Tag Archives: secoli

17 equazioni che hanno cambiato il mondo

26 Ago

Nel 2013 Ian Stewart, professore emerito di matematica presso l’università di Warwick, ha pubblicato un libro molto interessante e che consiglio a tutti di leggere, almeno per chi non ha problemi con l’inglese. Come da titolo di questo articolo, il libro si intitola “Alla ricerca dello sconosciuto: 17 equazioni che hanno cambiato il mondo”.

Perchè ho deciso di dedicare un articolo a questo libro?

In realtà, il mio articolo, anche se, ripeto, è un testo che consiglio, non vuole essere una vetrina pubblicitaria a questo testo, ma l’inizio di una riflessione molto importante. Queste famose 17 equazioni che, secondo l’autore, hanno contribuito a cambiare il mondo che oggi conosciamo, rappresentano un ottimo punto di inizio per discutere su alcune importanti relazioni scritte recentemente o, anche, molti secoli fa.

Come spesso ripetiamo, il ruolo della fisica è quello di descrivere il mondo, o meglio la natura, che ci circonda. Quando i fisici fanno questo, riescono a comprendere perchè avviene un determinato fenomeno e sono altresì in grado di “predirre” come un determinato sistema evolverà nel tempo. Come è possibile questo? Come è noto, la natura ci parla attraverso il linguaggio della matematica. Modellizare un sistema significa trovare una o più equazioni che  prendono in considerazione i parametri del sistema e trovano una relazione tra questi fattori per determinare, appunto, l’evoluzione temporale del sistema stesso.

Ora, credo che sia utile partire da queste 17 equzioni proprio per riflettere su alcuni importanti risultati di cui, purtroppo, molti ignorano anche l’esistenza. D’altro canto, come vedremo, ci sono altre equazioni estremanete importanti, se non altro per le loro conseguenze, che vengono studiate a scuola senza però comprendere la potenza o le implicazioni che tali risultati hanno sulla natura.

Senza ulteriori inutili giri di parole, vi presento le 17 equazioni, ripeto secondo Stewart, che hanno cambiato il mondo:

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Sicuramente, ognuno di noi, in base alla propria preparazione, ne avrà riconosciute alcune.

Passiamo attraverso questa lista per descrivere, anche solo brevemente, il significato e le implicazioni di questi importanti risultati.

Teorema di Pitagora

Tutti a scuola abbiamo appreso questa nozione: la somma dell’area dei quadrati costruiti sui cateti, è pari all’area del quadrato costruito sull’ipotenusa. Definizione semplicissima, il più delle volte insegnata come semplice regoletta da tenere a mente per risolvere esercizi. Questo risultato è invece estremamente importante e rappresenta uno dei maggiori assunti della geometria Euclidea, cioè quella che tutti conoscono e che è relativa al piano. Oltre alla tantissime implicazioni nello spazio piano, la validità del teorema di Pitagora rappresenta una prova indiscutibile della differenza tra spazi euclidei e non. Per fare un esempio, questo risultato non è più vero su uno spazio curvo. Analogamente, proprio sfruttando il teorema di Pitagora, si possono fare misurazioni sul nostro universo, parlando proprio di spazio euclideo o meno.

 

Logaritmo del prodotto

Anche qui, come riminescenza scolastica, tutti abbiamo studiato i logaritmi. Diciamoci la verità, per molti questo rappresentava un argomento abbastanza ostico e anche molto noioso. La proprietà inserita in questa tabella però non è affatto banale e ha avuto delle importanti applicazioni prima dello sviluppo del calcolo informatizzato. Perchè? Prima dei moderni calcolatori, la trasformazione tra logaritmo del prodotto e somma dei logaritmi, ha consentito, soprattutto in astronomia, di calcolare il prodotto tra numeri molto grandi ricorrendo a più semplici espedienti di calcolo. Senza questa proprietà, molti risultati che ancora oggi rappresentano basi scientifiche sarebbero arrivati con notevole ritardo.

 

Limite del rapporto incrementale

Matematicamente, la derivata di una funzione rappresenta il limite del rapporto incrementale. Interessante! Cosa ci facciamo? La derivata di una funzione rispetto a qualcosa, ci da un’indicazione di quanto quella funzione cambi rispetto a quel qualcosa. Un esempio pratico è la velocità, che altro non è che la derivata dello spazio rispetto al tempo. Tanto più velocemente cambia la nostra posizione, tanto maggiore sarà la nostra velocità. Questo è solo un semplice esempio ma l’operazione di derivata è uno dei pilastri del linguaggio matematico utilizzato dalla natura, appunto mai statica.

 

Legge di Gravitazione Universale

Quante volte su questo blog abbiamo citato questa legge. Come visto, questa importante relazione formulata da Newton ci dice che la forza agente tra due masse è direttamente proporzionale al prodotto delle masse stesse e inversamente proporzionale al quadrato della loro distanza. A cosa serve? Tutti i corpi del nostro universo si attraggono reciprocamente secondo questa legge. Se il nostro Sistema Solare si muove come lo vediamo noi, è proprio per il risultato delle mutue forze agenti sui corpi, tra le quali quella del Sole è la componente dominante. Senza ombra di dubbio, questo è uno dei capisaldi della fisica.

 

Radice quadrata di -1

Questo è uno di quei concetti che a scuola veniva solo accennato ma che poi, andando avanti negli studi, apriva un mondo del tutto nuovo. Dapprima, siamo stati abituati a pensare ai numeri naturali, agli interi, poi alle frazioni infine ai numeri irrazionali. A volte però comparivano nei nostri esercizi le radici quadrate di numeri negativi e semplicemente il tutto si concludeva con una soluzione che “non esiste nei reali”. Dove esiste allora? Quei numeri non esistono nei reali perchè vivono nei “complessi”, cioè in quei numeri che arrivano, appunto, da radici con indice pari di numeri negativi. Lo studio dei numeri complessi rappresenta un importante aspetto di diversi settori della conoscenza: la matematica, l’informatica, la fisica teorica e, soprattutto, nella scienza delle telecomunicazioni.

 

Formula di Eulero per i poliedri

Questa relazione determina una correlazione tra facce, spigoli e vertici di un poliedro cioè, in parole semplici, della versione in uno spazio tridimensionale dei poligoni. Questa apparentemente semplice relazione, ha rappresentato la base per lo sviluppo della “topologia” e degli invarianti topologici, concetti fondamentali nello studio della fisica moderna.

