Tag Archives: assorbimento

Ma questa crema solare …. come dobbiamo sceglierla?

30 Giu

Sempre alla nostra sezione:

– Hai domande o dubbi?

va il merito, ma ovviamente tutto il merito va a voi che rendete questo blog vivo ed interessante, di aver richiamato da una nostra cara lettrice una nuova interessantissima domanda. Questa volta però, vi preannuncio che l’argomento scelto è molto complesso nella sua apparente semplicità, oltre ad essere assolutamente in linea con il periodo dell’anno. Come potete leggere, la domanda riguarda le creme solari e tutte le leggende che girano, non solo in rete, e che da sempre abbiamo ascoltato.

Come anticipato, non è semplice cercare di trovare la giusta strada nella giungla di informazioni disponibili. Se provate a confrontare dieci fonti, troverete dieci versioni diverse: le creme solari devono essere usate. No, non devo essere usate. Il sole è malato. Il sole provoca il cancro. No, sono le creme che creano il cancro alla pelle. Insomma, di tutto di più, e non pensate di rifuggire nella frase: “mi metto sotto l’ombrellone”, perché, come vedremo, anche questo lascia filtrare alcune componenti dei raggi solari e, sempre scimmiottando quello che trovate in rete, vi può venire il cancro. Allora sapete che c’è? Me ne sto chiuso dentro casa fino a settembre! Va bene così? No, sicuramente non prendi il sole (e quindi non ti viene il cancro), ma non ti si fissa la vitamina D e quindi potresti soffrire di rachitismo.

Insomma, come la mettete la mettete, sbagliate sempre. Cosa fare allora? Sicuramente, in linea con il nostro stile, quello che possiamo fare è “andare con ordine” e provare a verificare quali e quante di queste affermazioni corrispondono al vero. Solo in questo modo potremo capire quale crema solare scegliere, come applicarla e quali sono i rischi che possiamo correre con l’esposizione al Sole.

Prima di tutto, non dobbiamo considerare i raggi solari come un’unica cosa, ma è necessario distinguere la radiazione che ci arriva. Questa suddivisione è essenziale perché l’interazione della nostra pelle con i fotoni emessi dal sole non è sempre uguale, ma dipende dalla lunghezza d’onda. Bene, in tal senso, possiamo distinguere la parte dei raggi solari che ci interessa in tre grandi famiglie, in particolare, per i nostri scopi, ci concentreremo sulla parte ultravioletta dello spettro, che è quella di interesse in questo campo.

La parte cosiddetta ultravioletta è quella con lunghezza d’onda immediatamente inferiore alla parte visibile. Normalmente, questa parte dello spettro viene divisa in UVA, con lunghezza d’onda tra 400 e 315 nanometri, UVB, tra 315 e 280 nanometri e UVC, tra 280 e 100 nanometri. Quando parliamo di tintarella o di danni provocati dalla radiazione solare, dobbiamo riferirci alla parte UV ed in particolare a queste 3 famiglie.

Bene, la componente più pericolosa della radiazione solare è quella degli UVC cioè con lunghezza d’onda minore. Perché? Sono radiazioni utilizzate come germicidi, ad esempio nella potabilizzazione dell’acqua, a causa del loro potere nel modificare il DNA e l’RNA delle cellule. Per nostra fortuna, questa componente della radiazione è completamente bloccata dallo strato di ozono che circonda la Terra. Di questo, e soprattutto dello stato di salute dello strato di ozono, abbiamo parlato in un post specifico:

– Che fine ha fatto il buco dell’ozono?

Per la parte più pericolosa dello spettro, quella degli UVC, possiamo dunque tirare un respiro di sollievo. Vediamo le altre due componenti.

Gli UVA, a causa della lunghezza d’onda maggiore, penetrano più a fondo nella pelle, promuovendo il rilascio di melanina e dunque l’abbronzatura. Che significa? Molto semplice, quando prendiamo il sole, la nostra pelle reagisce cercando di proteggersi autonomamente appunto rilasciando melanina. Questa sostanza serve a far scurire gli strati più superficiali della pelle appunto come protezione dai raggi. Riguardo ala dannosità? Su questo punto, purtroppo, non si ha ancora chiarezza. Per prima cosa, dobbiamo dire che l’esposizione crea meno danni a tempi brevi rispetto, come vedremo, a quella agli UVB. Questa componente però è una delle maggiori sospettate per i danni a lungo termine, connessi anche con l’insorgere di tumori alla pelle, e provoca un invecchiamento veloce della pelle. Gli UVA sono molto conosciuti da coloro che frequentano i centri estetici per sottoporsi alle “lampade”. Questi sistemi infatti hanno sistemi di illuminazione concentrati negli UVA appunto per promuovere un’abbronzatura rapida.

Per quanto riguarda gli UVB invece, si tratta della radiazione più pericolosa nell’immediato. Questa componente dello spettro solare infatti, è responsabile della classica “scottatura”, in alcuni casi vera e propria ustione, provocata da un’esposizione prolungata al Sole. Anche se potenzialmente dannosa, la radiazione UVB è comunque importante per il nostro organismo perché promuove la sintesi della vitamina D. Come è noto, in assenza di questo fondamentale processo possono insorgere casi di rachitismo, soprattutto in soggetti non ancora adulti.

Bene, abbiamo capito come è divisa la radiazione ultravioletta del sole e abbiamo finalmente capito a cosa si riferiscono tutti questi nomi che siamo soliti ascoltare o leggere riguardo la tintarella.

Passiamo dunque a parlare di creme solari. Cosa dobbiamo cercare? Perché? Quali sono i prodotti più indicati?

Ripensando a quanto scritto, viene evidente pensare che una buona crema debba proteggerci dagli UVA e UVB poiché per gli UVC ci pensa lo strato di ozono. Primo pensiero sbagliato! Quando acquistiamo una crema solare, che, come vedremo, offre una certa protezione, questo valore si riferisce alla sola componente B della radiazione. Perché? Semplice, come visto, gli UVB sono responsabili delle scottature immediate. Se ci proteggiamo da questa componente salviamo la pelle garantendo la tintarella. Questo è assolutamente falso, soprattutto pensando ai danni a lungo termine dati da un’esposizione troppo prolungata agli UVA.

Solo negli ultimi anni, sono comparse sul mercato creme con protezioni ad alto spettro. Fate bene attenzione a questa caratteristica prima di acquistare un qualsiasi prodotto. Una buona crema deve avere un fattore di protezione per gli UVA non inferiore ad 1/3 di quello garantito per gli UVB.

