Tag Archives: informazione

17 equazioni che hanno cambiato il mondo

26 Ago

Nel 2013 Ian Stewart, professore emerito di matematica presso l’università di Warwick, ha pubblicato un libro molto interessante e che consiglio a tutti di leggere, almeno per chi non ha problemi con l’inglese. Come da titolo di questo articolo, il libro si intitola “Alla ricerca dello sconosciuto: 17 equazioni che hanno cambiato il mondo”.

Perchè ho deciso di dedicare un articolo a questo libro?

In realtà, il mio articolo, anche se, ripeto, è un testo che consiglio, non vuole essere una vetrina pubblicitaria a questo testo, ma l’inizio di una riflessione molto importante. Queste famose 17 equazioni che, secondo l’autore, hanno contribuito a cambiare il mondo che oggi conosciamo, rappresentano un ottimo punto di inizio per discutere su alcune importanti relazioni scritte recentemente o, anche, molti secoli fa.

Come spesso ripetiamo, il ruolo della fisica è quello di descrivere il mondo, o meglio la natura, che ci circonda. Quando i fisici fanno questo, riescono a comprendere perchè avviene un determinato fenomeno e sono altresì in grado di “predirre” come un determinato sistema evolverà nel tempo. Come è possibile questo? Come è noto, la natura ci parla attraverso il linguaggio della matematica. Modellizare un sistema significa trovare una o più equazioni che  prendono in considerazione i parametri del sistema e trovano una relazione tra questi fattori per determinare, appunto, l’evoluzione temporale del sistema stesso.

Ora, credo che sia utile partire da queste 17 equzioni proprio per riflettere su alcuni importanti risultati di cui, purtroppo, molti ignorano anche l’esistenza. D’altro canto, come vedremo, ci sono altre equazioni estremanete importanti, se non altro per le loro conseguenze, che vengono studiate a scuola senza però comprendere la potenza o le implicazioni che tali risultati hanno sulla natura.

Senza ulteriori inutili giri di parole, vi presento le 17 equazioni, ripeto secondo Stewart, che hanno cambiato il mondo:

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Sicuramente, ognuno di noi, in base alla propria preparazione, ne avrà riconosciute alcune.

Passiamo attraverso questa lista per descrivere, anche solo brevemente, il significato e le implicazioni di questi importanti risultati.

Teorema di Pitagora

Tutti a scuola abbiamo appreso questa nozione: la somma dell’area dei quadrati costruiti sui cateti, è pari all’area del quadrato costruito sull’ipotenusa. Definizione semplicissima, il più delle volte insegnata come semplice regoletta da tenere a mente per risolvere esercizi. Questo risultato è invece estremamente importante e rappresenta uno dei maggiori assunti della geometria Euclidea, cioè quella che tutti conoscono e che è relativa al piano. Oltre alla tantissime implicazioni nello spazio piano, la validità del teorema di Pitagora rappresenta una prova indiscutibile della differenza tra spazi euclidei e non. Per fare un esempio, questo risultato non è più vero su uno spazio curvo. Analogamente, proprio sfruttando il teorema di Pitagora, si possono fare misurazioni sul nostro universo, parlando proprio di spazio euclideo o meno.

 

Logaritmo del prodotto

Anche qui, come riminescenza scolastica, tutti abbiamo studiato i logaritmi. Diciamoci la verità, per molti questo rappresentava un argomento abbastanza ostico e anche molto noioso. La proprietà inserita in questa tabella però non è affatto banale e ha avuto delle importanti applicazioni prima dello sviluppo del calcolo informatizzato. Perchè? Prima dei moderni calcolatori, la trasformazione tra logaritmo del prodotto e somma dei logaritmi, ha consentito, soprattutto in astronomia, di calcolare il prodotto tra numeri molto grandi ricorrendo a più semplici espedienti di calcolo. Senza questa proprietà, molti risultati che ancora oggi rappresentano basi scientifiche sarebbero arrivati con notevole ritardo.

 

Limite del rapporto incrementale

Matematicamente, la derivata di una funzione rappresenta il limite del rapporto incrementale. Interessante! Cosa ci facciamo? La derivata di una funzione rispetto a qualcosa, ci da un’indicazione di quanto quella funzione cambi rispetto a quel qualcosa. Un esempio pratico è la velocità, che altro non è che la derivata dello spazio rispetto al tempo. Tanto più velocemente cambia la nostra posizione, tanto maggiore sarà la nostra velocità. Questo è solo un semplice esempio ma l’operazione di derivata è uno dei pilastri del linguaggio matematico utilizzato dalla natura, appunto mai statica.

 

Legge di Gravitazione Universale

Quante volte su questo blog abbiamo citato questa legge. Come visto, questa importante relazione formulata da Newton ci dice che la forza agente tra due masse è direttamente proporzionale al prodotto delle masse stesse e inversamente proporzionale al quadrato della loro distanza. A cosa serve? Tutti i corpi del nostro universo si attraggono reciprocamente secondo questa legge. Se il nostro Sistema Solare si muove come lo vediamo noi, è proprio per il risultato delle mutue forze agenti sui corpi, tra le quali quella del Sole è la componente dominante. Senza ombra di dubbio, questo è uno dei capisaldi della fisica.

 

Radice quadrata di -1

Questo è uno di quei concetti che a scuola veniva solo accennato ma che poi, andando avanti negli studi, apriva un mondo del tutto nuovo. Dapprima, siamo stati abituati a pensare ai numeri naturali, agli interi, poi alle frazioni infine ai numeri irrazionali. A volte però comparivano nei nostri esercizi le radici quadrate di numeri negativi e semplicemente il tutto si concludeva con una soluzione che “non esiste nei reali”. Dove esiste allora? Quei numeri non esistono nei reali perchè vivono nei “complessi”, cioè in quei numeri che arrivano, appunto, da radici con indice pari di numeri negativi. Lo studio dei numeri complessi rappresenta un importante aspetto di diversi settori della conoscenza: la matematica, l’informatica, la fisica teorica e, soprattutto, nella scienza delle telecomunicazioni.

 

Formula di Eulero per i poliedri

Questa relazione determina una correlazione tra facce, spigoli e vertici di un poliedro cioè, in parole semplici, della versione in uno spazio tridimensionale dei poligoni. Questa apparentemente semplice relazione, ha rappresentato la base per lo sviluppo della “topologia” e degli invarianti topologici, concetti fondamentali nello studio della fisica moderna.

 

Distribuzione normale

Il ruolo della distribuzione normale, o gaussiana, è indiscutibile nello sviluppo e per la comprensione dell’intera statistica. Questo genere di curva ha la classica forma a campana centrata intorno al valore di maggior aspettazione e la cui larghezza fornisce ulteriori informazioni sul campione che stiamo analizzando. Nell’analisi statistica di qualsiasi fenomeno in cui il campione raccolto sia statisticamente significativo e indipendente, la distribuzione normale ci fornisce dati oggettivi per comprendere tutti i vari trend. Le applicazioni di questo concetto sono praticametne infinite e pari a tutte quelle situazioni in cui si chiama in causa la statistica per descrivere un qualsiasi fenomeno.

 

Equazione delle Onde

Questa è un’equazione differenziale che descrive l’andamento nel tempo e nello spazio di un qualsiasi sistema vibrante o, più in generale, di un’onda. Questa equazione può essere utilizzata per descrivere tantissimi fenomeni fisici, tra cui anche la stessa luce. Storicamente poi, vista la sua importanza, gli studi condotti per la risoluzione di questa equazione differenziale hanno rappresentato un ottimo punto di partenza che ha permesso la risoluzione di tante altre equazioni differenziali.

