Tag Archives: index

I buchi neri che … evaporano

16 Ago

Uno degli aspetti che da sempre fa discutere e creare complottismi su LHC, e’ di sicuro la possibilita’ di creare mini buchi neri. Questa teoria nasce prendendo in considerazione le alte energie in gioco all’interno del collissore del CERN e la possibilita’ che nello scontro quark-quark possa venire a crearsi una singolarita’ simile a quella dei buchi neri.

Se avete perso i precedenti articoli, di LHC abbiamo parlato in questi post:

2012, fine del mondo e LHC

Bosone di Higgs … ma che sarebbe?

Sia ben chiaro, la storia dei buchi neri non e’ la sola creata su LHC. Il CERN ogni giorno riceve lettere che chiedono la chiusura dell’esperimento per il pericolo che questo rappresenta per l’intera terra. Diverse volte il CERN e’ anche stato chiamato in giudizio a fronte di vere e proprie denuncie di pseudo scienziati che lo accusavano farneticando teorie senza capo ne’ coda. Come potete immaginare, tutte le volte le accuse sono state rigettate e non solo LHC il prossimo anno ripartira’, ma a gia’ fornito risultati fisici di prim’ordine.

Perche’ si discute tanto di buchi neri? Qui ognuno puo’ formulare la propria ipotesi. Io ho una mia idea. Parlare di buchi neri, e’ qualcosa che da sempre stimola la curiosita’ e il timore delle persone. Un buco nero e’ visto come qualcosa di misterioso che vive nel nostro universo con caratteristiche uniche nel suo genere: mangia tutto cio’ che gli capita a tiro senza far uscire nulla. L’idea di poter avere un mostro del genere qui sulla terra, scatena gli animi piu’ catastrofisti pensando a qualcosa che nel giro di qualche minuto sarebbe in grado di divorare Ginevra, la Svizzera, il mondo intero.

Come anticipato, LHC e’ ora in stato di fermo. Si sta lavorando incessantemente per migliorare i rivelatori che vi operano al fine di ottenere risultati sempre piu’ accurati e affidabili. Alla ripartenza, avendo ormai preso piu’ confidenza con la macchina, si pensa anche di poter aumentare l’energia del centro di massa, cioe’ quella a disposizione per creare nuove particelle, portandola da 7 a 10 TeV. Come e’ ovvio, questa notizia non poteva che riaccendere gli animi catastrofisti. Al momento non si e’ creato nessun buco nero perche’ l’energia era troppo bassa, gli scienziati stanno giocando con il fuoco e porteranno alla distruzione della Terra. Queste sono le argomentazioni che cominciate a leggere in rete e che non potranno che riaumentare avvicinandoci al momento della ripartenza.

Se anche dovesse formarsi un mini buco nero, perche’ gli scienziati sono tanto sicuri che non accadra’ nulla? Come sapete, si parla di evaporazione dei buchi neri. Una “strana” teoria formulata dal fisico inglese Stephen Hawking ma che, almeno da quello che leggete, non e’ mai stata verificata, si tratta solo di un’idea e andrebbe anche in conflitto con la meccanica quantistica e la relativita’. Queste sono le argomentazioni che leggete. Trovate uno straccio di articolo a sostegno? Assolutamente no, ma, leggendo queste notizie, il cosiddetto uomo di strada, non addetto ai lavori, potrebbe lasciarsi convincere che stiamo accendendo una miccia, pensando che forse si spegnera’ da sola.

Date queste premesse, credo sia il caso di affrontare il discorso dell’evaporazione dei buchi neri. Purtroppo, si tratta di teorie abbastanza complicate e che richiedono molti concetti fisici. Cercheremo di mantenere un profilo divulgativo al massimo, spesso con esempi forzati e astrazioni. Cio’ nonostante, parleremo chiaramente dello stato dell’arte, senza nascondere nulla ma solo mostrando risultati accertati.

Cominciamo proprio dalle basi parlando di buchi neri. La domanda principale che viene fatta e’ la seguente: se un buco nero non lascia sfuggire nulla dal suo interno, ne’ particelle ne’ radiazione, come potrebbe evaporare, cioe’ emettere qualcosa verso l’esterno? Questa e’ un’ottima domanda, e per rispondere dobbiamo capire meglio come e’ fatto un buco nero.

Secondo la teoria della relativita’, un buco nero sarebbe un oggetto estremamente denso e dotato di una gravita’ molto elevata. Questa intensa forza di richiamo non permette a nulla, nemmeno alla luce, di sfuggire al buco nero. Essendo pero’ un oggetto molto denso e compatto, questa forza e’ estremamente concentrata e localizzata. Immaginatelo un po’ come un buco molto profondo creato nello spazio tempo, cioe’ una sorta di inghiottitoio. La linea di confine tra la singolarita’ e l’esterno e’ quello che viene definito l’orizzonte degli eventi. Per capire questo concetto, immaginate l’orizzonte degli eventi come una cascata molto ripida che si apre lungo un torrente. Un pesce potra’ scendere e risalire il fiume senza problemi finche’ e’ lontano dalla cascata. In prossimita’ del confine, cioe’ dell’orizzonte degli eventi, la forza che lo trascina giu’ e’ talmente forte che il pesce non potra’ piu’ risalire e verra’ inghiottito.