 

Distribuzione normale

Il ruolo della distribuzione normale, o gaussiana, è indiscutibile nello sviluppo e per la comprensione dell’intera statistica. Questo genere di curva ha la classica forma a campana centrata intorno al valore di maggior aspettazione e la cui larghezza fornisce ulteriori informazioni sul campione che stiamo analizzando. Nell’analisi statistica di qualsiasi fenomeno in cui il campione raccolto sia statisticamente significativo e indipendente, la distribuzione normale ci fornisce dati oggettivi per comprendere tutti i vari trend. Le applicazioni di questo concetto sono praticametne infinite e pari a tutte quelle situazioni in cui si chiama in causa la statistica per descrivere un qualsiasi fenomeno.

 

Equazione delle Onde

Questa è un’equazione differenziale che descrive l’andamento nel tempo e nello spazio di un qualsiasi sistema vibrante o, più in generale, di un’onda. Questa equazione può essere utilizzata per descrivere tantissimi fenomeni fisici, tra cui anche la stessa luce. Storicamente poi, vista la sua importanza, gli studi condotti per la risoluzione di questa equazione differenziale hanno rappresentato un ottimo punto di partenza che ha permesso la risoluzione di tante altre equazioni differenziali.

 

Trasformata di Fourier

Se nell’equazione precedente abbiamo parlato di qualcosa in grado di descrivere le variazioni spazio-temporali di un’onda, con la trasformata di Fourier entriamo invece nel vivo dell’analisi di un’onda stessa. Molte volte, queste onde sono prodotte dalla sovrapposizione di tantissime componenti che si sommano a loro modo dando poi un risultato finale che noi percepiamo. Bene, la trasformata di Fourier consente proprio di scomporre, passatemi il termine, un fenomeno fisico ondulatorio, come ad esempio la nostra voce, in tante componenti essenziali più semplici. La trasformata di Fourier è alla base della moderna teoria dei segnali e della compressione dei dati nei moderni cacolatori.

 

Equazioni di Navier-Stokes

Prendiamo un caso molto semplice: accendiamo una sigaretta, lo so, fumare fa male, ma qui lo facciamo per scienza. Vedete il fumo che esce e che lentamente sale verso l’alto. Come è noto, il fumo segue un percorso molto particolare dovuto ad una dinamica estremamente complessa prodotta dalla sovrapposizione di un numero quasi infinito di collissioni tra molecole. Bene, le equazioni differenziali di Navier-Stokes descrivono l’evoluzione nel tempo di un sistema fluidodinamico. Provate solo a pensare a quanti sistemi fisici includono il moto di un fluido. Bene, ad oggi abbiamo solo delle soluzioni approssimate delle equazioni di Navier-Stokes che ci consentono di simulare con una precisione più o meno accettabile, in base al caso specifico, l’evoluzione nel tempo. Approssimazioni ovviamente fondamentali per descrivere un sistema fluidodinamico attraverso simulazioni al calcolatore. Piccolo inciso, c’è un premio di 1 milione di dollari per chi riuscisse a risolvere esattamente le equazioni di Navier-Stokes.

 

Equazioni di Maxwell

Anche di queste abbiamo più volte parlato in diversi articoli. Come noto, le equazioni di Maxwell racchiudono al loro interno i più importanti risultati dell’elettromagnetismo. Queste quattro equazioni desrivono infatti completamente le fondamentali proprietà del campo elettrico e magnetico. Inoltre, come nel caso di campi variabili nel tempo, è proprio da queste equazioni che si evince l’esistenza di un campo elettromagnetico e della fondamentale relazione tra questi concetti. Molte volte, alcuni soggetti dimenticano di studiare queste equazioni e sparano cavolate enormi su campi elettrici e magnetici parlando di energia infinita e proprietà che fanno rabbrividire.

 

La seconda legge della Termodinamica

La versione riportata su questa tabella è, anche a mio avviso, la più affascinante in assoluto. In soldoni, la legge dice che in un sistema termodinamico chiuso, l’entropia può solo aumentare o rimanere costante. Spesso, questo che è noto come “principio di aumento dell’entropia dell’universo”, è soggetto a speculazioni filosofiche relative al concetto di caos. Niente di più sbagliato. L’entropia è una funzione di stato fondamentale nella termodinamica e il suo aumento nei sistemi chiusi impone, senza mezzi termini, un verso allo scorrere del tempo. Capite bene quali e quante implicazioni questa legge ha avuto non solo nella termodinamica ma nella fisica in generale, tra cui anche nella teoria della Relatività Generale di Einstein.

 

Relatività

Quella riportata nella tabella, se vogliamo, è solo la punta di un iceberg scientifico rappresentato dalla teoria della Relatività, sia speciale che generale. La relazione E=mc^2 è nota a tutti ed, in particolare, mette in relazione due parametri fisici che, in linea di principio, potrebbero essere del tutto indipendenti tra loro: massa ed energia. Su questa legge si fonda la moderna fisica degli acceleratori. In questi sistemi, di cui abbiamo parlato diverse volte, quello che facciamo è proprio far scontrare ad energie sempre più alte le particelle per produrne di nuove e sconosciute. Esempio classico e sui cui trovate diversi articoli sul blog è appunto quello del Bosone di Higgs.

 

Equazione di Schrodinger

Senza mezzi termini, questa equazione rappresenta il maggior risultato della meccanica quantistica. Se la relatività di Einstein ci spiega come il nostro universo funziona su larga scala, questa equazione ci illustra invece quanto avviene a distanze molto molto piccole, in cui la meccanica quantistica diviene la teoria dominante. In particolare, tutta la nostra moderna scienza su atomi e particelle subatomiche si fonda su questa equazione e su quella che viene definita funzione d’onda. E nella vita di tutti i giorni? Su questa equazione si fondano, e funzionano, importanti applicazioni come i laser, i semiconduttori, la fisica nucleare e, in un futuro prossimo, quello che indichiamo come computer quantistico.

 

Teorema di Shannon o dell’informazione

Per fare un paragone, il teorema di Shannon sta ai segnali così come l’entropia è alla termodinamica. Se quest’ultima rappresenta, come visto, la capicità di un sistema di fornire lavoro, il teorema di Shannon ci dice quanta informazione è contenuta in un determinato segnale. Per una migliore comprensione del concetto, conviene utilizzare un esempio. Come noto, ci sono programmi in grado di comprimere i file del nostro pc, immaginiamo una immagine jpeg. Bene, se prima questa occupava X Kb, perchè ora ne occupa meno e io la vedo sempre uguale? Semplice, grazie a questo risultato, siamo in grado di sapere quanto possiamo comprimere un qualsiasi segnale senza perdere informazione. Anche per il teorema di Shannon, le applicazioni sono tantissime e vanno dall’informatica alla trasmissione dei segnali. Si tratta di un risultato che ha dato una spinta inimmaginabile ai moderni sistemi di comunicazione appunto per snellire i segnali senza perdere informazione.