 

Trasformata di Fourier

Se nell’equazione precedente abbiamo parlato di qualcosa in grado di descrivere le variazioni spazio-temporali di un’onda, con la trasformata di Fourier entriamo invece nel vivo dell’analisi di un’onda stessa. Molte volte, queste onde sono prodotte dalla sovrapposizione di tantissime componenti che si sommano a loro modo dando poi un risultato finale che noi percepiamo. Bene, la trasformata di Fourier consente proprio di scomporre, passatemi il termine, un fenomeno fisico ondulatorio, come ad esempio la nostra voce, in tante componenti essenziali più semplici. La trasformata di Fourier è alla base della moderna teoria dei segnali e della compressione dei dati nei moderni cacolatori.

 

Equazioni di Navier-Stokes

Prendiamo un caso molto semplice: accendiamo una sigaretta, lo so, fumare fa male, ma qui lo facciamo per scienza. Vedete il fumo che esce e che lentamente sale verso l’alto. Come è noto, il fumo segue un percorso molto particolare dovuto ad una dinamica estremamente complessa prodotta dalla sovrapposizione di un numero quasi infinito di collissioni tra molecole. Bene, le equazioni differenziali di Navier-Stokes descrivono l’evoluzione nel tempo di un sistema fluidodinamico. Provate solo a pensare a quanti sistemi fisici includono il moto di un fluido. Bene, ad oggi abbiamo solo delle soluzioni approssimate delle equazioni di Navier-Stokes che ci consentono di simulare con una precisione più o meno accettabile, in base al caso specifico, l’evoluzione nel tempo. Approssimazioni ovviamente fondamentali per descrivere un sistema fluidodinamico attraverso simulazioni al calcolatore. Piccolo inciso, c’è un premio di 1 milione di dollari per chi riuscisse a risolvere esattamente le equazioni di Navier-Stokes.

 

Equazioni di Maxwell

Anche di queste abbiamo più volte parlato in diversi articoli. Come noto, le equazioni di Maxwell racchiudono al loro interno i più importanti risultati dell’elettromagnetismo. Queste quattro equazioni desrivono infatti completamente le fondamentali proprietà del campo elettrico e magnetico. Inoltre, come nel caso di campi variabili nel tempo, è proprio da queste equazioni che si evince l’esistenza di un campo elettromagnetico e della fondamentale relazione tra questi concetti. Molte volte, alcuni soggetti dimenticano di studiare queste equazioni e sparano cavolate enormi su campi elettrici e magnetici parlando di energia infinita e proprietà che fanno rabbrividire.

 

La seconda legge della Termodinamica

La versione riportata su questa tabella è, anche a mio avviso, la più affascinante in assoluto. In soldoni, la legge dice che in un sistema termodinamico chiuso, l’entropia può solo aumentare o rimanere costante. Spesso, questo che è noto come “principio di aumento dell’entropia dell’universo”, è soggetto a speculazioni filosofiche relative al concetto di caos. Niente di più sbagliato. L’entropia è una funzione di stato fondamentale nella termodinamica e il suo aumento nei sistemi chiusi impone, senza mezzi termini, un verso allo scorrere del tempo. Capite bene quali e quante implicazioni questa legge ha avuto non solo nella termodinamica ma nella fisica in generale, tra cui anche nella teoria della Relatività Generale di Einstein.

 

Relatività

Quella riportata nella tabella, se vogliamo, è solo la punta di un iceberg scientifico rappresentato dalla teoria della Relatività, sia speciale che generale. La relazione E=mc^2 è nota a tutti ed, in particolare, mette in relazione due parametri fisici che, in linea di principio, potrebbero essere del tutto indipendenti tra loro: massa ed energia. Su questa legge si fonda la moderna fisica degli acceleratori. In questi sistemi, di cui abbiamo parlato diverse volte, quello che facciamo è proprio far scontrare ad energie sempre più alte le particelle per produrne di nuove e sconosciute. Esempio classico e sui cui trovate diversi articoli sul blog è appunto quello del Bosone di Higgs.

 

Equazione di Schrodinger

Senza mezzi termini, questa equazione rappresenta il maggior risultato della meccanica quantistica. Se la relatività di Einstein ci spiega come il nostro universo funziona su larga scala, questa equazione ci illustra invece quanto avviene a distanze molto molto piccole, in cui la meccanica quantistica diviene la teoria dominante. In particolare, tutta la nostra moderna scienza su atomi e particelle subatomiche si fonda su questa equazione e su quella che viene definita funzione d’onda. E nella vita di tutti i giorni? Su questa equazione si fondano, e funzionano, importanti applicazioni come i laser, i semiconduttori, la fisica nucleare e, in un futuro prossimo, quello che indichiamo come computer quantistico.

 

Teorema di Shannon o dell’informazione

Per fare un paragone, il teorema di Shannon sta ai segnali così come l’entropia è alla termodinamica. Se quest’ultima rappresenta, come visto, la capicità di un sistema di fornire lavoro, il teorema di Shannon ci dice quanta informazione è contenuta in un determinato segnale. Per una migliore comprensione del concetto, conviene utilizzare un esempio. Come noto, ci sono programmi in grado di comprimere i file del nostro pc, immaginiamo una immagine jpeg. Bene, se prima questa occupava X Kb, perchè ora ne occupa meno e io la vedo sempre uguale? Semplice, grazie a questo risultato, siamo in grado di sapere quanto possiamo comprimere un qualsiasi segnale senza perdere informazione. Anche per il teorema di Shannon, le applicazioni sono tantissime e vanno dall’informatica alla trasmissione dei segnali. Si tratta di un risultato che ha dato una spinta inimmaginabile ai moderni sistemi di comunicazione appunto per snellire i segnali senza perdere informazione.

 

Teoria del Caos o Mappa di May

Questo risultato descrive l’evoluzione temporale di un qualsiasi sistema nel tempo. Come vedete, questa evoluzione tra gli stati dipende da K. Bene, ci spossono essere degli stati di partenza che mplicano un’evoluzione ordinata per passi certi e altri, anche molto prossimi agli altri, per cui il sistema si evolve in modo del tutto caotico. A cosa serve? Pensate ad un sistema caotico in cui una minima variazione di un parametro può completamente modificare l’evoluzione nel tempo dell’intero sistema. Un esempio? Il meteo! Noto a tutti è il cosiddetto effetto farfalla: basta modificare di una quantità infinitesima un parametro per avere un’evoluzione completamente diversa. Bene, questi sistemi sono appunto descritti da questo risultato.

 

Equazione di Black-Scholes

Altra equazione differenziale, proprio ad indicarci di come tantissimi fenomeni naturali e non possono essere descritti. A cosa serve questa equazione? A differenza degli altri risultati, qui entriamo in un campo diverso e più orientato all’uomo. L’equazione di Black-Scholes serve a determinare il prezzo delle opzioni in borsa partendo dalla valutazione di parametri oggettivi. Si tratta di uno strumento molto potente e che, come avrete capito, determina fortemente l’andamento dei prezzi in borsa e dunque, in ultima analisi, dell’economia.

 

Bene, queste sono le 17 equazioni che secondo Stewart hanno cambiato il mondo. Ora, ognuno di noi, me compreso, può averne altre che avrebbe voluto in questa lista e che reputa di fondamentale importanza. Sicuramente questo è vero sempre ma, lasciatemi dire, questa lista ci ha permesso di passare attraverso alcuni dei più importanti risultati storici che, a loro volta, hanno spinto la conoscenza in diversi settori. Inoltre, come visto, questo articolo ci ha permesso di rivalutare alcuni concetti che troppo spesso vengono fatti passare come semplici regolette non mostrando la loro vera potenza e le implicazioni che hanno nella vita di tutti i giorni e per l’evoluzione stessa della scienza.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Tempesta solare e problemi ai telefoni?