Ora però, anche seguendo quanto affermato, parliamo appunto di queste protezioni. Fino a qualche anno fa, ricordo benissimo gli scaffali dei negozi strapieni di creme solari con fattori di protezione, SPF cioè fattore di protezione solare, che andavano da 0 a qualcosa come 100. Già allora mi chiedevo, ma che significa zero? A che cosa serve una crema con protezione 0 e, allo stesso modo, protezione 100 o, come qualcuno scriveva “protezione totale”, significa che è come mettersi all’ombra?

Capite già l’assurdità di queste definizioni create solo ed esclusivamente a scopo commerciale. Fortunatamente, da qualche anno, è stata creata una normativa apposita per questo tipo di cosmetici aiutando il consumatore a comprendere meglio il prodotto in questione. Oggi, per legge, esistono solo 4 intervalli di protezione che sono: basso, medio, alto e molto alto. Questi intervalli, in termini numerici, possono essere compresi utilizzando la seguente tabella:

 

Protezione SPF

Bassa 6 – 10

Media 15 – 20 – 25

Alta 30 – 50

Molto alta 50+

Notiamo subito che sono scomparse quelle orribili, e insensate, definizioni “protezione zero” e “protezione totale”. Ma, in soldoni, cosa significa un certo valore di protezione? Se prendo una crema con SPF 30 è il doppio più efficace di una con SPF 15? In che termini?

Detto molto semplicemente, il valore numerico del fattore di protezione indica il tempo necessario affinché si creino scottature rispetto ad una pelle non protetta. Detto in questo modo, una SPF 15 significa che la vostra pelle si brucerà in un tempo 15 volte maggiore rispetto a quello che impiegherebbe senza quella crema. Dunque, anche con una crema protettiva posso scottarmi? Assolutamente si. In termini di schermo alla radiazione, il potere schermante non è assolutamente proporzionale allo SPF ma, come visto, solo ai tempi necessari per l’insorgere di scottature.

A questo punto, abbiamo capito cosa significa quel numerello che corrisponde al fattore di protezione, ma come fanno le creme a schermare effettivamente dai raggi solari?

Per rispondere a questa domanda, dobbiamo in realtà dividere la protezione in due tipi: fisico e chimico. La protezione fisica avviene in modo pressoché meccanico aumentando il potere riflettente della pelle. Per questo scopo, nelle creme solari sono presenti composti come il biossido di titanio e l’ossido di zinco, sostanze opache che non fanno altro che far riflettere verso l’esterno la radiazione solare che incide sul nostro corpo.

Primo appunto, secondo alcuni l’ossido di zinco potrebbe essere cancerogeno! Ma come, mi metto la crema per proteggermi dai raggi solari ed evitare tumori alla pelle e la crema crea tumori alla pelle? In realtà, come al solito, su questo punto si è fatta molta confusione, tanto terrorismo e si è corsi, per convenienza, a conclusioni affrettate. Alcune ricerche hanno mostrato come tessuti cosparsi di molecole di ossido di zinco e sottoposti ad irraggiamento UV possano sviluppare radicali liberi che a loro volta reagiscono con le cellule modificandone il DNA. Questo processo può portare alla formazione di melanomi, per la pelle, e di altri tumori, per le altre cellule. Ora, si tratta di studi preliminari basati su valori di irraggiamento più alti rispetto a quelli che normalmente possono derivare da un’esposizione, anche prolungata, anche nelle ore centrali della giornata, al Sole. Detto molto semplicemente, questi studi necessitano di ulteriori ricerche per poter definire margini di errore e valori corretti. Gli stessi autori di queste analisi preliminari si sono raccomandati di non male interpretare il risultato dicendo che le creme solari provocano il cancro alla pelle. In altre parole, si corrono più rischi non proteggendosi dal sole piuttosto che proteggendosi con una crema contenente ossido di zinco. Tra le altre cose, questa molecola è molto nota tra le mamme che utilizzano prodotti all’ossido di zinco per alleviare le ustioni da pannolino nei loro bambini.

Detto questo, abbiamo poi la protezione chimica. Come potete facilmente immaginare, in questo caso si tratta di una serie di molecole (oxibenzone, fenilbenzilimidazolo, acido sulfonico, butil metoxidibenzoilmetano, etilexil metoxicinnamato, ecc.) che hanno il compito di assorbire la radiazione solare e di cedere parte di questa energia sotto forma di calore. Perché possiamo trovare così tante molecole in una crema solare? Semplice, ognuna di queste è specifica per una piccola parte dello spettro di radiazione, sia UVA che UVB. Anche su queste singole molecole, ogni tanto qualcuno inventa storie nuove atte solo a fare terrorismo, molto spesso verso case farmaceutiche. Singolarmente, come nel caso dell’ossido di titanio, ci possono essere studi più o meno avanzati, più o meno veritieri, sulla pericolosità delle molecole. Anche qui però, molto spesso si tratta di effetti amplificati, ben oltre la normale assunzione attraverso la cute e, ripeto per l’ennesima volta, si rischia molto di più esponendosi al sole piuttosto che utilizzando creme solari.

Ennesima cavolata in voga fino a qualche anno fa e ora vietata: creme solari “water proof”, cioè creme resistenti completamente all’acqua. Ve le mettete una volta, fate quanti bagni volete e siete a posto. Ma secondo voi, è possibile qualcosa del genere? Pensate di spalmarvi una crema o di farvi un tatuaggio indelebile? Oggi, per legge, la dicitura water proof è illegale e ha lasciato spazio, al massimo, a “water resistant”, cioè resistente all’acqua. Una qualsiasi crema solare, a causa del bagno, del sudore, del contatto con il telo, tende a rimuoversi e, proprio per questo motivo, si consiglia di riapplicare la crema ogni 2-3 ore circa per garantire la massima protezione possibile.

Riassumendo, abbiamo capito che conviene, sempre ed in tutti i casi, utilizzare una crema solare protettiva, ma quale scegliere?

Molto brevemente, in questo caso, si deve valutare quello che è definito il proprio fenotipo. Come potete immaginare, si tratta di una serie di caratteristiche fisiche che determinano, in linea di principio, l’effetto dell’esposizione la Sole. Per poter determinare il proprio fenotipo, possiamo fare riferimento a questa tabella:

fenotipo

Ovviamente, per i valori più bassi (I e II) è consigliabile utilizzare una crema ad alto SPF, valore che può diminuire qualora fossimo meno soggetti a scottature ed ustioni.