 

Teoria del Caos o Mappa di May

Questo risultato descrive l’evoluzione temporale di un qualsiasi sistema nel tempo. Come vedete, questa evoluzione tra gli stati dipende da K. Bene, ci spossono essere degli stati di partenza che mplicano un’evoluzione ordinata per passi certi e altri, anche molto prossimi agli altri, per cui il sistema si evolve in modo del tutto caotico. A cosa serve? Pensate ad un sistema caotico in cui una minima variazione di un parametro può completamente modificare l’evoluzione nel tempo dell’intero sistema. Un esempio? Il meteo! Noto a tutti è il cosiddetto effetto farfalla: basta modificare di una quantità infinitesima un parametro per avere un’evoluzione completamente diversa. Bene, questi sistemi sono appunto descritti da questo risultato.

 

Equazione di Black-Scholes

Altra equazione differenziale, proprio ad indicarci di come tantissimi fenomeni naturali e non possono essere descritti. A cosa serve questa equazione? A differenza degli altri risultati, qui entriamo in un campo diverso e più orientato all’uomo. L’equazione di Black-Scholes serve a determinare il prezzo delle opzioni in borsa partendo dalla valutazione di parametri oggettivi. Si tratta di uno strumento molto potente e che, come avrete capito, determina fortemente l’andamento dei prezzi in borsa e dunque, in ultima analisi, dell’economia.

 

Bene, queste sono le 17 equazioni che secondo Stewart hanno cambiato il mondo. Ora, ognuno di noi, me compreso, può averne altre che avrebbe voluto in questa lista e che reputa di fondamentale importanza. Sicuramente questo è vero sempre ma, lasciatemi dire, questa lista ci ha permesso di passare attraverso alcuni dei più importanti risultati storici che, a loro volta, hanno spinto la conoscenza in diversi settori. Inoltre, come visto, questo articolo ci ha permesso di rivalutare alcuni concetti che troppo spesso vengono fatti passare come semplici regolette non mostrando la loro vera potenza e le implicazioni che hanno nella vita di tutti i giorni e per l’evoluzione stessa della scienza.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Metano su Marte: c’e’, non c’e’, c’era?

26 Set

Nella sezione:

Hai domande o dubbi

e’ stato richiesto un argomento molto interessante e attuale. Come potete vedere, si chiede un aggiornamento sulle ultime misure fatte da Curiosity, il rover che sta eplorando Marte, alla luce della notizia, tanto pubblicizzata, della concentrazione minore rispetto alle aspettative di metano. Come anticipato, si tratta di un argomento molto interessante e scientificamente importante. Purtroppo, anche questa volta, molti giornali e siti si sono lanciati in notizie eclatanti, senza pero’ spiegare in dettaglio qual e’ il significato di questo risultato, ma soprattutto cosa ci si aspetta per il futuro.

Per chi volesse maggiori informazioni sulla missione e sulle scoperte fatte, abbiamo parlato di Curiosity in questi post:

Curiosity: scoperta sensazionale?

– Curiosity e gli UFO

– Curiosity e gli UFO: dopo le foto, il video. 

Ecco la scoperta di Curiosity

Detto questo, e’ interessante ripercorrere la storia del metano su Marte, ragionando soprattutto su che cosa questa misura significihi.

Cerchiamo di ragionare insieme. Come sapete, a parte per il discorso ufo e avvistamenti vari che lascia il tempo che trova, uno degli obiettivi dell’esporazione spaziale e’, tra i tanti altri, quello di capire se c’e’ vita sugli altri pianeti del Sistema Solare o anche se in passato ci sono state le condizioni affinche’ una qualche forma di vita si sia sviluppata.

Fin qui ci siamo. Ogni qual volta si parla di condizioni adatte alla vita, qual e’ il primo parametro che viene citato? Ovviamente la presenza di acqua. Il motivo di questo e’ scontato per tutti e non c’e’ bisogno di replicarlo. Molte missioni osservative di Marte hanno dimostrato come in passato ci fosse molta acqua sul pianeta rosso. Addirittura sono stati ossservati i segni tipici lasciati da fiumi, laghi e mari, come solchi, ammassi di fanghi essiccati, letti di fiumi ormai asciutti, ecc. Inoltre, sulle calotte di Marte e’ presente ghiaccio. Queste distese hanno anche una variabilita’ stagionale cosi’ come avviene sulla Terra. Anche oggi ci sono evidenze di acqua in forma liquida, anche se in misura estremamente minore in superificie.

Bene, dunque su Marte c’e’ acqua. Questo significa che c’e’ vita? Assolutamente no. Per dirlo in termini matematici, la presenza di acqua sul pianeta e’ una condizione necessaria per sviluppare determinate forme di vita. Questa condizione non e’ pero’ sufficiente, cioe’ se c’e’ vita c’e’ acqua, ma non e’ vero il viceversa.

A questo punto, non avendo visto nessun marziano salutarci attraverso le telecamere dei rover, dobbiamo cercare qualche altro parametro. In questo caso, quello che possiamo vedere e’ se c’e’ metano in atmosfera.

Perche’ e’ importante la presenza di metano?

Prendiamo come esempio la Terra, dove non credo di dover dimostrare che c’e’ vita. L’atmosfera terrestre e’ molto ricca di metano. Da dove viene? Circa il 90% del metano che troviamo nella nostra atmosfera viene da forme vitali. Che significa? Una frazione viene dalla decomposizione di specie che rilasciano questo gas, mentre gran parte viene prodotto direttamente dal metabolismo di alcuni animali. Come sicuramente saprete, monitorare il metano nella nostra atmosfera e’ molto importante per via dell’effetto serra portato da questo gas. Uno dei contributi maggiori al metano viene dalla digestione delle mucche.

Detto questo, capite bene come la presenza di metano in atmosfera puo’ essere in qualche modo legato alla presenza di vita su un pianeta.

Fin qui ci siamo, ma torneremo su questi discorsi a breve per continuare a portare avanti il nostro ragionamento.

Prima di Curiosity, c’erano delle misure della quantita’ di metano nell’atmosfera di Marte? Certamente si, misure, anche se tra loro abbastanza discordi, venivano da osservazioni con telescopi da Terra e da satelliti in orbita intorno al pianeta rosso. Tra queste, vi erano alcune misurazioni che mostravano dati abbastanza entusiasmanti.

Senza troppi giri di parole, vi mosro un’immagine in falsi colori ottenuta partendo dai dati della sonda Mars Express nel 2004:

 

Metano nell'atmosfera di Marte. Fonte: Mars Explorer

Metano nell’atmosfera di Marte. Fonte: Mars Explorer

Cosa rappresenta? Le diverse colorazioni indicano la concentrazione piu’ o meno alta di metano nell’atmosfera di Marte. Come vedete, seguendo la scala in basso, ci sono dei punti che appaiono molto rossi, cioe’ con concentrazioni anche fino a 30 parti per miliardo (ppb) di metano.