21 Giu

Nella sezione:

Hai domande o dubbi?

e attraverso varie mail che mi sono arrivate, mi è stato chiesto di fare un po’ di chiarezza sui problemi telefonici che si sono avuti nei giorni scorsi soprattutto in virtù di quanto raccontato su vari siti e giornali. Come forse avrete letto, diverse fonti hanno infatti puntato il dito contro la forte attività solare per spiegare i guasti alla rete mobile, soprattutto per i clienti wind, che hanno visto un picco di malfunzionamenti intorno al 13 Giugno.

Diverse volte su questo blog ci siamo occupati di attività solare e dell’alternanza di massimi e minimi che la nostra stella presenta nel corso del tempo:

– Evidenze dal Sole?

– Le macchie solari AR1504

– Gli effetti di AR1504

– Sole: quanta confusione!

– Inversione dei poli terrestri

– Nuova minaccia il 22 Settembre?

– Come seguire il ciclo solare

– Curiosita’ sui cicli solari

Possiamo scegliere tra era glaciale o desertificazione

Come visto, il nostro Sole non è affatto un corpo con un’attività costante nel tempo ma passa attraverso periodi di massimo e minimo in un tempo di circa 11 anni. Non c’è assolutamente nulla di strano o di anomalo in questo comportamento, ma il tutto fa parte del normale e corretto funzionamento di stelle di questo tipo. Nonostante la buona conoscenza astronomica del Sole, molto spesso l’attività di questa stella, soprattutto a causa della sua connessione con la Terra e con la vita, viene chiamata in causa per annunciare catastrofi o per spiegare, come nel caso in questione, problematiche che in realtà non sono assolutamente correlate.

Cerchiamo dunque di andare con ordine e capire prima di tutto cosa è successo qualche giorno fa.

Come detto all’inizio, la scorsa settimana si sono avuti problemi per molti clienti di telefonia fissa e mobile principalmente per l’operatore Wind. Moltissime persone sono rimaste per qualche ora completamente isolate ed impossibilitate sia a ricevere chiamate che a collegarsi alla rete.

Normali problemi? In realtà no, dal momento che blackout così estesi rappresentano eventi eccezionali e, molto spesso, legati a problematiche uniche e per cui la rete non è protetta. Normalmente, quando avvengono problemi di questo tipo i guasti vengono risolti e realizzate soluzioni specifiche che possano impedire nel futuro il riproporsi di anomalie simili.

Nonostante questo, diverse fonti sulla rete hanno parlato di questi guasti parlando di eventi dovuti alla forte attività del Sole. Come forse avrete letto, nei giorni precedenti il guasto si sono registrati alcuni flare solari molto potenti che, stando a quanto riportato, avrebbero rilasciato particelle molto energetiche che una volta arrivate sulla Terra avrebbe messo fuori gioco i satelliti delle comunicazioni.

Aspettate un attimo. Guasto alla rete fissa e mobile per i clienti Wind. Se proprio vogliamo essere precisi, alcune interruzioni sporadiche e di minore entità per un numero ristretto di clienti Fastweb. Spiegazione? I flare solari. C’è qualcosa che non mi torna in tuta questa storia. Secondo voi, il Sole emette particelle energetiche verso la Terra. Queste arrivano e decidono di colpire solo le infrastrutture di un operatore lasciando intatte le altre? Capite l’assurdità di quello che vi stanno dicendo?

Torniamo seri e cerchiamo di capire meglio l’intera storia. Come visto negli articoli precedenti, durante i periodi di massima attività solare ci possono essere emissioni di flare di particelle verso l’esterno. Queste potenti emissioni possono ovviamente arrivare sulla Terra. Normalmente, i bersagli più a rischio sono i satelliti in orbita perché esposti al flusso di particelle. La superficie terrestre è invece protetta e schermata dallo scudo magnetico offerto dal campo geomagnetico. Questa naturale protezione riesce a deviare la maggior parte delle radiazioni dannose provenienti dal Sole impedendo a queste di raggiungere la superficie.

Solo per maggiore informazione e per completezza, vi riporto anche il link della pagina che Wind ha pubblicato per spiegare il motivo del guasto e, soprattutto, per scusarsi con i propri clienti:

Wind guasto 13 Giugno

Premesso dunque il discorso sull’assurdità del solo operatore telefonico, credo sia interessante capire meglio, approfittando della bufala, come funziona la rete mobile che ci consente di telefonare, inviare messaggi e collegarci alla rete con i nostri dispositivi senza fili.

Oggi come oggi, siamo talmente abituati alla possibilità di collegamento che abbiamo a disposizione che molti di noi ignorano completamente come funzioni questa tipologia di comunicazione. Quando effettuiamo una chiamata, il nostro cellulare emette onde radio con una frequenza specifica. Ad oggi, la maggior parte dei telefonini che abbiamo hanno la possibilità di emettere onde in tre bande, di cui la terza utilizzata solo in alcuni paesi come, ad esempio, gli Stati Uniti.

Bene, le onde radio prodotte dal nostro cellulare, contengono le informazioni relative alla chiamata che stiamo facendo. Detto in parole povere, la nostra voce captata dal microfono del cellulare mette in vibrazione una membrana che genera un segnale successivamente digitalizzato e trasmesso attraverso onde radio. Queste onde vengono poi captate da quella che viene chiamata “stazione base”. Questa altro non è che una struttura munita di antenne riceventi che captano le onde radio e le trasmettono attraverso una rete cablata. Come potete capire, il vantaggio della rete mobile è rappresentato dalla possibilità di poter comunicare senza fili. Le onde radio che si propagano in aria rappresentano il filo invisibile che connette il nostro dispositivo mobile con la stazione base.

Le stazioni base possono essere di diverse dimensioni e potenze. Esistono anche stazioni “camuffate” per potersi integrare al meglio con l’ambiente circostante (finti alberi, integrate in strutture preesistenti o, anche, installate su carrelli mobili che possono essere spostati da un punto all’altro). La stazione base con cui il nostro telefono è connesso rappresenta quella che viene definita “cella”. Il numero di stazioni base presenti nel territorio è determinato ovviamente dalla copertura che il sistema utilizzato riesce ad offrire e alla potenza massima installabile in base alla zona specifica. Per spiegarmi meglio, la copertura offerta da una singola stazione non è calcolabile a priori ma dipende anche dalla morfologia del territorio in questione e alla presenza di case, edifici o altre strutture in grado di limitare la copertura a causa della riflessione e dispersione dei segnali radio inviati dai cellulari.

Oltre alla comunicazione voce e messaggistica, a partire dalla seconda generazione di comunicazione (2G), i nostri cellulari sono in grado di inviare e ricevere anche pacchetti di dati che sono quelli che ci consentono di collegarci ad internet senza un cablaggio fisico.

Capite dunque come è possibile chiamare dai nostri cellulari? La connessione tra le stazioni base avviene invece via normali cavi coassiali o, sempre più spesso, attraverso fibre ottiche. In particolare, l’utilizzo delle fibre ha consentito di migliorare la trasmissione dei segnali con minori perdite nel percorso e di aumentare il numero di collegamenti gestibili a parità di sezione del filo.

E se non sono presenti stazioni base nelle vicinanze? Semplice, questo è il caso di un cellulare che, come si dice, “non ha campo”. In regioni isolate del pianeta si ricorre ad una tecnologia diversa che è invece quella dei telefoni satellitari. In questo caso, i dispositivi si connettono direttamente con satelliti in orbita geostazionaria che hanno il compito di ritrasmettere i segnali digitali a Terra e di consentire in questo modo la comunicazione da qualsiasi parte del pianeta.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

 

La fusione …. secondo gli ignoranti

13 Giu

Stamattina ho avuto la malaugurata idea di “spendere” (o forse “buttare”) mezz’ora per leggere le ultime notizie sui siti catastrofisti. Tante volte abbiamo parlato di questi spazi del web e della loro disinformazione martellante nei confronti delle persone. Eh si, ho detto proprio disinformazione. Questo termine, tanto caro a questi soggetti, e che praticamente sempre utilizzano per denigrare la scienza e gli scienziati intenti a nascondere alle persone comuni i loro loschi piani, e’ invece adatto per descrivere quello che loro fanno costantemente giorno per giorno. La cosa che mi lascia sempre piu’ interdetto e’ vedere quante persone credono alle notizie riportate da questi siti, un mix micidiale di falsita’, stupidaggini e distorsioni che prendono a calci le nozioni piu’ basilari della scienza.