Credo che a questo punto abbiamo un quadro molto più chiaro riguardo alla creme solari ed alla loro utilità. Ripeto, per l’ennesima volta, in ogni caso, proteggersi è sempre meglio che esporsi al sole senza nessuna protezione. Ultimo appunto, che vuole sfatare un mito molto diffuso, sotto l’ombrellone siamo comunque esposti alla radiazione solare. In primis, il tessuto di molti ombrelloni lascia passare buona parte dello spettro solare ma, soprattutto, la riflessione dei raggi solari, ad esempio ad opera della sabbia, raggiunge comunque un soggetto tranquillo e (falsamente) riparato sotto l’ombrellone. In genere, la riflessione dei raggi solari può incrementare, e anche molto, la quantità di radiazione a cui siamo esposti. Stando nell’acqua, ad esempio, abbiamo sia un’esposizione diretta ai raggi solari sia una indiretta dovuta ai raggi riflessi dalla superficie. Come potete immaginare questo amplifica molto l’esposizione.

Concludendo, utilizzate le creme solari ma, soprattutto, leggete bene le etichette prima di acquistare o, peggio ancora utilizzare, un qualsiasi prodotto. Ovviamente, qualsiasi prodotto diventa non efficace se unito alla nostra incoscienza. Se pensate di potervi spalmare una crema e stare come lucertole sotto il Sole dalle 10 del mattino al tramonto … forse questa spiegazione è stata inutile.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

La terribile Vespa Mandarina

20 Ott

Attraverso le pagine e le discussione del nostro forum:

Psicosi 2012, forum

ci e’ stato suggerito un argomento di discussione davvero molto interessante. Negli ultimi tempi, sulla rete, termometro inconfondibile del bisogno di catastrofismo, si comincia a parlare sempre piu’ insistentemente della cosiddetta “vespa mandarina”. Premetto subito che si tratta di una specie di insetto reale ma, come potete immaginare, il tono degli articoli che compaiono in rete non e’ certo di sola curiosita’ o di entomologia.

La Vespa Mandrina e’ un insetto presente in diversi paesi dell’Asia Orientale ed in particolare in Giappone. Una delle caratteristiche salienti di questa vespa e’ la sua enorme mole che la porta di diritto ad essere la piu’ grande vespa del mondo. Per darvi un’idea, la lunghezza di questi insetti e’ intorno ai 5 cm, valore che puo’ raggiungere i 5.5 cm per le regine.

Per farvi capire l’ordine di grandezza, vi mostro una foto dell’animale:

Vespa Mandarina

Come vedete, la vespa mandarina presenta delle caratteristiche salienti che la distinguono dagli altri insetti nostrani della stessa tipologia. Prima di tutto, la colorazione del corpo e della testa sono abbastanza unici. Inoltre, il peziolo, cioe’ la congiunzione tra torace e addome e’ molto sottile.

Caratteristica importante di questo animale e’ la dimensione del pungiglione che e’ dell’ordine di 6 mm, il piu’ grande nella famiglia di questi insetti.

Perche’ si parla tanto di questi animali in questi giorni?

Come forse avrete letto in rete, molte notizie parlano di diverse vittime in Giappone, anche fino a 40, morte a causa delle punture della vespa mandarina. Secondo quanto riportato, il numero di questi insetti sarebbe cresciuto notevolmente negli ultimi mesi a causa dell’aumento globale della temperature. A causa di questo, molte fonti hanno gia’ ribattezzato questo animale “vespa assassina”. Secondo alcuni poi, ci sarebbero diverse segnalazioni che riporterebbero la presenza di questi insetti anche in Europa, immaginate con quali conseguenze.

Cerchiamo di ragionare su quanto detto, analizzando i vari aspetti toccati. Prima di tutto, sono cosi’ pericolose queste api?

Purtroppo si. Il veleno iniettato da questi animali in caso di puntura e’ estremamente pericoloso e anche le dosi sono notevolmente maggiori rispetto a quelle di altri insetti anche della stessa famiglia. Il veleno e’ una miscela di sostanze diverse, alcune in grado di provocare dolore, altre di amplificarlo e altre ancora in grado di danneggiare localmente i tessuti. Inoltre, sono presenti anche delle sostanze in grado di attirare altre vespe killer che, dunque, dopo aver punto richiamano altri insetti provocando successive punture alla vittima. Ovviamente, questo non fa altro che aumentare la dose di veleno assorbita dal mal capitato.

Proprio la presenza di queste molecole nel liquido iniettato rende molto pericolosa la puntura di questi insetti. Per la vespa mandarina, valgono esattamente le stesse regole delle specie nostrane. Il veleno puo’ ovviamente portare alla morte in soggetti allergici, ma, in questo caso piu’ di quello nostrano, anche soggetti non allergici possono avere gravi conseguenze. Il primo motivo e’ da ricercarsi proprio nella sostanza di richiamo contenuta nella miscela velenosa. A causa di questo meccanismo, i volumi di veleno assorbiti sono maggiori e dunque aumentano anche le possibilita’ di conseguenze.

Per loro natura, queste vespe non sono aggressive. I casi di attacco si registrano quando qualcuno si avvicina a distanza inferiore a 10 metri al nido degli animali. In questi casi, come e’ lecito e normale nel mondo animale, scatta l’allarme e la puntura e’ un meccanismo di difesa degli insetti.

Per quanto riguarda la presenza di questi animali in Europa, inutile dire che non si tratta solo ed esclusivamente di voci. Attenzione, se venissero trovati questi insetti anche dalle nostre parti, non sarebbe in realta’ una sorpresa. La globalizzazione e lo scambio continuo di merci tra le diverse parti del mondo, crea la possibilita’ che specie animali possano essere trasferite da un luogo all’altro. Nonostante questo, e lo ripeto, non ci sono, ad oggi, prove reali della presenza di questi animali ne’ in Europa, ne’ tantomeno in Italia.

Ultima considerazione importante, come visto, in rete si legge che questo animale avrebbe gia’ causato 40 vittine in Giappone. Vi sembrano numeri grandi? Proviamo a leggere da wikipedia cosa viene detto a proposito della vespa mandarina:

Ogni anno fra le 20 e le 40 persone muoiono in Giappone dopo essere state punte.

Questi sono numeri normali che vengono registrati in Giappone. Non c’e’ assolutamente nulla di strano in quanto affermato. Capite bene di come questa informazione sia usata solo per cercare di far apparire anomala una situazione del tutto normale!

Concludendo, la vespa mandarina e’ ovviamente una specie pericolosa e che puo’ portare, in caso di puntura, alla morte. Il fatto di aver registrato 40 vittime in Giappone nel corso dell’anno, e’ del tutto normale e non vi e’ assolutamente un incremento del numero delle vittime rispetto ai numeri registrati negli anni precedenti. Inoltre, non c’e’ nessuna prova reale della presenza, almeno ad oggi, di questi animali in Europa.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

I buchi neri che … evaporano

16 Ago

Uno degli aspetti che da sempre fa discutere e creare complottismi su LHC, e’ di sicuro la possibilita’ di creare mini buchi neri. Questa teoria nasce prendendo in considerazione le alte energie in gioco all’interno del collissore del CERN e la possibilita’ che nello scontro quark-quark possa venire a crearsi una singolarita’ simile a quella dei buchi neri.