Dunque? Su Marte c’e’ o c’era acqua, su Marte c’e’ metano quindi su Marte c’e’ vita!

Questo ragionamento potrebbe esssere azzardato e scientificamente non corretto. Come detto prima, sempre in termini matematici, avere acqua e’ una condizione necessaria, avere metano e’ una condizione necessaria, avere acqua e metano e’ una condizione necessaria, ma nessuna delle due, neanche simultaneamente, e’ una condizione sifficiente.

Non poter gridare alla scoperta del secolo, non significa non fare ricerca. L’evidenza di questi rilasci in atmosfera meritano di essere studiati in dettaglio per vedere se effettvamente sono sinonimo di vita oppure no.

Detto questo, cosa facciamo? Mandiamo Curiosity a vedere direttamente sulla superficie di Marte. Tra i tanti strumenti, il rover ha a disposizione spettrometri pensati proprio per misurare le concentrazioni di gas in atmosfera.

Cosa troviamo?

Come annunciato in questi giorni, Curiosity non ha trovato le concentrazioni sperata di metano. I valori misurati, ponderati su diverese analisi fatte in periodi diversi dell’anno marziano, hanno mostrato valori massimi intorno a 2 parti per miliardo, cioe’ molto meno di quello che si pensava e che e’ stato mostrato nei dati di Mars Express.

A questo punto, un po’ con l’amaro in bocca, cosa dobbiamo dire?

Molte fonti chiudono il discorso dicendo che non c’e’ vita su Marte, mentre altre si appellano al fatto che ci sono errori nella misura o che la vita c’era in passato.

Per ragionare su queste affermazioni e’ necessario riprendere il discorso metano in atmosfera.

Abbiamo detto che sulla Terra abbiamo una concentrazione di circa 1700 ppb di metano. I dati di Mars explorer mostravano picchi da 10-20 ppb. Confrontate tra loro i due numeri. Come vedete, sono profondamente diversi tra loro. Questo non deve portarvi fuori strada. Come detto prima, sulla Terra ci sono, ad esempio, le mucche, su Marte vi aspettate di trovare al massimo qualche batterio.

E’ vero pero’ che Curiosity sta osservando una frazione molto ristretta della superficie marziana, il cratere Gale. Per quanto esteso, questo campione non e’ rappresentativo di tutto il pianeta. Questa e’ una riflessione ragionevole. Notiamo pero’ che se ci fossero forme di vita batteriche, queste si dovrebbero sparpagliare per tutto il pianeta, non solo in determinati punti specifici. Tra l’altro, il cratere Gale e’ stato scelto per le sue proprieta’, per la presenza in passato di corsi d’acqua, insomma se c’e’ vita, dovrebbe essere anche in questo punto.

Torniamo pero’ ai dati di Mars Explorer. Su questa mappa abbiamo visto dei rilasci molto localizzati di metano, non certo un’atmosfera uniforme. Bene, proprio questa particolarita’, ci porta a pensare che il rilascio potrebbe essere causato da altro, non necessariamente da forme di vita.

Come anticipato, sulla Terra il contributo maggiore al metano in atmosfera viene, in qualche modo, da forme di vita. Queste pero’ non sono le uniche sorgenti di questo gas. Esistono processi geologici in grado di produrre metano e scaricarlo in atmosfera. Si tratta, nel nostro caso, di contributi minori rispetto a quelli delle forme di vita, ma comunque presenti e conosciuti. Se su Marte non c’e’ vita, ci potrebbero pero’ essere fenomeni analoghi, e questo spiegherebbe anche la minor concentrazione di metano in atmosfera. Altra ipotesi possibile e’ che su Marte sia presente “olivina”, un minerale che a contatto con l’acqua produce un altro minerale detto “serpentina”. In questo processo viene emesso metano. Abbiamo prove di questo? Certo, l’olivina e’ molto abbondante su Marte sia in superificie che nel sottosuolo. Perche’ pero’ in punti localizzati? Semplice, perche’ in quei punti ci potrebbero essere ancora serbatoi di acqua che sono andati in contatto con il minerale rilasciando metano.

Altra ipotesi che si sta facendo strada in queste ore e’ che oggi non ci sia vita su Marte, ma che magari ci fosse stata in passato.

Possibile questo? Come abbiamo visto, il metano prodotto in qualche modo arriva in atmosfera. Poi? Se il metano rimanesse stabile per sempre, allora sulla Terra, per fare un esempio, la sua concentrazione in atmosfera dovrebbe aumentare linearmente grazie ai continui apporti dagli esseri viventi. In realta’, il metano ha un tempo di vita abbastanza lungo, ma a causa della radiazione proveniente dal sole, viene scisso formando altri gas. La vita media di una molecola di metano in atmosfera e’ intorno a 300-400 anni.

Attenzione, allora e’ possibile che in passato ci sia stata la vita su Marte ed ora non c’e’ piu’ e anche il metano prodotto e’ scomparso. Questo non e’ del tutto vero dal momento che un organismo vivente produce metano ma anche un organismo in decomposizione produce metano. Inoltre, organismi decomposti nel sottosuolo, formano giacimenti di olii che non sono stai assolutamente osservati su Marte, pensate anche solo alla formazione di petrolio.

Detto questo, Curiosity non ha trovato la quantita’ di metano che ci si aspettava. I valori precedenti osservati, come visto rilasci localizzati, possono essere dovuti a fenomeni di natura geologica, che nulla hanno a che fare con la vita.

E’ altresi’ vero che Curiosity ha fatto le sue misure su una superficie ridotta di Marte e inoltre che si e’ limitata a raccogliere campioni a sua portata, cioe’ fino ad 1 metro di altezza da Terra.

Fatte queste considerazioni, la matassa non e’ ancora sbrogliata del tutto. Fatte salve le misure degli anni precedenti e queste di Curiosity, ci deve essere un processo non biologico che ha prodotto metano in atmosfera. Mi sento quasi di escludere del tutto che i rilasci osservati siano di natura biologica, ma questa e’ una mia considerazione personale.

Come studiare il problema?

Semplice, sono gia’ in fase di studio nuove missioni per Marte. La missione Exomars prevede nel 2016 la messa in orbita intorno al pianeta rosso di un satelite per misurazioni dei gas e nel 2018 due nuovi rover in superficie. Questa missione e’ gestita sia dalla NASA che dalla nostra ESA. Oltre a questo, il contributo italiano a questa missione e’ davvero notevole sia dal punto di vista della ricerca che di componentistica realizzata dalle nostre aziende.