Perche’ me la sto prendendo tanto oggi? Dovrei essere abituato, direte voi. Forse avete ragione, ma a volte, quando pensi di averle viste e lette tutte, ti accorgi che “non c’e’ mai limite al peggio!”.

Diverse volte su questo blog abbiamo parlato di energia e scenari energetici. In molti articoli, abbiamo analizzato e discusso sulle fonti rinnovabili cercando di capire in che direzione ci sta portando la ricerca e provando ad ipotizzare un futuro energetico sostenibile ed in grado di soddisfare la continua crescita della nostra soscieta’ che diviene sempre piu’ energivora.

In questo ambito, la discussione sul nucleare e’ sempre uno dei punti piu’ dibattuti e discussi anche tra il grande pubblico. Premesso che la ricerca sulla fissione nucleare e’ in continua evoluzione con lo studio di reattori intrinsecamente sicuri, posto d’onore in una discussione sul futuro spetta ovviamente alla fusione.

Per quanto riguarda la fusione, in diversi articoli:

E-cat meraviglia o grande bufala?

Ancora sulla fusione fredda

abbiamo analizzato il discorso della fusione fredda e dei fenomeni LENR. Come visto in questi articoli, in questo caso parliamo di fenomeni non dimostrati e che, ad oggi, non sono assolutamente in grado, chissa’ se mai lo saranno, di produrre piu’ energia di quella che consumano. Come evidenziato tante volte, questa e’ l’evidenza che abbiamo di fronte agli occhi. Non voglio denigrare per partito preso fenomeni non convenzionali e, come piu’ volte dichiarato, sarei io il primo a tornare sui miei passi qualora venisse dimostrato, in modo scientifico, che questa tipologia di reazioni sono in grado di produrre energia pulita.

Chiusa questa parentesi, torniamo a parlare di fusione nucleare nel senso piu’ scientifico del termine. Anche su questo argomento abbiamo scritto diversi articoli:

Sole: quanta confusione!

La stella in laboratorio

Studiare le stelle da casa!

Fusione, ci siamo quasi?

In particolare, come noto, lo studio delle reazioni di fusione e’ oggi incentrato nel rendere positivo il bilancio di reazione, cioe’ fornire in uscita piu’ energia di quella che e’ richiesta dal sistema per poter funzionare. Come visto, in questo ambito, ci sono due linee principali di studio, entrambe riguardanti il confinamento del plasma nel reattore: il confinamneto inerziale e quello magnetico. Per quanto riguarda il primo, gli studi riguardano l’ottimizzazione del consumo energetico dei laser utilizzati per innescare il processo, mentre nel secondo caso parliamo dei reattori di tipo Tokamak. Per questi ultimi, in particolare, le speranze principali sono riposte nel progetto ITER, il primo reattore di ricerca per fusione, attualmente in costruzione nel sud della Francia.

Riguardo alla fusione e al suo ruolo negli scenari energetici futuri, in un precedente articolo avevo riportato anche una mia intervista fatta in occasione di un convegno incentrato sullo scenario energetico 2050 di forte interesse per la Comunita’ Europea:

Scenario energetico 2050

Fatto questo doveroso preambolo, cosa ho letto stamattina? Normalmente non riporto link a questo tipo di siti, proprio per evitare di publicizzare notizie tendenziose. Questa volta, vista l’assurdita’ della cosa, facciamo “nomi e cognomi”:

Russia: un nuovo reattore a fusione per dare energia a tutto il mondo

Vi pregherei di leggere tutto l’articolo dall’inizio alla fine e di confrontarlo non solo con quello che abbiamo gia’ scritto, ma con qualsiasi fonte “reale” vogliate.

Vi rendete conto?

Secondo questi tizi, ITER avrebbe funzionato nel 1990 e oggi si sta costruendo un reattore a fusione in Russia per dare energia a tutto il mondo! Si fa poi un’enorme confusione per quanto riguarda le scorie, parlando prima di reattori che “tengono intrappolate le scorie”, salvo poi dire che le scorie non ci sono. Si parla di uranio dicendo che pero’ il reattore non funziona ad uranio. Solo per inciso, come potete confrontare con l’intervista riportata in precedenza, si stanno mescolando insieme, senza un senso logico, fusione, fissione e i cosiddetti “Accelerator Driven System”.

Questi sarebbero i siti che fanno informazione libera smascherando gli scienziati corrotti e pagati dal sistema?

Resto veramente basito. In primis per le notizie date da questi siti ma, soprattutto, nel vedere cosi’ tante persone che seguono e credono a notizie di questo tipo.

Ve lo ripeto, non fidatevi mai di chi vuole convincervi a tutti i costi di qualcosa. Ascoltate tutte le campane, confrontate quanto detto, studiate autonomamente e fatevi una vostra idea. Magari, alla fine, la vostra idea non sara’ neanche giusta ma e’ la vostra. Se poi qualcuno vi convince del vostro errore, siate sempre pronti a cambiare opinione, ma sempre dopo aver ponderato tutto. Lo stesso vale per tutti, anche per i siti scientifici. Siamo cosi’ bombardati da informazioni che a volte e’ difficile capire dove e qual e’ la verita’. Ripeto, ascoltate, analizzate ma, soprattutto, pensate.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

I buchi neri che … evaporano

16 Ago

Uno degli aspetti che da sempre fa discutere e creare complottismi su LHC, e’ di sicuro la possibilita’ di creare mini buchi neri. Questa teoria nasce prendendo in considerazione le alte energie in gioco all’interno del collissore del CERN e la possibilita’ che nello scontro quark-quark possa venire a crearsi una singolarita’ simile a quella dei buchi neri.

Se avete perso i precedenti articoli, di LHC abbiamo parlato in questi post:

2012, fine del mondo e LHC

Bosone di Higgs … ma che sarebbe?

Sia ben chiaro, la storia dei buchi neri non e’ la sola creata su LHC. Il CERN ogni giorno riceve lettere che chiedono la chiusura dell’esperimento per il pericolo che questo rappresenta per l’intera terra. Diverse volte il CERN e’ anche stato chiamato in giudizio a fronte di vere e proprie denuncie di pseudo scienziati che lo accusavano farneticando teorie senza capo ne’ coda. Come potete immaginare, tutte le volte le accuse sono state rigettate e non solo LHC il prossimo anno ripartira’, ma a gia’ fornito risultati fisici di prim’ordine.

Perche’ si discute tanto di buchi neri? Qui ognuno puo’ formulare la propria ipotesi. Io ho una mia idea. Parlare di buchi neri, e’ qualcosa che da sempre stimola la curiosita’ e il timore delle persone. Un buco nero e’ visto come qualcosa di misterioso che vive nel nostro universo con caratteristiche uniche nel suo genere: mangia tutto cio’ che gli capita a tiro senza far uscire nulla. L’idea di poter avere un mostro del genere qui sulla terra, scatena gli animi piu’ catastrofisti pensando a qualcosa che nel giro di qualche minuto sarebbe in grado di divorare Ginevra, la Svizzera, il mondo intero.