Se avete perso i precedenti articoli, di LHC abbiamo parlato in questi post:

2012, fine del mondo e LHC

Bosone di Higgs … ma che sarebbe?

Sia ben chiaro, la storia dei buchi neri non e’ la sola creata su LHC. Il CERN ogni giorno riceve lettere che chiedono la chiusura dell’esperimento per il pericolo che questo rappresenta per l’intera terra. Diverse volte il CERN e’ anche stato chiamato in giudizio a fronte di vere e proprie denuncie di pseudo scienziati che lo accusavano farneticando teorie senza capo ne’ coda. Come potete immaginare, tutte le volte le accuse sono state rigettate e non solo LHC il prossimo anno ripartira’, ma a gia’ fornito risultati fisici di prim’ordine.

Perche’ si discute tanto di buchi neri? Qui ognuno puo’ formulare la propria ipotesi. Io ho una mia idea. Parlare di buchi neri, e’ qualcosa che da sempre stimola la curiosita’ e il timore delle persone. Un buco nero e’ visto come qualcosa di misterioso che vive nel nostro universo con caratteristiche uniche nel suo genere: mangia tutto cio’ che gli capita a tiro senza far uscire nulla. L’idea di poter avere un mostro del genere qui sulla terra, scatena gli animi piu’ catastrofisti pensando a qualcosa che nel giro di qualche minuto sarebbe in grado di divorare Ginevra, la Svizzera, il mondo intero.

Come anticipato, LHC e’ ora in stato di fermo. Si sta lavorando incessantemente per migliorare i rivelatori che vi operano al fine di ottenere risultati sempre piu’ accurati e affidabili. Alla ripartenza, avendo ormai preso piu’ confidenza con la macchina, si pensa anche di poter aumentare l’energia del centro di massa, cioe’ quella a disposizione per creare nuove particelle, portandola da 7 a 10 TeV. Come e’ ovvio, questa notizia non poteva che riaccendere gli animi catastrofisti. Al momento non si e’ creato nessun buco nero perche’ l’energia era troppo bassa, gli scienziati stanno giocando con il fuoco e porteranno alla distruzione della Terra. Queste sono le argomentazioni che cominciate a leggere in rete e che non potranno che riaumentare avvicinandoci al momento della ripartenza.

Se anche dovesse formarsi un mini buco nero, perche’ gli scienziati sono tanto sicuri che non accadra’ nulla? Come sapete, si parla di evaporazione dei buchi neri. Una “strana” teoria formulata dal fisico inglese Stephen Hawking ma che, almeno da quello che leggete, non e’ mai stata verificata, si tratta solo di un’idea e andrebbe anche in conflitto con la meccanica quantistica e la relativita’. Queste sono le argomentazioni che leggete. Trovate uno straccio di articolo a sostegno? Assolutamente no, ma, leggendo queste notizie, il cosiddetto uomo di strada, non addetto ai lavori, potrebbe lasciarsi convincere che stiamo accendendo una miccia, pensando che forse si spegnera’ da sola.

Date queste premesse, credo sia il caso di affrontare il discorso dell’evaporazione dei buchi neri. Purtroppo, si tratta di teorie abbastanza complicate e che richiedono molti concetti fisici. Cercheremo di mantenere un profilo divulgativo al massimo, spesso con esempi forzati e astrazioni. Cio’ nonostante, parleremo chiaramente dello stato dell’arte, senza nascondere nulla ma solo mostrando risultati accertati.

Cominciamo proprio dalle basi parlando di buchi neri. La domanda principale che viene fatta e’ la seguente: se un buco nero non lascia sfuggire nulla dal suo interno, ne’ particelle ne’ radiazione, come potrebbe evaporare, cioe’ emettere qualcosa verso l’esterno? Questa e’ un’ottima domanda, e per rispondere dobbiamo capire meglio come e’ fatto un buco nero.

Secondo la teoria della relativita’, un buco nero sarebbe un oggetto estremamente denso e dotato di una gravita’ molto elevata. Questa intensa forza di richiamo non permette a nulla, nemmeno alla luce, di sfuggire al buco nero. Essendo pero’ un oggetto molto denso e compatto, questa forza e’ estremamente concentrata e localizzata. Immaginatelo un po’ come un buco molto profondo creato nello spazio tempo, cioe’ una sorta di inghiottitoio. La linea di confine tra la singolarita’ e l’esterno e’ quello che viene definito l’orizzonte degli eventi. Per capire questo concetto, immaginate l’orizzonte degli eventi come una cascata molto ripida che si apre lungo un torrente. Un pesce potra’ scendere e risalire il fiume senza problemi finche’ e’ lontano dalla cascata. In prossimita’ del confine, cioe’ dell’orizzonte degli eventi, la forza che lo trascina giu’ e’ talmente forte che il pesce non potra’ piu’ risalire e verra’ inghiottito.

Bene, questo e’ piu’ o meno il perche’ dal buco nero non esce nulla, nemmeno la luce. Dunque? Come possiamo dire che il buco nero evapora in queste condizioni?

La teoria dell’evaporazione, si basa sulle proprieta’ del vuoto. Come visto in questo articolo:

Se il vuoto non e’ vuoto

nella fisica, quello che immaginiamo come vuoto, e’ un continuo manifestarsi di coppie virtuali particella-antiparticella che vivono un tempo brevissimo e poi si riannichilano scomparendo. Come visto nell’articolo, non stiamo parlando di idee campate in aria, ma di teorie fisiche dimostrabili. L’effetto Casimir, dimostrato sperimentalmente e analizzato nell’articolo citato, e’ uno degli esempi.

Ora, anche in prossimita’ del buco nero si creeranno coppie di particelle e questo e’ altresi’ possibile quasi in prossimita’ dell’orizzonte degli eventi. Bene, ragioniamo su questo caso specifico. Qualora venisse creata una coppia di particelle virtuali molto vicino alla singolarita’, e’ possibile che una delle due particelle venga assorbita perche’ troppo vicina all’orizzonte degli eventi. In questo caso, la singola particella rimasta diviene, grazie al principio di indeterminazione di Heisenberg, una particella reale. Cosa succede al buco nero? Nei testi divulgativi spesso leggete che il buco nero assorbe una particella con energia negativa e dunque diminuisce la sua. Cosa significa energia negativa? Dal vuoto vengono create due particelle. Per forza di cose queste avranno sottratto un po’ di energia dal vuoto che dunque rimarra’ in deficit. Se ora una delle due particelle virtuali e’ persa, l’altra non puo’ che rimanere come particella reale. E il deficit chi lo paga? Ovviamente il buco nero, che e’ l’unico soggetto in zona in grado di pagare il debito. In soldoni dunque, e’ come se il buco nero assorbisse una particella di energia negativa e quindi diminuisse la sua. Cosa succede alla particella, ormai reale, rimasta? Questa, trovandosi oltre l’orizzonte degli eventi puo’ sfuggire sotto forma di radiazione. Questo processo e’ quello che si definisce evaporazione del buco nero.