Missioni di questo tipo potrebbero aiutarci a capire meglio l’origine del metano e dare una risposta definitiva sulla presenza o meno di vita su Marte.

Ultimissima considerazione, dire non c’e’ metano e’ equivalente a dire non c’e’ vita? Assolutamente no. Anche qui sulla Terra conosciamo diverse forme batteriche che non producono questo gas nel loro metabolismo. Questo ci fa capire nuovamente che questa non e’ una condicio sine qua non. Anche avere tantissimo metano non significa necessariamente avere vita. Pensate, ad sempio, a Titano, satellite di Saturno. Qui l’atmosfera e’ pregna di metano, ci sono laghi di metano, precipitazioni di metano, eppure, a nessuno verrebbe in mente di cercare la vita su Titano.

Come vedete, il discorso e’ sempre aperto, e, al momento, non possiamo certo escludere o dare per certa una qualche forma di vita su Marte. Le ricerche future potranno aiutarci a meglio comprendere questi aspetti o magari anche solo a capire se in passato si possano essere sviluppate forme di vita su qualche pianeta del Sistema Solare.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Il miracolo del sangue di San Gennaro

11 Ago

Nella sezione:

Hai domande o dubbi?

e’ stato richiesto un argomento davvero molto interessante. Come potete leggere, ci e’ stato chiesto di scrivere un articolo sul cosiddetto “miracolo del sangue di San Gennaro”. Credo che questo argomento sia davvero molto interessante perche’, in particolare, esistono due scuole di pensiero molto rigide a riguardo: quelli che credono al miracolo e quelli che invece credono che la scienza abbia gia’ spiegato tutto, mostrando la natura non miracolosa del fatto.

In realta’, cosi’ come spesso avviene su questo blog, non esiste una spiegazione certa e comunemente accettata per la liquefazione del sangue di San Gennaro. Esistono delle ipotesi molto plausibili, ma che hanno subito e continuano a subire molte critiche anche da addetti ai lavori non pienamnete convinti della spiegazione.

Come nostra abitudine, cerchiamo dunque di analizzare in dettaglio la cosa, ragionando in modo autonomo e cercando, qualora ce ne fossero, di provare a rispondere ai punti ancora scoperti della questione.

Partiamo da quello che tutti conoscono: in tre date particolari, il 19 settembre, il sabato che precede la prima domenica di maggio e il 16 dicembre, a Napoli viene organizzata una grande processione in cui viene mostrato il reliquiario con il sangue di San Gennaro. Durante questo rito, il reliquiario viene mosso in modo molto rituale e se il sangue si liquefa allora questo viene visto come un buon auspicio per la citta’. Inutile dire che questa manifestazione e’ molto sentita dai napoletani, da sempre molto devoti al Santo. Proprio per questo motivo, come riprenderemo in seguito, e’ molto difficile provare a dare spiegazioni razionali della cosa, senza incorrere nel nervosismo dei fedeli partenopei.

In particolare, il reliquiario contiene al suo interno due ampolle, una riepita piu’ o meno fino a meta’ e l’altra con poche tracce di “sangue”. Per il momento, permettetemi di scrivere “sangue” tra virgolette perche’ questo e’ uno dei punti maggiormente discussi della questione.

Per inquadrare meglio il problema, ripercorriamo la storia di queste reliquie e ovviamente quella del santo.

Per essere precisi, la storia stessa di San Gennaro e’ molto fumosa e, proprio per questo motivo, diverse fonti hanno addirittura messo in discussione l’esistenza stessa del Santo. Il 19 settembre 305, durante la persecuzione di Diocleziano verso i Cristiani, si racconta che Gennaro, vescovo di Benevento, venne decapitato insieme ad altri fedeli nella solfatara di Pozzuoli. Secondo altre fonti, Gennaro, nella stessa data, venne destinato ai leoni. Questa e’ gia’ una prima incongruenza della storia, ma, nonostante la parte centrale non coincida, la fine e’ sempre la stessa: qualora fosse esisitito, Gennaro sarebbe stato un martire cristiano.

Come usanza nei confronti dei martiri, il sangue ed il corpo di Gennaro vennero raccolti e conservati.

Le cerimonie in onore di San Gennaro vennero istituite nel 1337 ma la prima liquefazione venne osservata il 17 agosto 1389. Cosa significa? Come e’ facile immaginare, il sangue raccolto all’interno delle ampolle appare in forma solida e scura. Per liquefazione si intende il ritorno del sangue allo stato fluido. Detto in altri termini: il sangue ritorna nel suo stato normale, come se fosse appena sgorgato dalla testa del santo. Da allora, come anticipato, il miracolo del sangue viene tentato 3 volte l’anno: nell’anniversario della morte, nell’anniversario dello spostamento dei resti nelle catacombe di Capodimonte e nell’anniversario di una forte eruzione del Vesuvio, durante la quale i napoletani si affidarono completamente al Santo che risparmio’ la citta’.

Analizziamo subito questi fatti: dal 1389, si sono avute circa 11000 liquefazioni del sangue. Il miracolo si e’ ripetuto “quasi” sempre, tranne qualche sparuto caso. In qualche occasione, la liquefazione si e’ avuta anche in date diverse da quelle ufficiali. Teniamo a mente questi particolari, perche’ tra poco entreranno prepontentemente nella discussione.

Bene, abbiamo capito l’origine e la tipologia del miracolo. Ora, cosa possiamo dire a riguardo? Si tratta di un miracolo o esiste una spiegazione scientifica?

Come anticipato, il discorso non e’ semplice, tantomeno con una spiegazione univoca.

Dal punto di vista scientifico, il sangue umano conservato in un’ampolla sigillata coagula diventando solido. Ora, e’ possibile che si rompa il coagulo e il sangue possa ritornare allo stato liquido, ma questo non puo’ certo avvenire con la regolarita’ mostrata dalla reliquia del santo e soprattutto con lo stesso comportamento per secoli.

L’ipotesi di spiegazione scientifica piu’ accettata, e’ stata data nel 1991 da alcuni ricercatori del CICAP. La spiegazione del comportamento del fluido sarebbe da ricercarsi nella tissotropia. Con questo termine si intendono dei materiali, normalmente in uno stato solido o molto denso, che, a seguito di sollecitazioni meccaniche, possono assumere lo stato fluido per un certo tempo. Interrote le sollecitazioni il materiale torna allo stato solido. In natura esistono diversi composti con questa prorieta’. L’esempio classico che viene fatto e’ quello della salsa Ketchup che quando viene scossa si liquefa riuscendo ad uscire dall’orifizio praticato nel contenitore.