Come anticipato, LHC e’ ora in stato di fermo. Si sta lavorando incessantemente per migliorare i rivelatori che vi operano al fine di ottenere risultati sempre piu’ accurati e affidabili. Alla ripartenza, avendo ormai preso piu’ confidenza con la macchina, si pensa anche di poter aumentare l’energia del centro di massa, cioe’ quella a disposizione per creare nuove particelle, portandola da 7 a 10 TeV. Come e’ ovvio, questa notizia non poteva che riaccendere gli animi catastrofisti. Al momento non si e’ creato nessun buco nero perche’ l’energia era troppo bassa, gli scienziati stanno giocando con il fuoco e porteranno alla distruzione della Terra. Queste sono le argomentazioni che cominciate a leggere in rete e che non potranno che riaumentare avvicinandoci al momento della ripartenza.

Se anche dovesse formarsi un mini buco nero, perche’ gli scienziati sono tanto sicuri che non accadra’ nulla? Come sapete, si parla di evaporazione dei buchi neri. Una “strana” teoria formulata dal fisico inglese Stephen Hawking ma che, almeno da quello che leggete, non e’ mai stata verificata, si tratta solo di un’idea e andrebbe anche in conflitto con la meccanica quantistica e la relativita’. Queste sono le argomentazioni che leggete. Trovate uno straccio di articolo a sostegno? Assolutamente no, ma, leggendo queste notizie, il cosiddetto uomo di strada, non addetto ai lavori, potrebbe lasciarsi convincere che stiamo accendendo una miccia, pensando che forse si spegnera’ da sola.

Date queste premesse, credo sia il caso di affrontare il discorso dell’evaporazione dei buchi neri. Purtroppo, si tratta di teorie abbastanza complicate e che richiedono molti concetti fisici. Cercheremo di mantenere un profilo divulgativo al massimo, spesso con esempi forzati e astrazioni. Cio’ nonostante, parleremo chiaramente dello stato dell’arte, senza nascondere nulla ma solo mostrando risultati accertati.

Cominciamo proprio dalle basi parlando di buchi neri. La domanda principale che viene fatta e’ la seguente: se un buco nero non lascia sfuggire nulla dal suo interno, ne’ particelle ne’ radiazione, come potrebbe evaporare, cioe’ emettere qualcosa verso l’esterno? Questa e’ un’ottima domanda, e per rispondere dobbiamo capire meglio come e’ fatto un buco nero.

Secondo la teoria della relativita’, un buco nero sarebbe un oggetto estremamente denso e dotato di una gravita’ molto elevata. Questa intensa forza di richiamo non permette a nulla, nemmeno alla luce, di sfuggire al buco nero. Essendo pero’ un oggetto molto denso e compatto, questa forza e’ estremamente concentrata e localizzata. Immaginatelo un po’ come un buco molto profondo creato nello spazio tempo, cioe’ una sorta di inghiottitoio. La linea di confine tra la singolarita’ e l’esterno e’ quello che viene definito l’orizzonte degli eventi. Per capire questo concetto, immaginate l’orizzonte degli eventi come una cascata molto ripida che si apre lungo un torrente. Un pesce potra’ scendere e risalire il fiume senza problemi finche’ e’ lontano dalla cascata. In prossimita’ del confine, cioe’ dell’orizzonte degli eventi, la forza che lo trascina giu’ e’ talmente forte che il pesce non potra’ piu’ risalire e verra’ inghiottito.

Bene, questo e’ piu’ o meno il perche’ dal buco nero non esce nulla, nemmeno la luce. Dunque? Come possiamo dire che il buco nero evapora in queste condizioni?

La teoria dell’evaporazione, si basa sulle proprieta’ del vuoto. Come visto in questo articolo:

Se il vuoto non e’ vuoto

nella fisica, quello che immaginiamo come vuoto, e’ un continuo manifestarsi di coppie virtuali particella-antiparticella che vivono un tempo brevissimo e poi si riannichilano scomparendo. Come visto nell’articolo, non stiamo parlando di idee campate in aria, ma di teorie fisiche dimostrabili. L’effetto Casimir, dimostrato sperimentalmente e analizzato nell’articolo citato, e’ uno degli esempi.

Ora, anche in prossimita’ del buco nero si creeranno coppie di particelle e questo e’ altresi’ possibile quasi in prossimita’ dell’orizzonte degli eventi. Bene, ragioniamo su questo caso specifico. Qualora venisse creata una coppia di particelle virtuali molto vicino alla singolarita’, e’ possibile che una delle due particelle venga assorbita perche’ troppo vicina all’orizzonte degli eventi. In questo caso, la singola particella rimasta diviene, grazie al principio di indeterminazione di Heisenberg, una particella reale. Cosa succede al buco nero? Nei testi divulgativi spesso leggete che il buco nero assorbe una particella con energia negativa e dunque diminuisce la sua. Cosa significa energia negativa? Dal vuoto vengono create due particelle. Per forza di cose queste avranno sottratto un po’ di energia dal vuoto che dunque rimarra’ in deficit. Se ora una delle due particelle virtuali e’ persa, l’altra non puo’ che rimanere come particella reale. E il deficit chi lo paga? Ovviamente il buco nero, che e’ l’unico soggetto in zona in grado di pagare il debito. In soldoni dunque, e’ come se il buco nero assorbisse una particella di energia negativa e quindi diminuisse la sua. Cosa succede alla particella, ormai reale, rimasta? Questa, trovandosi oltre l’orizzonte degli eventi puo’ sfuggire sotto forma di radiazione. Questo processo e’ quello che si definisce evaporazione del buco nero.

Cosa non torna in questo ragionamento?

Il problema principale e’, come si dice in fisica, che questo processo violerebbe l’unitarieta’. Per le basi della meccanica quantistica, un qualunque sistema in evoluzione conserva sempre l’informazione circa lo stato inziale. Cosa significa? In ogni stato e’ sempre contenuta l’indicazione tramite la quale e’ possibile determinare con certezza lo stato precedente. Nel caso dei buchi neri che evaporano, ci troviamo una radiazione termica povera di informazione, creata dal vuoto, e che quindi non porta informazione.

Proprio da questa assunzione nascono le teorie che potete leggere in giro circa il fatto che l’evaporazione non sarebbe in accordo con la meccanica quantistica. Queste argomentazioni, hanno fatto discutere anche i fisici per lungo tempo, cioe’ da quando Hawking ha proposto la teoria. Sia ben chiaro, la cosa non dovrebbe sorprendere. Parlando di buchi neri, stiamo ragionando su oggetti molto complicati e per i quali potrebbero valere  leggi modificate rispetto a quelle che conosciamo.

Nonostante questo, ad oggi, la soluzione al problema e’ stata almeno “indicata”. Nel campo della fisica, si racconta anche di una famosa scommessa tra Hawking e Preskill, un altro fisico teorico del Caltech. Hawking sosteneva che la sua teoria fosse giusta e che i buchi neri violassero l’unitarieta’, mentre Perskill era un fervido sostenitore della inviolabilita dei principi primi della meccanica quantistica.

La soluzione del rebus e’ stata indicata, anche se ancora non confermata, come vedremo in seguito, chiamando in causa le cosiddette teorie di nuova fisica. Come sapete, la teoria candidata a risolvere il problema della quantizzazione della gravita’ e’ quella delle stringhe, compatibile anche con quella delle brane. Secondo questi assunti, le particelle elementari non sarebbero puntiformi ma oggetti con un’estensione spaziale noti appunto come stringhe. In questo caso, il buco nero non sarebbe piu’ una singolarita’ puntiforme, ma avrebbe un’estensione interna molto piu’ complessa. Questa estensione permette pero’ all’informazione di uscire, facendo conservare l’unitarieta’. Detto in altri termini, togliendo la singolarita’, nel momento in cui il buco nero evapora, questo fornisce ancora un’indicazione sul suo stato precedente.

