su volere del presidente Clinton e, di fatto, ha aperto la strada ai sistemi GPS portatili per scopi civili.

Abbiamo risposto gia’ a 2 domande su 3. Sappiamo ora come avviene la localizzazione e perche’ servono 4 satelliti. Torniamo ora a Galileo.

Galileo prevede una costellazione di 30 satelliti che diverra’ pienamente operativa a partire dal 2014. Ad oggi, e sappiamo ora anche il perche’, sono stati lanciati 4 satelliti e dunque e’ possibile fare i primi studi sui segnali e cominciare a testare la qualita’ del sistema.

Perche’ fare un nuovo sistema se c’e’ gia’ quello americano? In realta’, in orbita ci sono due sistemi di navigazioni indipendenti, il NAVSTAR americano e il GLONASS russo, quest’ultimo pero’ scarsamente manutenuto negli ultimi tempi. La motivazione del Galileo e’ piu’ politica che scientifica. Il NAVSTAR e il GLONASS per uso civile sono sempre subordinati all’effettivo utilizzo militare dei due paesi. In qualsiasi momento, uno dei due paesi potrebbe decidere di chiudere il servizio civile per un qualsiasi motivo. Non pensate soltanto al navigatore della vostra automobile, il GPS e’ utilizzato in tutti i sistemi di navigazione civili come aerei, navi, antifurti satellitari, ecc. Una, seppur improbabile (forse), decisione del genere causerebbe un danno irreparabile. La necessita’ dunque di interrompere un monopolio di localizzazione ha spinto i paesi europei ha dotarsi di un proprio sistema satellitare.

Inoltre, a differenza di quello made in USA, il Galileo gode dei finanziamenti di diversi paesi attraverso la comunita’ europea e non solo. Diversi paesi extraeuropei, come Israele, Cina e Russia (come integrazione del GLONASS), stanno contribuendo a Galileo appunto per assicurare un servizio civile costante.

Solo per completezza, esistono anche dei sistemi minori di tipo regionale attualmente in fase di studio. Sia l’India che la Cina stanno infatti portando avanti gli studi per dotarsi di sistemi proprietari esclusivi non globali. In questo caso, ma si tratta di una mia considerazione personale, programmi di questo tipo servono soltanto per prendere confidenza e dimostrare agli altri la possibilita’ di accedere allo spazio mediante satelliti. Come sappiamo, si tratta di economie definite “emergenti”, anche se ormai emerse del tutto, e proprio per questo interessate alla corsa allo spazio su tutti i fronti.

Concludendo, i primi 4 satelliti di Galileo sono in orbita. Nel giro di qualche anno la costellazione di satelliti dovrebbe essere completata e funzionante. Questo sistema, parallelo al NAVSTAR, consentira’ la localizzazione sulla Terra garantendo la funzionalita’ civile sempre e indipendentemente dalla situazione politica. Dal punto di vista economico, ci saranno vantaggi anche per le aziende europee che potranno produrre e commercializzare ricevitori per Galileo mentre prima con il NAVSTAR questo settore era riservato ad aziende americane.

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.