Cosa non torna in questo ragionamento?

Il problema principale e’, come si dice in fisica, che questo processo violerebbe l’unitarieta’. Per le basi della meccanica quantistica, un qualunque sistema in evoluzione conserva sempre l’informazione circa lo stato inziale. Cosa significa? In ogni stato e’ sempre contenuta l’indicazione tramite la quale e’ possibile determinare con certezza lo stato precedente. Nel caso dei buchi neri che evaporano, ci troviamo una radiazione termica povera di informazione, creata dal vuoto, e che quindi non porta informazione.

Proprio da questa assunzione nascono le teorie che potete leggere in giro circa il fatto che l’evaporazione non sarebbe in accordo con la meccanica quantistica. Queste argomentazioni, hanno fatto discutere anche i fisici per lungo tempo, cioe’ da quando Hawking ha proposto la teoria. Sia ben chiaro, la cosa non dovrebbe sorprendere. Parlando di buchi neri, stiamo ragionando su oggetti molto complicati e per i quali potrebbero valere  leggi modificate rispetto a quelle che conosciamo.

Nonostante questo, ad oggi, la soluzione al problema e’ stata almeno “indicata”. Nel campo della fisica, si racconta anche di una famosa scommessa tra Hawking e Preskill, un altro fisico teorico del Caltech. Hawking sosteneva che la sua teoria fosse giusta e che i buchi neri violassero l’unitarieta’, mentre Perskill era un fervido sostenitore della inviolabilita dei principi primi della meccanica quantistica.

La soluzione del rebus e’ stata indicata, anche se ancora non confermata, come vedremo in seguito, chiamando in causa le cosiddette teorie di nuova fisica. Come sapete, la teoria candidata a risolvere il problema della quantizzazione della gravita’ e’ quella delle stringhe, compatibile anche con quella delle brane. Secondo questi assunti, le particelle elementari non sarebbero puntiformi ma oggetti con un’estensione spaziale noti appunto come stringhe. In questo caso, il buco nero non sarebbe piu’ una singolarita’ puntiforme, ma avrebbe un’estensione interna molto piu’ complessa. Questa estensione permette pero’ all’informazione di uscire, facendo conservare l’unitarieta’. Detto in altri termini, togliendo la singolarita’, nel momento in cui il buco nero evapora, questo fornisce ancora un’indicazione sul suo stato precedente.

Lo studio dei buchi neri all’interno della teoria delle stringhe ha portato al cosiddetto principio olografico, secondo il quale la gravita’ sarebbe una manifestazione di una teoria quantistica che vive in un numero minore di dimensioni. Esattamente come avviene in un ologramma. Come sapete, guardando un ologramma, riuscite a percepire un oggetto tridimensionale ma che in realta’ e’ dato da un immagine a 2 sole dimensioni. Bene, la gravita’ funzionerebbe in questo modo: la vera forza e’ una teoria quantistica che vive in un numero ridotto di dimensioni, manifestabili, tra l’altro, all’interno del buco nero. All’esterno, con un numero di dimensioni maggiori, questa teoria ci apparirebbe come quella che chiamiamo gravita’. Il principio non e’ assolutamente campato in aria e permetterebbe anche di unificare agevolmente la gravita’ alle altre forze fondamentali, separate dopo il big bang man mano che l’universo si raffreddava.

Seguendo il ragionamento, capite bene il punto in cui siamo arrivati. Concepire i buchi neri in questo modo non violerebbe assolutamente nessun principio primo della fisica. Con un colpo solo si e’ riusciti a mettere insieme: la meccanica quantistica, la relativita’ generale, il principio di indeterminazione di Heisenberg, le proprieta’ del vuoto e la termodinamica studiando la radiazione termica ed estendendo il secondo principio ai buchi neri.

Attenzione, in tutta questa storia c’e’ un pero’. E’ vero, abbiamo messo insieme tante cose, ma ci stiamo affidando ad una radiazione che non abbiamo mai visto e alla teoria delle stringhe o delle brance che al momento non e’ confermata. Dunque? Quanto sostenuto dai catastrofisti e’ vero? Gli scienziati rischiano di distruggere il mondo basandosi su calcoli su pezzi di carta?

Assolutamente no.

Anche se non direttamente sui buchi neri, la radiazione di Hawking e’ stata osservata in laboratorio. Un gruppo di fisici italiani ha osservato una radiazione paragonabile a quella dell’evaporazione ricreando un orizzonte degli eventi analogo a quello dei buchi neri. Come visto fin qui, l’elemento fondamentale del gioco, non e’ il buco nero, bensi’ la curvatura della singolarita’ offerta dalla gravita’. Bene, per ricreare un orizzonte degli eventi, basta studiare le proprieta’ ottiche di alcuni materiali, in particolare il loro indice di rifrazione, cioe’ il parametro che determina il rallentamento della radiazione elettromagnetica quando questa attraversa un mezzo.

Nell’esperimento, si e’ utilizzato un potente fascio laser infrarosso, in grado di generare impulsi cortissimi, dell’ordine dei miliardesimi di metro, ma con intensita’ miliardi di volte maggiore della radiazione solare. Sparando questo fascio su pezzi di vetro, il punto in cui la radiazione colpisce il mezzo si comporta esattamente come l’orizzonte degli eventi del buco nero, creando una singolarita’ dalla quale la luce presente nell’intorno non riesce ad uscire. In laboratorio si e’ dunque osservata una radiazione con una lunghezza d’onda del tutto paragonabile con quella che ci si aspetterebbe dalla teoria di Hawking, tra 850 e 900 nm.

Dunque? Tutto confermato? Se proprio vogliamo essere pignoli, no. Come visto, nel caso del buco nero gioca un ruolo determinante la gravita’ generata dal corpo. In laboratorio invece, la singolarita’ e’ stata creata otticamente. Ovviamente, mancano ancora degli studi su questi punti, ma l’aver ottenuto una radiazione con la stessa lunghezza d’onda predetta dalla teoria di Hawking e in un punto in cui si genera un orizzonte degli eventi simile a quello del buco nero, non puo’ che farci sperare che la teoria sia giusta.