Lo studio dei buchi neri all’interno della teoria delle stringhe ha portato al cosiddetto principio olografico, secondo il quale la gravita’ sarebbe una manifestazione di una teoria quantistica che vive in un numero minore di dimensioni. Esattamente come avviene in un ologramma. Come sapete, guardando un ologramma, riuscite a percepire un oggetto tridimensionale ma che in realta’ e’ dato da un immagine a 2 sole dimensioni. Bene, la gravita’ funzionerebbe in questo modo: la vera forza e’ una teoria quantistica che vive in un numero ridotto di dimensioni, manifestabili, tra l’altro, all’interno del buco nero. All’esterno, con un numero di dimensioni maggiori, questa teoria ci apparirebbe come quella che chiamiamo gravita’. Il principio non e’ assolutamente campato in aria e permetterebbe anche di unificare agevolmente la gravita’ alle altre forze fondamentali, separate dopo il big bang man mano che l’universo si raffreddava.

Seguendo il ragionamento, capite bene il punto in cui siamo arrivati. Concepire i buchi neri in questo modo non violerebbe assolutamente nessun principio primo della fisica. Con un colpo solo si e’ riusciti a mettere insieme: la meccanica quantistica, la relativita’ generale, il principio di indeterminazione di Heisenberg, le proprieta’ del vuoto e la termodinamica studiando la radiazione termica ed estendendo il secondo principio ai buchi neri.

Attenzione, in tutta questa storia c’e’ un pero’. E’ vero, abbiamo messo insieme tante cose, ma ci stiamo affidando ad una radiazione che non abbiamo mai visto e alla teoria delle stringhe o delle brance che al momento non e’ confermata. Dunque? Quanto sostenuto dai catastrofisti e’ vero? Gli scienziati rischiano di distruggere il mondo basandosi su calcoli su pezzi di carta?

Assolutamente no.

Anche se non direttamente sui buchi neri, la radiazione di Hawking e’ stata osservata in laboratorio. Un gruppo di fisici italiani ha osservato una radiazione paragonabile a quella dell’evaporazione ricreando un orizzonte degli eventi analogo a quello dei buchi neri. Come visto fin qui, l’elemento fondamentale del gioco, non e’ il buco nero, bensi’ la curvatura della singolarita’ offerta dalla gravita’. Bene, per ricreare un orizzonte degli eventi, basta studiare le proprieta’ ottiche di alcuni materiali, in particolare il loro indice di rifrazione, cioe’ il parametro che determina il rallentamento della radiazione elettromagnetica quando questa attraversa un mezzo.

Nell’esperimento, si e’ utilizzato un potente fascio laser infrarosso, in grado di generare impulsi cortissimi, dell’ordine dei miliardesimi di metro, ma con intensita’ miliardi di volte maggiore della radiazione solare. Sparando questo fascio su pezzi di vetro, il punto in cui la radiazione colpisce il mezzo si comporta esattamente come l’orizzonte degli eventi del buco nero, creando una singolarita’ dalla quale la luce presente nell’intorno non riesce ad uscire. In laboratorio si e’ dunque osservata una radiazione con una lunghezza d’onda del tutto paragonabile con quella che ci si aspetterebbe dalla teoria di Hawking, tra 850 e 900 nm.

Dunque? Tutto confermato? Se proprio vogliamo essere pignoli, no. Come visto, nel caso del buco nero gioca un ruolo determinante la gravita’ generata dal corpo. In laboratorio invece, la singolarita’ e’ stata creata otticamente. Ovviamente, mancano ancora degli studi su questi punti, ma l’aver ottenuto una radiazione con la stessa lunghezza d’onda predetta dalla teoria di Hawking e in un punto in cui si genera un orizzonte degli eventi simile a quello del buco nero, non puo’ che farci sperare che la teoria sia giusta.

Concludendo, l’evaporazione dei buchi neri e’ una teoria molto complessa e che richiama concetti molto importanti della fisica. Come visto, le teorie di nuova fisica formulate in questi anni, hanno consentito di indicare la strada probabile per risolvere le iniziali incompatibilita’. Anche se in condizioni diverse, studi di laboratorio hanno dimostrato la probabile esistenza della radiazione di Hawking, risultati che confermerebbero l’esistenza della radiazione e dunque la possibilita’ dell’evaporazione. Ovviamente, siamo di fronte a teorie in parte non ancora dimostrate ma solo ipotizzate. I risultati ottenuti fino a questo punto, ci fanno capire pero’ che la strada indicata potrebbe essere giusta.

Vorrei chiudere con un pensiero. Se, a questo punto, ancora pensate che potrebbero essere tutte fantasie e che un buco nero si potrebbe creare e distruggere la Terra, vi faccio notare che qui parliamo di teorie scientifiche, con basi solide e dimostrate, e che stanno ottenendo le prime conferme da esperimenti diretti. Quando leggete le teorie catastrofiste in rete, su quali basi si fondano? Quali articoli vengono portati a sostegno? Ci sono esperimenti di laboratorio, anche preliminari ed in condizioni diverse, che potrebbero confermare quanto affermato dai catastrofisti?

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Scontro tra un Boeing ed un UFO!

9 Giu

Dopo un paio di giorni di assenza, leggo le ultime notizie e cosa trovo? Addirittura, un Boeing 757 della Air China si e’ scontrato in volo con un UFO. L’aereo, partito il 4 Giugno alle 10.11 ora locale da Chengdu e diretto a Guangzhou, dopo circa 20 minuti dalla partenza si e’ scontrato in volo con un oggetto non identificato ed il pilota e’ stato costretto a tornare a Terra. Non si e’ trattato di un vero e proprio atterraggio di emergenza, dal  momento che l’aeromobile era completamente funzionante, ma, dopo l’atterraggio, i tecnici hanno evidenziato un notevole danno a muso dell’aereo che ‘e risultato completamente schiacciato da un lato a causa dell’impatto.

Ecco le foto del 757 dopo l’atterraggio:

Il Boeing della Air China dopo l'atterraggio di emergenza

Il Boeing della Air China dopo l’atterraggio di emergenza

Cosa potrebbe aver ridotto in questo modo il muso dell’aereo? Semplice, secondo moltissimi siti internet, si e’ trattato necessariamente di un UFO. Le autorita’ hanno preferito chiudere il caso dicendo che si e’ trattato di un “uccello”, ma ovviamente, i complottisti non sono mica fessi, e’ impossibile che si sia trattato di un uccello. Prima di tutto, come evidenziato dalle foto, non ci sono evidenze di materiale organico, un uccello che arriva sul muso dell’aereo dovrebbe lasciare sangue, ma, soprattutto, l’urto e’ avvenuto a 8000 metri di quota. Quale uccello volerebbe a questa altezza? Come potrebbe un “uccello” lasciare un segno cosi’ esteso ad un Boeing?

Questi complottisti diventano ogni giorno piu’ furbi, non si riescono piu’ a raggirare …

Ovviamente, la mia e’ solo ironia. Leggendo i tanti siti internet c’e’ veramente da restare stupiti. Su alcuni forum addirittura si scherza sulla notizia dicendo che solo uno pterodattilo riuscirebbe a fare questa ammaccatura.

Davvero? Forse e’ il caso di parlare un po’ di natura, ma un po’ di piu’ di fisica.