Oltre ad aver proposto la spiegazione, i ricercatori del CICAP hanno anche realizzato una sospensione con proprieta’ tissotropiche e aspetto molto simile a quello del fluido contenuto nelle ampolle. Per realizzare la sospensione sono stati utilizzati: cloruro ferrico, carbonato di calcio, cloruro di sodio e acqua. Lo studio dei ricercatori e la successiva prova sperimentale sono stati pubblicati addirittura sulla illustre rivista Nature, oltre ad avere enorme eco sia sui giornali italiani che esteri.

Dunque? Tutto spiegato, quello cotenuto nelle ampolle non e’ sangue ma un materiale tissotropico e non si tratta assolutamente di un miracolo. In realta’, come anticipato, non e’ assolutamente cosi’. La spiegazione data ha creato un turbine di discussioni che durano ancora oggi.

Proviamo ad analizzare singolarmente le critiche e le successive risposte date.

Per prima cosa, e’ possibile che al tempo si sia realizzato un materiale con queste caratteristiche? Assolutamente si. I composti utilizzati dal CICAP sono noti da secoli e anche molto abbondanti nella zona del napoletano. Il cloruro ferrico, sotto forma di miosite, e’ molto abbondante sulle pendici del Vesuvio. Il carbonato di calcio e’ la molecole principale, quasi il 95%, che compone il guscio d’uovo. Il cloruro di sodio, il sale per intenderci, e’ disponibile ovunque. Dunque, e’ possibile che un composto del genere sia stato realizzato secoli fa in quella zona.

Attenzione pero’, ci sono altri due punti molto importanti e sui quali la discussione e’ ancora in corso. Prima di tutto, il composto realizzato dal CICAP rimane tissotropico per soli 2 anni. Il miracolo del sangue di San Gennaro avviene da secoli. Inoltre, il ricorso ad un materiale di questo tipo non spiegherebbe assolutamente come mai in alcune occasioni, nonostante i ripetuti scossoni al reliquiario, il sangue non si sia sciolto. Analogamente, non si capisce perche’, in alcune occasioni, il sangue era gia’ in forma liquida prima della processione, senza che qualcuno lo avesse scosso.

C’e’ anche un altro punto fondamentale, nel 1902 venne fatta una prima analisi spettroscopica delle ampolle e questi studi mostrarono la presenza di ossiemoglobina, cioe’ la combinazione del pigmento contenuto nei globuli rossi con l’ossigeno. Detto in altri termini, all’interno delle ampolle c’e’ sangue e non qualche strano gel artificiale.

Dunque? Cosa possiamo dire a riguardo?

Iniziamo dagli studi spettroscopici. Come detto, la prima analisi spettroscopica, con un sistema a prisma, venne fatta nel 1902. La presenza di ossiemoglobina venne pero’ confermata anche da analisi successive. Secondo alcuni biologi dell’universita’ di Napoli, quello contenuto nell’ampolle e’ compatibile con sangue umano antico. Durante la liquefazione pero’, il fluido appare con un colore rosso vivo, come se fosse stata possibile la riattivazione dell’ossiemoglobina. Vi ricordo che le ampolle sono sigillate e che in nessun caso il loro contenuto entra in contatto con l’ossigeno dell’aria.

Capite dunque perche’ ancora oggi e’ acceso il dibattito riguardo al miracolo del sangue di San Gennaro. Esiste una proposta di spiegazione scientifica, ma esistono anche delle controaffermazioni basate su fatti oggettivi. Riassumendo, a favore della tissotropia abbiamo: un fluido con le caratteristiche fisiche simili a quelle della reliquia, ottenuto con materiali disponibili al tempo e nella zona, un comportamento meccanico giusto. A sfavore abbiamo: il gel ottenuto dura solo 2 anni, le analisi condotte mostrano che all’interno delle ampolle c’e’ sangue e non un gel sintetico, l’ipotesi tissotropica non spiega perche’ in alcuni casi il sangue non si sia liquefatto mentre in altri si e’ liquefatto prima ancora di essere sollecitato meccanicamente.

A questo punto, non resta che ragionare autonomamente su questi punti, provando a dire la nostra.

Prima di tutto, e’ il caso di dire che la chiesa non riconosce ufficialmente questo come un miracolo. Ad essere sinceri, qualche anno fa, la chiesa aveva eliminato le tre date relative a San Gennaro dal calendario delle celebrazioni liturgiche. Come e’ facile immaginare, questo ha causato una vera e propria rivolta tra i fedeli napoletani, per cui la chiesa ha deciso di non riconoscere ufficialmente il miracolo, ma di non impedire le celebrazioni.

Riguardo invece alla durata temporale del gel tissotropico, gli stessi ricercatori del CICAP autori del gel, sostengono prima di tutto di aver realizzato diversi campioni, i quali hanno mostrato durate anche fino a 10 anni. Ovviamente, siamo ancora lontani dai secoli del sangue di San Gennaro, ma, come riportato in diverse fonti, non e’ stata neanche prestata la massima cura nella chiusura ermetica del tappo delle provette. Studiando ampolle della stessa epoca, si e’ evidenziato come i tappi siano perfetamente sigillati impedendo l’apertura delle reliquie se non rompendole. In questo caso dunque, anche le ampolle di San Gennaro sono perfettamente chiuse in modo stagno, mentre il gel realizzato in laboratorio no.

E come la mettiamo con le spettroscopie fatte? Il fatto di aver trovato emoglobina, dimostra che c’e’ sangue anzi, per essere precisi, dimostra che e’ contenuta una frazione di sangue nelle ampolle. Come capite bene, niente esclude che nelle ampolle possa essere contenuto un gel tissotropico con un aggiunta di sangue.

Personalmente poi, vorrei riflettere su un aspetto: l’ampolla, come anticipato, non e’ completamente piena. In questo caso, sicuramente all’interno, oltre al sangue, e’ presente un certo volume d’aria. Ora, restando nel caso di volume sigillato in modo perfetto, sicuramente le variazioni dei parametri ambientali potrebbero influire sull’aria piu’ che sul sangue. Non mi risulta che la reliquia sia conservata in atmosfera controllata. Se anche fosse, questo non sarebbe sicuramente vero durante le processioni. In questo caso, un aumento di temperatura, a volume costante, provoca un aumento di pressione nell’aria che per costrizione spinge sul sangue. In questo caso, potremmo avere una sollecitazione, non di taglio, di spinta sul sangue. In questo caso, si potrebbe pensare che anche le condizioni di pressione e temperatura dell’aria influirebbero sull’eventuale liquefazione, cosa, almeno dalle fonti viste, non ancora chiamata in causa. Il considerare i parametri ambientali potrebbe anche spiegare perche’ in alcuni casi il sangue non si e’ sciolto. Se la pressione interna e’ piu’ alta, in questo caso le scosse mecaniche date sarebbero ammortizzate dal volume d’aria in sovrapressione, trasferendo minor impulso al sagnue.