Concludendo, l’evaporazione dei buchi neri e’ una teoria molto complessa e che richiama concetti molto importanti della fisica. Come visto, le teorie di nuova fisica formulate in questi anni, hanno consentito di indicare la strada probabile per risolvere le iniziali incompatibilita’. Anche se in condizioni diverse, studi di laboratorio hanno dimostrato la probabile esistenza della radiazione di Hawking, risultati che confermerebbero l’esistenza della radiazione e dunque la possibilita’ dell’evaporazione. Ovviamente, siamo di fronte a teorie in parte non ancora dimostrate ma solo ipotizzate. I risultati ottenuti fino a questo punto, ci fanno capire pero’ che la strada indicata potrebbe essere giusta.

Vorrei chiudere con un pensiero. Se, a questo punto, ancora pensate che potrebbero essere tutte fantasie e che un buco nero si potrebbe creare e distruggere la Terra, vi faccio notare che qui parliamo di teorie scientifiche, con basi solide e dimostrate, e che stanno ottenendo le prime conferme da esperimenti diretti. Quando leggete le teorie catastrofiste in rete, su quali basi si fondano? Quali articoli vengono portati a sostegno? Ci sono esperimenti di laboratorio, anche preliminari ed in condizioni diverse, che potrebbero confermare quanto affermato dai catastrofisti?

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Quando gli angeli perdono i capelli

18 Lug

Esiste un fenomeno molto particolare anche se poco conosciuto dal grande pubblico. Ogni anno, quasi sempre nello stesso periodo, ed in alcune zone specifiche, si osserva cadere dal cielo una sostanza bianca, filamentosa e molto leggera. Questi filamenti possono in alcuni casi cadere in modo molto abbondante, al punto di ricoprire case, macchine e terreni.

Cosa sarebbero questi filamenti?

Per prima cosa, vi voglio mostrare una foto di questo fenomeno:

I misteriosi filamenti caduti dal cielo in diverse parti del mondo

I misteriosi filamenti caduti dal cielo in diverse parti del mondo

Come vedete, questa strana sostanza ha le caratteristiche a cui accennavamo prima. Molto interessante e’ invece la spiegazione che ne viene data in rete.

Senza troppi giri di parole, soprattutto su internet, esiste una doppia corrente di pensiero per spiegare questo fenomeno. La prima e’ quella che vorrebbe i filamenti dovuti ai residui di combustione dei motori dei dischi volanti. Avete proprio capito bene. Molti testimoni sono pronti a giurare di aver osservato la caduta dei filamenti subito dopo il passaggio di UFO. In questa spiegazione, i filamenti altro non sarebbero che residui di combustione che i motori alieni lascerebbero al loro passaggio.

spiders-ballooning11-14sm_1

In alternativa a questa spiegazione, non poteva certo mancare una delle ipotesi maggiormente acclamata su internet dai complottisti. I filamenti caduti dal cielo sarebbero prodotti dalla condensazione delle scie chimiche. In questo caso, le sostanze utilizzate per creare le scie potrebbero, in alcuni casi, rapprendere e ricadere a terra sotto forma di filamento. Sempre legata a questa spiegazione, ma concettualmente diversa, e’ invece l’ipotesi che vorrebbe i filamenti formati da sostanze catalizzatori delle scie chimiche, cioe’ particolari composti sparsi in atmosfera per aumentare l’effetto degli aerosol di natura chimica.

La discussione su cosa siano questi filamenti, ha occupato la scena in momenti piu’ o meno intensi negli ultimi 10 anni.

Come capire l’origine di questi filamenti in modo definitivo?

Come potete facilmente immaginare, basterebbe fare delle analisi chimico-biologiche di un campione e vedere da cosa e’ formato.

Bene, come e’ altrettanto facile immaginare, su molti siti poco seri, si parla in continuazione di analisi, senza pero’ mostrare i risultati, ma solo parlando di conclusioni piu’ o meno fantasiose o date con giri di parole atte solo a confondere i lettori.

Cosa sono in realta’ questi filamenti?

In molti casi, come evidenziato dalle analisi, la misteriosa sostanza che cade dal cielo e’ “bambagia silicea”, anche detta “capelli d’angelo”.

Di cosa si tratta?

E’ un fenomeno del tutto naturale e costituito da fili di tele di ragno. Queste speciali ragnatele vengono utilizzate dagli animali per migrare.

Come funzionano?

Tessendo lunghi fili di ragnatela, i ragni riescono a percorrere anche diversi kilometri grazie al sollevamento della tele per opera del vento. Questa tecnica, nota come Ballooning, viene utilizzata dai ragni per le migrazioni.

Associare il fenomeno alla migrazione degli animali, speiga anche il perche’ il fenomeno dei filamenti dal cielo si manifesterebbe sempre piu’ o meno nello stesso periodo e nelle stesse zone del mondo. Il fenomeno e’ molto ben visibile anche in molte zone d’Italia.

Il fenomeno del Ballooning e’ noto da diverso tempo e, come riportato da Wikipedia, anche lo stesso Darwin lo illustra nella sua opera “Viaggio con la Beagle”. Ecco il pezzo in cui ne parla:

« nel mattino l’aria era piena di ragnatele a fiocchi […]. La nave era a sessanta miglia dalla costa […]. Un gran numero di piccoli ragni […] erano attaccati alla tela. Dovevano essercene, suppongo, a migliaia sulla nave. […] Il piccolo aeronauta non appena arrivava a bordo era molto attivo […] »

Come vedete, anche in questo caso si parla di ragnetti in grado di produrre queste tele che poi ricadevano sulla nave coprendola di piccoli filamenti bianchi. Ovviamente, questi capelli d’angelo sono molto meglio visibili durante le giornate soleggiate quando il riflesso della luce li illumina nel cielo.

Diverse testimonianze parlano anche di assorbimento da parte del terreno dei filamenti pochi istanti dopo la loro caduta. Dal momento che si tratta di sostanze organiche, questo e’ del tutto comprensibile e naturale quando i capelli d’angelo cadono, ad esempio, su un prato.

Quali ragni producono queste ragnatele?

Come riportato in molte inchieste raccolte in questi ultimi anni, in molti casi il fenomeno puo’ essere ricondotto alla migrazione dei cosiddetti ragni lupo, il cui nome scientifico e’ Lycosa. Questi animali sono molto diffusi in Europa e vivono anche in moltissime zone d’Italia.