Prima osservazione, possibile che un uccello voli a 8000 metri? Anche se non e’ una quota abituale, la cosa non e’ assolutamente improbabile. Generalmente, il volo dei grandi uccelli migratori avviene tra i 500 e i 1500 metri di quota ma la reale altezza scelta dipende in realta’ dalle termiche e dalle correnti. Come potete immaginare, dovendo percorrere lunghe distanze senza fermarsi, anche gli uccelli scelgono la via migliore che permette un notevole ed importante risparmio energetico. In fondo, e’ quello che fanno anche le compagnie aeree seguendo le correnti d’aria. Dicevamo tra 500 e 1500, ma non sono insoliti voli anche fino a 4000 metri. Si, ma nell’articolo si parla di 8000 metri. Bene, vi riporto un link di focus:

Focus, quote migrazioni

Come potete leggere, gia’ nel 1967 sono stati avvistati cigni selvatici in volo a 8230 metri. Ora, in questo caso c’e’ stata proprio l’osservazione diretta, oggi non stiamo mica a controllare le quote di volo di tutti gli uccelli che passano. Questa notizia ci fa pero’ capire come un volo a 8000 metri non sia affatto impossibile.

Bene, ora pero’ resta da discutere l’incidente. Che genere di uccello potrebbe causare un simile danno ad un 757?

Al contrario di quanto si pensi, non serve assolutamente uno pterodattilo. Sicuramente tutti conoscerete la definizione fisica di forza, cioe’ una sollecitazione in grado di modificare lo stato di moto di un corpo. Un’altra variabile molto utilizzata, ed introdotta per la prima volta da Cartesio, e’ la quantita’ di moto, data dal prodotto tra la massa di un corpo e la velcoita’ con cui questo si muove. La quantita’ di moto e’ direttamente legata al concetto di forza, ma utile per descrivere il movimento di un oggetto. Pensateci bene, a parita’ di quantita’ di moto, un corpo grande che si muove con velocita’ piccola sara’ del tutto equivalente ad un corpo piccolo che si muove a velocita’ molto grande.

Bene, ora ragioniamo in termini scientifici. Quanto pesa un uccello? Mezzo kg? 1 kg? 10 kg? Non importa, supponiamo per praticita’ che il peso stimato sia di 5 Kg. A che velocita’ vola un uccello? Sicuramente non cosi’ alta. Se la quantita’ di moto e’ il prodotto massa per velocita’ e la massa e’ di 5 Kg, a quanto dovrebbe volare questo uccello? In realta’, il ragionamento e’ sbagliato. Non e’ l’uccello che vola cosi’ veloce, bensi’ e’ l’aereo che ha una velocita’ elevata. Entriamo nel discorso dei moti relativi. Se una macchina va contro un muro a 50Km/h si fa molto male. Se una macchina va a 50Km/h contro un’altra macchina che va a 50Km/h, lo scontro e’ equivalente a quello di una macchina che va a 100Km/h contro il muro. D’accordo?

Bene, se un uccello che vola a velocita’ trascurabile sbatte contro un aereo, questo incidente e’ equivalente a quello di un uccello che si muove alla velocita’ dell’aereo e sbatte contro il velivolo fermo.

A che velocita’ viaggia un 757? La velocita’ di crociera e’ di 860 Km/h. Poiche’ il boeing della Air China era partito solo da 20 minuti, supponiamo che andasse solo a 600 Km/h.

Bene, tenendo le stesse unita’di misura, anche se sbagliando perche’ si dovrebbe portare la velocita’ in metri al secondo, la quantita’ di moto di un uccello di 5 Kg che si scontra a 600 Km/h e’ di 3000 KgKm/h.

Con un paragone semplice semplice, questo urto e’ equivalente a quello di una massa di 300Kg che viaggia a 10 Km/h, capiamo dunque come il danno risultante sia assolutamente possibile.

Da questi calcoli, pensate ancora che l’urto sia impossibile? Non stiamo facendo supposizioni, stiamo parlando di numeri e di fisica.

Se non vi bastasse, vi voglio mostrare un link molto interessante:

BirdStrike

F111 dopo lo scontro con un pellicano

F111 dopo lo scontro con un pellicano

E’ il sito di una compagnia che si occupa di studiare il fenomeno del Birdstrike, cioe’ proprio dell’urto di aerei con uccelli. Questo e’ un problema molto importante in diversi aereoporti, soprattutto nella fase di partenza e atterraggio di aerei. Come potete vedere su questo siti, ci sono decine di casi documentati.

Ragionando su questi incidenti, dovete tenere conto anche del fatto che i materiali utilizzati subiscono un invecchiamento che tende a rendere meno flessibili le superfici dal momento che queste si induriscono a causa della continua esposizione ai raggi solari. A fianco e’ riportata la foto di un caccia F111 dopo lo scontro con un pellicano. Vedendo questa foto possono venire in mente due pensieri, il primo e’ che l’incidente del boeing e’ perfettamente comprensibile, il secondo e’ che poteva andare molto peggio.

Concludendo, il caso dell’incidente al Boeing 757 della Air China e’ perfettamente spiegabile in termini di scontro con un uccello. Non solo e’ possbile vedere voli migratori sopra gli 8000 metri, ma, causa l’alta velocita’ dell’aereo, lo scontro puo’ avere conseguenze anche molto gravi. Detto questo, e’ assolutamente fuori luogo parlare di scontro con dischi volanti.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

E portiamo lo smartphone anche nello spazio!

10 Mag

Come spesso si dice: la necessita’ stimola l’ingegno. Forse proprio questo sta capitando in un periodo di crisi in cui molti settori della ricerca stano soffrendo a causa dei ripetuti tagli dei governi.

Come sappaimo bene, e come discusso in questi post:

I lanci Spaziali del Futuro

Dove andiamo in vacanza? Nello spazio!

Dal turismo al traferimento nello spazio

Londra-New York in un’ora?

una delle agenzie che piu’ soffre a cuasa del diminuito budget e’ proprio la NASA. Nei post precedenti, abbiamo in particolare visto come, dopo la chiusura del programma Shuttle, l’ente americano versi in gravi difficolta’ perche’ per la prima volta nella sua storia si ritrova senza un mezzo proprietario per andare nello spazio e con dei finanziamenti che difficilmente le consentiranno di sviluppare un nuovo programma in tempi rapidi.

In questa ottica, molto lavoro si sta facendo grazie a compagnie private, interessate in primis ad un programma di turismo spaziale che potrebbe fruttare molti soldi, ma che grazie alla loro diponibilita’ finanziaria stanno dando importanti contributi anche nella ricerca della miglior soluzione per andare in orbita.

Dunque, se il trend continuera’ ad essere questo, e’ meglio pensare subito a soluzioni alternative anche per le alre missioni spaziali, in modo da trovare il miglior rapporto qualita’/prezzo per tutto.

Pensiamoci un attimo, tolto il discorso lanci di cui abbiamo parlato, qual e’ l’altra attivita’ spaziale che impiega grossi finanziamenti? Sicuramente quella legata alle missioni in orbita, cioe’ su satellite.

Bene, questo e’ il punto. Se possibile, si deve risparmiare sui satelliti ma ovviamente senza perdere funzioni necessarie al corretto svolgimento della missione o della ricerca. Questo discorso, affrontato anche dai vertici della stessa NASA, e’ molto importante per fare in modo che tutte le linee scientifiche dell’agenzia siano mantenute, senza perdere terreno in nessun campo.

Ora, cambiamo apparentemente discorso: qual e’ lo strumento tecnologico che tutti abbiamo? Sicuramente il telefono cellulare. Ormai, una grossa percentuale dei nostri telefoni sono dei cosiddetti “smartphone”.

Cosa e’ in grado di fare uno smartphone? Indipendentemente dal modello, ormai tutti hanno una fotocamera con piu’ o meno risoluzione, collegamenti internet, bluetooth, gps, registratore di suoni e immagini, ecc.

Bene, ora uniamo i due discorsi fatti. Stiamo cercando satelliti low cost da utilizzare in orbita, la tecnologia degli smartphone e’ evoluta e ormai a buon mercato.

Perche’ non mettere insieme queste due cose?