A questo punto, capite dunque che la spiegazione del fenomeno della liquefazione del sangue di San Gennaro non e’ ancora stata data o meglio non e’ stata ancora accettata da tutti rispondendo a tutti i quesiti e le possibili domande. Per rispondere in modo sicuro, direte voi, non basterebbe analizzare il contenuto delle ampolle e vedere cosa contengono? Questa e’ un’osservazione verissima. Purtroppo, non e’ possibile analizzare le reliquie perche’ la Chiesa non lo consente. Non so se e’ il caso di dire la Chiesa di Roma o la Curia di Napoli, fatto sta che ad oggi nessuno ha potuto analizzare in dettaglio il contenuto delle ampolle.

Permettetemi una riflessione. Se analizzando il contenuto delle ampolle si scoprisse che dentro c’e’ un liquido tissotropico, i fedeli perderebbero la loro devozione nei confronti del santo? Personalmente credo di no. Forse, in alcuni casi, la spettacolarizzazione degli eventi conta piu’ della verita’. Detto questo, non resta che aspettare di vedere se l’ipotesi tissotropica possa essere confermata in qualche modo o, eventualmente, trovare un’altra spiegazione certa del miracolo. Alla luce di quanto detto, non parlerei assolutamente di miracolo. A riprova di questo, esistono molte reliquie in Italia contenenti sangue di martiri e molte di queste presentano il fenomeno della liquefazione. Anche su questo punto, molti ribattono dicendo che negli altri casi non si registrano fenomeni di liquefazione in date cosi’ precise. Questo non e’ vero del tutto. Nel Duomo di Ravello, e’ conservata una reliquia con il sangue di San Pantaleone, sangue che regolarmente il 27 luglio, data del martirio avvenuto nel 325, tornerebbe liquido. Vi faccio notare anche un’altra cosa: tutte le ampolle conservate con il sangue dei martiri, non vengono prese e “scosse” in date precise per vedere se il sangue si liquefa o no.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

E se domani sorgessero due soli?

18 Dic

Il titolo la dice lunga, una delle ipotesi catastrofiste, molto proposta in rete in queste ultime ore, e’ proprio il sorgere di due Soli il 21 Dicembre 2012.

Al contrario di molte altre profezie di cui abbiamo parlato, questa non e’ un’ipotesi del tutto campata in aria, ma che merita un approfondimento attento.

Anche se molti di voi avranno subito pensato a Nibiru, non ci stiamo affatto riferendo a questo fantomatico decimo pianeta del Sistema Solare, di cui abbiamo parlato, smentendo la sua esistenza, in diversi post:

Asteroide Nibiru: considerazioni scientifiche

Finalmente le foto di Nibiru

La NASA torna a parlare di Nibiru

Evidenze di un decimo pianeta?

Nibiru e la deviazione delle Pioneer

Nibiru e’ monitorato dall’osservatorio di Arecibo?

Storia astronomica di Nibiru

Secondo le ipotesi, il secondo Sole in cielo sarebbe invece la stella Betelgeuse.

Cerchiamo di andare con ordine.

Betelgeuse e’ la seconda stella piu’ luminosa nella costellazione di Orione e distante, secondo gli ultimi calcoli, circa 640 anni luce dalla Terra. Per i non esperti vi ricordo che l’anno luce e’ soltanto un modo astronomico di misurare le distanze e che corrisponde alla distanza percorsa dalla luce in un anno. Dunque, sapendo che la luce si muove nel vuoto ad una velocita’ di 300000 Km/s, l’anno luce corrisponde ad una distanza di circa 10^13 Km, cioe’ 10000 miliardi di kilometri. Perche’ si usa l’anno luce? Semplicemente perche’ e’ piu’ pratico parlare di qualche anno luce, piuttosto che dire ogni volta milioni di miliardi di kilometri.

Betelgeuse e’ facilmente identificabile nel cielo stellato, cosi’ come l’intera costellazione di Orione, che, essendo posizionata vicino all’equatore celeste, risulta visibile da quasi ogni parte del mondo.

Ecco una foto delle costellazione di Orione, in cui la luce delle stelle formanti la figura e’ stata amplificata per renderla meglio visibile:

Foto di Orione amplificata con l'indicazione di Betelgeuse

Foto di Orione amplificata con l’indicazione di Betelgeuse

La stella indicata dalla freccia e’ proprio Betelgeuse.

Ora, veniamo alla profezia del 21 Dicembre. Betelgeuse e’ da sempre in quella posizione, perche’ mai il 21 Dicembre dovrebbe cambiare qualcosa e quella stella dovrebbe apparire come un secondo Sole?

La risposta che trovate online e’ molto semplice, perche’ Betelgeuse potrebbe esplodere in una supernova espandendo nell’universo la maggior parte della materia che la costituisce e apparire dunque come un oggetto molto luminoso.

La spiegazione sembra molto semplice, ma in realta’ per poterla comprendere a pieno e per capire se realmente esiste questa possibilita’, si devono introdurre dei concetti di scienza, e di astronomia in particolare, non troppo difficili ma che devono essere seguiti attentamente.

Cerchiamo di analizzare queste ipotesi, mantenendo sempre un approccio molto divulgativo e accessibile a tutti.

Come forse molti di voi gia’ sanno, le stelle non sono sempre costanti nel tempo, ma hanno un loro ciclo vitale. A cosa e’ dovuto il loro ciclo? Una stella funziona come una centrale a fusione nucleare. Al suo interno, gli elementi vengono fusi per formare atomi piu’ pesanti e in questo processo viene emessa energia. Questo e’ anche il processo grazie al quale viene prodotta luce, che poi altro non e’ che l’emissione verso l’esterno di questa energia.

Ora, immaginiamo la stella come un serbatoio di atomi. Man mano che li fondiamo, ne avremo sempre di meno a disposizione. Il paragone piu’ semplice e’ quello di una qualsiasi automobile. Quando la benzina finisce, la macchina si ferma. Analogamente, quando il combustibile nucleare si esaursisce, la stella si trasforma evolvendosi in qualcos’altro.

In realta’, il processo e’ solo leggermente piu’ complicato, dal momento che il combustibile primario e’ l’idrogeno che viene fuso per formare elio che a sua volta viene fuso per formare atomi piu’ pesanti, via via fino ad arrivare al Ferro che e’ un elemento stabile che non puo’ essere bruciato per fusione nucleare. Ma non preoccupiamoci di questo. Quello che ci interessa in questo contesto e’ capire di che morte muore una stella.