Dunque? Dalla spiegazione data, moltissimi dei casi di caduta di capelli d’angelo possono essere ricondotti al fenomeno del ballooning. Questo dimostrerebbe la causa del tutto naturale per questo fenomeno. Ad oggi, ci sono alcune testimonianze che parlano di caduta di sostanze differenti rispetto a quelle riconducibili a tele di ragno, ma, per questi casi, mancano assolutamente le prove scientifiche. Ad oggi, al contrario di quanto vorrebbero farvi credere online, non esiste nessuna analisi scientifica seria che mostrerebbe la presenza di sotanze non organiche o prodotti di combustione nei filamenti caduti.

Detto questo, personalmente mi sento di escludere qualsiasi causa umana, e, soprattutto, extraterrestre, per questo fenomeno. La spiegazione del ballooning e’ estremamente affascinante e ci fa capire quanto impressionante e fantastica possa essere la ntura che ci circonda. Quando qualcuno arrivera’ con i risultati di una’analisi scientifica fatta raccogliendo il campione in modo altrettanto scientifico, cosi’ come fatto nei casi documentati di cui abbiamo parlato, e queste analisi mostreranno risultati diversi, allora riconsidereremo il fenomeno, analizzando cause diverse. Ad oggi, ripeto, il fenomeno dei capelli d’angelo puo’ essere molto ben spiegato parlando di tecniche di migrazione dei ragni.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Esopianeti che non dovrebbero esserci

17 Giu

Nell’ambito della ricerca della vita fuori dal sistema solare, diverse volte abbiamo parlato di esopianeti:

A caccia di vita sugli Esopianeti

Nuovi esopianeti. Questa volta ci siamo?

Come visto, questi corpi, orbitanti intorno ad una stella centrale, cosi’ come avviene nel nostro Sistema Solare, sono molto studiati perche’ consentono di aprire una finestra nell’universo a noi vicino. Lo studio di questi corpi e la loro posizione, consente dunque di determinare quali e quanti pianeti potrebbero esserci in grado di ospitare la vita. Come sottolineato diverse volte, dire che un pianeta e’ in grado di ospitare la vita, non significa assolutamente affermare che questa si sia veramente formata. In questi casi, parliamo di “fascia di abitabilita’”, appunto per indicare la presenza di pianeti ad una distanza tale dalla loro stella, adatta a creare le condzioni minime per lo sviluppo della vita. Molto lavoro e’ in corso su questi esopianeti, prima di tutto per studiare la tipologia dei corpi, ma soprattutto perche’ questi sistemi planetari offrono un laboratorio eccezionale per capire l’origine del nostro stesso sistema Solare.

Immagine pittorica del sistema Hydrae

Immagine pittorica del sistema Hydrae

In tal senso, il sistema TW Hydrae, e’ uno dei principali, trovandosi ad appena 180 anni luce da noi ma soprattutto perche’ e’ un sistema molto giovane. Il sistema planetario e’ costituito da una nana rossa centrale, con una massa solo di poco inferiore a quella del nostro sole (circa il 70%). Come detto, si tratta di un sistema molto giovane che si e’ formato “appena” 8 milioni di anni fa e proprio per questo motivo, i processi di formazione e aggregazione di materia sono ancora in corso.

Solo pochi giorni fa, e’ stato pubblicato un importante articolo che riguarda l’osservazione di un piccolo pianeta nel sistema TW Hydrae con una massa compresa tra le 6 e le 28 masse terrestri. Cosa ha di tanto speciale questo pianeta? La particolarita’ e’ che questo pianeta orbita ad una distanza di circa 12 milioni di kilometri dalla stella centrale, cioe’ in una zona dove, secondo gli attuali modelli, questo pianeta non dovrebbe esistere.

Da dove nasce questa affermazione?

Prima di tutto, come discusso in altri articoli, i pianeti vengono formati per aggregazione di materia dal disco orbitante intorno alla stella centrale. Per circa 3 milioni di kilometri prima del piccolo pianeta, non c’e’ materiale utile per l’accrescimento del corpo. Inoltre, dai modelli conosciuti, un corpo del genere avrebbe impiegato un tempo lunghissimo, molto piu’ lungo dell’intera vita del sistema planetario, per formarsi.

Per fare un esempio, Giove si e’ formato in un tempo di circa 10 milioni di anni. Il piccolo pianeta avrebbe richiesto un periodo circa 200 volte piu’ lungo per aggregare il materiale, contro una stima dell’eta’ del sistema planetario di soli 8 milioni di anni.

Capite dunque l’importanza di questa osservazione. Ovviamente, il tutto dovra’ poi essere verificato con ulteriori misurazioni. Ad oggi, l’osservazione in questione e’ stata possibile grazie all’uso della camera sensibile al vicino infrarosso e allo spettrometro presenti sul telescopio Hubble.

Per farvi capire l’importanza delle successive misurazioni, ad oggi, gli strumenti utilizzati non consentono, ad esempio, di visualizzare il disco di materiale intorno alla stella centrale. Il motivo di questo e’ di facile comprensione, le emissioni da parte dell’idrogeno vengono automatiamente riassorbite all’interno del disco non apparendo visibili all’esterno.

Esistono ovviamente teorie alternative gia’ formulate e che potrebbero in qualche modo spiegare la presenza del pianeta in quella posizione. Una delle piu’ discusse e’ quella che vorrebbe la possibilita’ che il disco di accrescimento diventi instabile in alcuni casi, portando dunque materiale in zone piu’ lontane dalla stella centrale e consentendo la formazione di pianeti molto periferici.

Concludendo, la presenza di questo piccolo esopianeta orbitante a distanza cosi’ elevata dalla stella centrale, non sarebbe spiegabile con i modelli attualmente accettati. Questa scoperta implica dunque una ridiscussione di alcuni meccanismi di formazione, appunto per capire come sia possibile formare oggetti massivi a distanza cosi’ elevata dal corpo centrale. Ovviamente, questo non significa assolutamente che i precedenti modelli siano da buttare. Cosi’ come avviene nelle scienze, l’osservazione di un fenomeno non aspettato, spinge ad una ridefinizione di alcuni modelli, dal momento che si potrebbero essere raggiunti i limiti di validita’ di quelli attualmente utilizzati. Sicuramente, per la sua piccola distanza e la giovane eta’, il sistema TW Hydrae ci offre un laboratorio senza eguali per comprendere e studiare i meccanismi di formazione dei pianeti del nostro universo, e, duqnue, anche del nostro sistema solare. Come vedete, il bello della scienza e’ anche questo; trovare qualcosa che non ci si aspettava e spingersi oltre per aumentare la conoscenza e la comprensione della natura.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Uno sguardo ai materiali del futuro

27 Apr

In questi giorni, diversi giornali hanno pubblicato una notizia riguardante la scoperta di un nuovo materiale. La caratteristica principale, che tanto sta attirando attenzione, e’ l’estrema leggerezza unita alla notevole resistenza dei composti di questo materiale. Poiche’, leggendo in rete, ho visto tantissime imprecioni, credo sia interessante parlare di questa “scoperta”.