Il satellite PhoneSat

Il satellite PhoneSat

A questo ci ha gia’ pensato la NASA che infatti ha iniziato il programma “Small Spaceraft Technology”. Proprio nell’ambito di questi studi, e’ nato il programma PhoneSat che prevede l’utiizzo di sistemi basati sulla tecnologia dei cellulari per studiare satelliti a basso costo, basso peso e alte prestazioni. Ovviamente, non dovete pensare che i ricercatori hanno preso dei modelli di telefonino e li hanno mandati in orbita, ma la tecnologia utilizzata per realizzare questi prototipi sfrutta esattamente l’elettronica dei nostri smartphone.

Lo scorso 21 aprile, con il lancio dell’ultimo razzo Antares, e’ stato portato in orbita un piccolo satellite, dal peso inferiore a 10 Kg, dotato proprio di 3 telefonini-equivalenti, chiamati Alexander, Graham e Bell. Questa piccola scatola cubica e’ stata messa in orbita e ha raccolto dati fino al 27 aprile quando poi e’ ricaduta incendiandosi a contatto con l’atmosfera.

Se pensate che stia scherzando, ecco il link della pagina NASA relativa la programma Small Spacecraft Technology:

NASA, SST

Sempre nell’ottica del risparmio, il programma PhoneSat ha utilizzato un’analisi dei dati davvero molto carina. Invece di raccogliere i dati a terra e analizzarli in un centro di calcolo specifico, i dati sono stati resi pubblici per gli utenti che quindi hanno potuto analizzare indipendentemente le informazioni inviate dai telefoni in orbita, mettendo poi in condivisione con gli altri i loro risultati. Si e’ dunque trattato di un bellissimo esempio di “citizens science”, in cui tutti potevano partecipare e condividere informazioni con gli altri.

Attraverso le immagini inviate dalle fotocamere, e’ stato possibile ricostruire una mappa completa della Terra, come mostra questo esempio:

Immagini a bassa risoluzione di PhoneSat. Media e alta risoluzione in acquisizione

Immagini a bassa risoluzione di PhoneSat. Media e alta risoluzione in acquisizione

ottenuta incollando tra loro le diverse foto scattate. Ovviamente, in questo caso l’informazione della posizione misurata attraverso il GPS e’ fondamentale.

Ecco il sito ufficiale di PhoneSat, in cui trovate oltre alle immagini anche la descrizione del programma e le modalita’ di condivisione dei dati raccolti:

PhoneSat

Qualora fosse interessati, anche se il satellite e’ andato perso, potete ancora iscrivervi al programma per avere libero accesso ai dati raccolti.

Solo per completezza, una domanda lecita che ci si potrebbe fare e’: come sono stati inviati i dati? Come detto, siamo partiti dall’elettronica ormai di consumo degli smartphone. Per poter inviare i dati a terra pero’, i sistemi sono stati costruiti per utilizzare la banda 437.425 MHz che e’ quella maggiormente utilizzata dai radioamatori. In questo modo, e’ possibile far arrivare le informazioni dagli smartphone fino alla stazione di terra dove poi vengono condivisi tra tutti gli utenti.

Concludendo, i risultati di questo studio sono senza dubbio incoraggianti. Sfruttare soluzioni low cost nella costruzione dei satelliti sicuramente consentirebbe di risparmiare molti fondi e deviarli da queste attivita’, ormai di servizio, verso tematiche piu’ complesse in cui e’ richiesto un maggior afflusso di finanziamenti. PhoneSat continua dunque il suo lavoro, e il programma a breve termine prevede il lancio di altri sistemi migliorati al fine di ottenere dati sempre piu’ precisi e che, nel giro di poco tempo, potrebbero sostituire del tutto i vecchi sistemi satellitari molto piu’ costosi.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

E ora gli snowcircle

19 Feb

Di crop circle ne abbiamo parlato a sufficienza, mostrando i casi piu’ importanti rinvenuti nel mondo nel corso degli anni, ma soprattutto discutendo se fosse possibile che queste opere possano essere di origine aliena. Come visto, per tutti i cerchi analizzati, e su cui molto si e’ speculato nel corso degli anni, non abbiamo trovato elementi non conprensibili o che ci facessero pensare ad un’origine non umana dei cerchi:

21 Dicembre 2012: cerchi nel grano

Ancora sui cerchi nel grano

Errore nel cerchio di Santena

Come si realizza un cerchio nel grano

Nuovo cerchio, nuova data!

Nuovo cerchio a Povoletto

Inoltre, in un altro post:

Crop circle? No, sand circle!

Abbiamo discusso anche il caso dei sand circle, cioe’ di quelle opere, devo dire molto belle dal punto di vista artistico, comparse in diverse localita’ e realizzate sulla sabbia invece che sui campi di grano. Anche in quest’ultimo caso, gli autori dei cerchi non erano affatto misteriosi alieni proveniente da chissa’ dove, ma solo, si fa per dire vista la complessita’ delle linee, pesci palla intenti a realizzare le opere per depositare nel migliore dei modi le uova.

A questo punto, cambiamo nuovamente la “tela” utilizzata e parliamo invece di snowcircle, cioe’ di cerchi realizzati non sul grano, non sulla sabbia, bensi’ sulla neve.

Immaginate di trovarvi di fronte uno spettacolo del genere:

simon_beck

Questo e’ proprio quello che diversi sciatori si sono trovati di fronte in tantissime localita’ sciistiche e per cui sono rimasti letteralmente a bocca aperta.

Di cosa si tratta? Chi e’ l’autore di questi cerchi? Perche’ li ha realizzati?

Sorprendentemente, aprendo tantissimi siti catastrofisti, trovo al solito tanta speculazione su queste opere. I disegni in questione vengono presentati come opere misteriose realizzate nel corso della notte non si sa da chi, come e perche’. Come potete facilmente immaginare, il dito viene subito puntato verso forme di vita aliena o comunque creature intelligenti che avrebbero realizzato queste opere per lasciarci un messaggio cifrato o per mostrarci la loro presenza attraverso queste opere.

Niente di piu’ falso.

Le opere che potete vedere nelle foto, sono state realizzate da Simon Beck, un artista pre professione. Beck realizza la maggior parte di queste opere nella stazione sciistica di Les Arcs in Francia, dove trascorrere la maggior parte degli inverni. Per poter realizzare le sue opere, l’artista utilizza delle speciali racchette che gli consentono di spostarsi sul manto nevoso senza lasciare impronte durante il suo passaggio e nei tratti di raccordo dei suoi disegni.

Perche’ realizza queste opere?

Semplicemente per realizzare un’opera d’arte. Pensate che ciascun disegno richiede un lavoro fino anche a dieci ore.

Ora, stiamo parlando di un artista famoso in tutto il mondo e lei cui opere sono molto presenti anche su internet. Trovo assurdo che alcuni siti catastrofisti si divertano a cercare di convincere le persone che queste opere siano fatte da alieni o abbiano un’origine sconosciuta. Basta fare una semplice ricerca su internet per trovare tutte le risposte a qualsiasi domanda. Non c’e’ assolutamente niente di misterioso o di nascosto in queste opere. Ripeto, basta cercare “Simon Beck” su un qualsiasi motore di ricerca per trovare tutte le informazioni che volete ma anche le foto delle sue tante opere realizzate presso le stazioni sciistiche di mezzo mondo.

Purtroppo, alcuni siti cercano sempre di sfruttare la poca voglia dell’utente medio nel cercare autonomamente informazioni. Fate sempre attenzione a questa pratica sempre piu’ diffusa. non possiamo sempre puntare il dito contro determinati siti se poi la maggior parte della colpa e’ in realta’ degli utenti troppo disratti o poco propensi nel cercare informazioni da soli sulla rete.

 

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.