Dunque, siamo arrivati a capire che una stella avra’ un tempo di vita limitato dal combustibile a disposizione. Al termine di questo ciclo vitale, l’evoluzione allo stadio successivo non e’ univoca, ma dipende da alcuni parametri, primo tra tutti la massa della stella stessa. In astronomia, le stelle vengono ad esempio catalogate in base alla loro massa rispetto al nostro Sole. In questo contesto, a volte trovate scritto “e’ una stella di 10 masse solari”, o “di 0.1 masse solari” e cosi’ via.

Come anticipato, in base alla massa della stella, l’evoluzione naturale del ciclo vitale puo’ essere diverso da caso a caso. Betelgeuse e’ una stella di massa pari a circa 15-20 volte quella del nostro Sole ed e’ in uno stadio della sua evoluzione chiamato di “supergigante rossa”. Si tratta di uno stadio abbastanza avanzato del suo ciclo vitale, e presenta fluttuzioni di luminosita’ che fanno pensare che sia prossima a passare al gradino successivo della sua evoluzione.

Fin qui tutto bene. Betelgeuse e’ una supergigante rossa e potrebbe passare allo stadio successivo.

Qual’e’ questo stadio?

Le stelle di massa come Betelgeuse, al termine del loro ciclo vitale esplodono formando una brillantissima Supernova di tipo II. Anche qui andiamo con ordine. Una supernova e’ un’esplosione stellare, estremamente energetica, che costituisce uno stadio finale per stelle molto massive.

Cosa significa invece di tipo II? Semplicemente che l’esplosione si genera dal collasso interno di una stella con massa superiore a 9-10 volte quella del nostro Sole, come nel caso dunque di Betelgeuse. Durante il collasso in supernova, quasi tutta la materia contenuta all’interno della stella viene letteralmente “sparata” nello spazio circostante con emissione elevata di energia e dunque con luminosita’ molto elevate.

Come apparirebbe Betelgeuse se esplodesse in una supernova di tipo II? Come potete capire facilmente, la sua luminosita’ sarebbe molto elevata il che la renderebbe visibile tranquillamente anche ad occhio nudo ed anche in pieno giorno. Vi riporto una immagine ricostruita che mostra come apparirebbe Betelgeuse, all’interno di Orione, dopo il collasso:

Betelgeuse_supernova

Questo ci fa capire molto bene perche’ si parla di un secondo Sole.

Ora, la cosa piu’ importante da capire e’: ci sono possibilita’ che Betelgeuse esploda proprio il 21 Dicembre?

Ovviamente, in astronomia e’ impossibile fare previsioni precise per il giorno, ma sull’evoluzione di Betelgeuse non vi e’ un parere univoco degli astronomi. Secondo alcuni, per essere precisi i piu’, Betelgeuse sarebbe ancora in una fase poco avanzata dello stadio di supergigante rossa. Questo comporterebbe ancora un periodo, fino anche ad 1 milione di anni, prima di poter assistere a questo spettacolo naturale. Secondo altri, le fluttuazioni della luminosita’ indicherebbero uno stadio molto avanzato della vita della stella e dunque la possibilita’ di esplosione in tempi brevi. Fate attenzione, quando in astronomia si parla di tempi brevi, come in questo caso, ci si riferisce in un lasso di tempo di qualche secolo.

Esiste anche una terza ipotesi, dibattutta scientificamente, che vorrebbe la stella gia’ esplosa. In questo contesto, vediamo ancora Betelgeuse cosi’ com’e’ solo perche’, dopo l’esplosione, ci vogliono 640 anni prima di vedere l’evoluzione da Terra. Questo periodo e’ proprio dovuto alla distanza della stella da noi.

E’ necessario premettere prima di tutto che, scientificamente, questa terza ipotesi e’ quella meno probabile secondo la scienza, ma comunque presa in considerazione. Nonostante questo, capite bene che e’ del tutto impossibile stabilire esattamente il giorno in cui vedremo Betelgeuse esplodere in una supernova. Dunque, l’ipotesi di vedere l’evoluzione esattamente per il 21 Dicembre e’ del tutto campata in aria.

Nonostante questa conclusione, vorrei aprire una brevissima parentesi. Se anche vedessimo l’esplosione di una supernova in cielo, cosa comporterebbe questo per noi? Sarebbe la fine del mondo?

Anche in questo caso, potete dormire sonni tranquilli. Supernove che esplodono a centinaia di anni luce da noi, espellono verso lo spazio enormi quantita’ di materia, ma questa non arriva assolutamente fino a Terra. L’unico effetto reale a Terra, e’ un aumento del flusso di neutrini che attraversano il nostro pianeta e che vengono prodotti dalle reazioni nucleari durante l’esplosione. Solo per curiosita’, vi dico che queste particelle hanno una probabilita’ di interagire con la materia estremamente bassa e sono in grado di attraversare l’intera Terra senza interagire con nulla. Pensate che anche il nostro Sole produce un enorme flusso di neutrini che attraversano il nostro pianeta, senza nessuna conseguenza per gli esseri umani. Ovviamente il nostro Sole e’ dietro l’angolo se paragonato ad una supernova in una qualche parte della Via Lattea.

Questo ci fa capire bene che comunque non vi e’ nessun pericolo di “fine del mondo” in caso di un’esplosione di supernova.

Per darvi ancora un’altra prova, le cronache storiche sono piene di esplosioni di supernove nella nostra galassia, e osservate da Terra. La piu’ famosa e’ forse l’esplosione del 1054 che porto’ alla formazione della Nebulosa del Granchio e che venne opportunamente riportata nelle cronache cinesi. In ordine temporale, l’ultima supernova osservata nella Via Lattea e’ del 1604 osservata anche da Keplero. Vi sono poi altri casi piu’ recenti ma che non sono stati direttamente osservabili da Terra. Per darvi l’idea, di esplosioni di supernove nella nostra galassia, se ne contano piu’ o meno una ogni 50 anni, ovviamente senza nessuan conseguenza diretta per noi.

Concludendo, abbiamo capito il perche’ si parla di questa esplosione di Betelgeuse. Abbiamo visto come l’ipotesi di una supernova sia in realta’ possibile, ma assolutamente non aspettabile per  il 21 Dicembre. La cosa piu’ importante che abbiamo capito e’ che le esplosioni di Supernove nella nostra Galassia non sono un evento cosi’ raro, ma che comunque non comportano nessun problema a Terra e soprattutto sul genere umano.

Analizzare le profezie del 2012, significa affrontare temi sempre attuali della scienza e che spesso vengono poco divulgati ai non addetti ai lavori. Per un’analisi scientifica del 2012, ma soprattutto per leggere un libro di divulgazione chiaro ed accessibile a tutti, non perdete in libreria ”Psicosi 2012. Le risposte della scienza”.