Il materiale in questione e’ il Grafene Aerogel. Ho messo “scoperta” tra virgolette, perche’, se proprio vogliamo essere precisi, questi materiali non vengono scoperti dal nulla, ma sono sintetizzati partendo da sostanze note. Il grafene aerogel e’ dunque stato “inventato” dai ricercatori della Zheijiang University ed e’ un materiale a base di carbonio.

Parliamo subito della sua caratteristica principale, la leggerezza. Il Grafene Aerogel rappresenta, ad oggi, il materiale meno denso in assoluto. Prima di questa invenzione, il record spettava all’Aerografite, con una densita’ di “ben” 0,2 mg/cm^3. Oggi, questo record e’ stato spazzato via dal Grafene Aerogel, con una densita’ di soli 0,16 mg/cm3.

Per darvi un’idea della leggerezza di questo materiale, vi mostro una foto molto interessante:

Dimostrazione della leggerezza del Grafene Aerogel

Dimostrazione della leggerezza del Grafene Aerogel

Come vedete, un blocchetto di Grafene Aerogel e’ talmente leggero da non piegare nemmeno la spiga in foto.

Anche se poco conosciuto dai non addetti ai lavori, negli ultimi anni e’ nato proprio un nuovo settore della tecnologia, interamente mirato alla sintetizzazione di nuovi materiali di questo tipo.

Cosa sarebbe il grafene aerogel?

Per prima cosa, analizziamo i singoli termini. Il grafene altro non e’ che un materiale formato da un singolo strato di atomi di carbonio. In questo senso, lo spessore del grafene e’ pari al diametro atomico. Il carbonio che compone il grafene e’ disposto in strutture esagonali ed e’ ottenuto in laboratorio partendo dalla grafite. Tutti questi composti, insieme anche al fullerene, al diamante e ai nanotubi, sono a base di atomi di carbonio, disposti in maniera diversa per formare un reticolo, come mostrato in questa immagine:

Diversi materiali ottenuti dal carbonio

Diversi materiali ottenuti dal carbonio

L’introduzione del grafene e’ risultata molto importante nella realizzazione di componenti elettronici estremamente piccoli e con caratteristiche elettriche non raggiungibili con le tecnologie standard.

Il termine aerogel, indica invece un materiale simile al gel, nel quale pero’ la fase liquida e’ stata sostituita con un gas. Il primo aerogel realizzato era a base di silicio, e presentava uan densita’ 1000 volte inferiore a quella del vetro. I comuni aerogel, a base di silicio, di allumina o altri elementi, trovano larghissima applicazione in diverse soluzioni industriali. Solo per darvi un’idea, gli utilizzi dell’aerogel vanno dall’isolamento termico fino all’uso nei cosmetici e nelle vernici come addensatori pasando anche per applicazioni spaziali nella studio della polvere cosmica. La foto seguente mostra proprio un ricercatore della NASA che mostra un pezzo di aerogel di Silicio:

Aerogel in un laboratorio della NASA

Aerogel in un laboratorio della NASA

Acnhe se puo’ sembrare un fotomontaggio, si tratta di una foto reale. Quello che vedete mostrato e’ un pezzo di aerogel con le sue straordinarie proprieta’ di leggerezza e trasparenza.

Vista la struttura degli aerogel, capite bene come nel caso del grafene questo termine sia utilizzato in realta’ a sproposito. Spesso, si utilizza il termine aerogel anche per indicare materiali a base di carbonio, come il Grafene Aerogel, nel quale moltissimi spazi sono riempiti di aria per ottenere ottime proprieta’ di leggerezza.

Detto questo, una domanda molto semplice che potrebbe essere fatta e’: “a cosa servirebbe il Grafene Aerogel?”

Forse stavate pensando che l’invenzione di questo materiale servisse solo per continuare la sfida tra centri di ricerca su chi preparava il materiale piu’ leggero. In realta’, non e’ cosi’.

Il grafene aerogel trovera’ spazio in moltissime applicazioni, anche di carattere ambientale.

Per prima cosa, questo materiale, proprio grazie alla sua struttura atomica, si comporta come una spugna, essendo in grado di catturare all’interno notevoli quantita’ di altre sostanze riempiendo gli interstizi occupati dall’aria. Per darvi qualche numero, un solo grammo di Grafene Aerogel riesce a trattenere fino a 70 grammi di materiali organici. Pensate ad un’applicazione molto utile: in uno scenario in cui ci sia un riversamento, ad esempio, di petrolio in mare, il grafene aerogel potrebbe essere utilizzato per assorbire gli oli molto rapidamente ripulendo la zona. Inoltre, date le sue proprieta’, basterebbe “spremere” la spugna per renderla di nuovo utilizzabile e recuperare anche il petrolio disperso.

Il grafene aerogel ha anche straordinarie proprieta’ elastiche. Ad uno sforzo di compressione, questo maeriale riesce ad assorbire fino a 900 volte il suo peso, tornando, in modo perfettamente elastico, alla forma originale. Questa caratteristica lo rende un ottimo candidato per applicazioni meccaniche avanzate.

Visto che ne abbiamo parlato introducendo la classifica dei materiali piu’ leggeri, anche l’aerografite trova spazio in importanti settori industriali. E’ in corso di studio la produzione di batterie basate su questo materiale e che consentiranno, a parita’ di peso, di ottenere durate molto maggiori, caratteristica fondamentale nell’utilizzo, ad esempio, nei veicoli elettrici. Inoltre, l’aerografite puo’ essere utilizzata per la preparazione di filtri molto efficienti per ripulire l’aria e l’acqua da inquinanti potenzialmente molto dannosi per l’essere umano.

Detto questo, capite molto bene l’importanza di questo genere di ricerche. Il continuo studio di nuovi materiali consente di rendere piu’ semplici svariate applicazioni e di ottenere caratteristiche del tutto impensabili con i materiali tradizionali. Come visto, parlando in generale di questi nuovi materiali, le applicazioni vanno dalla salvaguardia ambientale fino alla miniaturizzazione dell’elettronica. Inoltre, alcuni materiali, sviluppati proprio nell’ambito di questi progetti, consentono gia’ oggi di ottenere, ad esempio, transistor di dimensioni quasi atomiche, batterie basate su supercondensatori o anche microprocessori di dimensioni nanometriche. Sicuramente, quando pensiamo ad applicazioni che oggi potrebbero ancora sembrarci lontane nel tempo, dobbiamo pensare che saranno realizzate partendo da materiali di questo tipo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.