Bene, questo e’ piu’ o meno il perche’ dal buco nero non esce nulla, nemmeno la luce. Dunque? Come possiamo dire che il buco nero evapora in queste condizioni?

La teoria dell’evaporazione, si basa sulle proprieta’ del vuoto. Come visto in questo articolo:

Se il vuoto non e’ vuoto

nella fisica, quello che immaginiamo come vuoto, e’ un continuo manifestarsi di coppie virtuali particella-antiparticella che vivono un tempo brevissimo e poi si riannichilano scomparendo. Come visto nell’articolo, non stiamo parlando di idee campate in aria, ma di teorie fisiche dimostrabili. L’effetto Casimir, dimostrato sperimentalmente e analizzato nell’articolo citato, e’ uno degli esempi.

Ora, anche in prossimita’ del buco nero si creeranno coppie di particelle e questo e’ altresi’ possibile quasi in prossimita’ dell’orizzonte degli eventi. Bene, ragioniamo su questo caso specifico. Qualora venisse creata una coppia di particelle virtuali molto vicino alla singolarita’, e’ possibile che una delle due particelle venga assorbita perche’ troppo vicina all’orizzonte degli eventi. In questo caso, la singola particella rimasta diviene, grazie al principio di indeterminazione di Heisenberg, una particella reale. Cosa succede al buco nero? Nei testi divulgativi spesso leggete che il buco nero assorbe una particella con energia negativa e dunque diminuisce la sua. Cosa significa energia negativa? Dal vuoto vengono create due particelle. Per forza di cose queste avranno sottratto un po’ di energia dal vuoto che dunque rimarra’ in deficit. Se ora una delle due particelle virtuali e’ persa, l’altra non puo’ che rimanere come particella reale. E il deficit chi lo paga? Ovviamente il buco nero, che e’ l’unico soggetto in zona in grado di pagare il debito. In soldoni dunque, e’ come se il buco nero assorbisse una particella di energia negativa e quindi diminuisse la sua. Cosa succede alla particella, ormai reale, rimasta? Questa, trovandosi oltre l’orizzonte degli eventi puo’ sfuggire sotto forma di radiazione. Questo processo e’ quello che si definisce evaporazione del buco nero.

Cosa non torna in questo ragionamento?

Il problema principale e’, come si dice in fisica, che questo processo violerebbe l’unitarieta’. Per le basi della meccanica quantistica, un qualunque sistema in evoluzione conserva sempre l’informazione circa lo stato inziale. Cosa significa? In ogni stato e’ sempre contenuta l’indicazione tramite la quale e’ possibile determinare con certezza lo stato precedente. Nel caso dei buchi neri che evaporano, ci troviamo una radiazione termica povera di informazione, creata dal vuoto, e che quindi non porta informazione.

Proprio da questa assunzione nascono le teorie che potete leggere in giro circa il fatto che l’evaporazione non sarebbe in accordo con la meccanica quantistica. Queste argomentazioni, hanno fatto discutere anche i fisici per lungo tempo, cioe’ da quando Hawking ha proposto la teoria. Sia ben chiaro, la cosa non dovrebbe sorprendere. Parlando di buchi neri, stiamo ragionando su oggetti molto complicati e per i quali potrebbero valere  leggi modificate rispetto a quelle che conosciamo.

Nonostante questo, ad oggi, la soluzione al problema e’ stata almeno “indicata”. Nel campo della fisica, si racconta anche di una famosa scommessa tra Hawking e Preskill, un altro fisico teorico del Caltech. Hawking sosteneva che la sua teoria fosse giusta e che i buchi neri violassero l’unitarieta’, mentre Perskill era un fervido sostenitore della inviolabilita dei principi primi della meccanica quantistica.

La soluzione del rebus e’ stata indicata, anche se ancora non confermata, come vedremo in seguito, chiamando in causa le cosiddette teorie di nuova fisica. Come sapete, la teoria candidata a risolvere il problema della quantizzazione della gravita’ e’ quella delle stringhe, compatibile anche con quella delle brane. Secondo questi assunti, le particelle elementari non sarebbero puntiformi ma oggetti con un’estensione spaziale noti appunto come stringhe. In questo caso, il buco nero non sarebbe piu’ una singolarita’ puntiforme, ma avrebbe un’estensione interna molto piu’ complessa. Questa estensione permette pero’ all’informazione di uscire, facendo conservare l’unitarieta’. Detto in altri termini, togliendo la singolarita’, nel momento in cui il buco nero evapora, questo fornisce ancora un’indicazione sul suo stato precedente.

Lo studio dei buchi neri all’interno della teoria delle stringhe ha portato al cosiddetto principio olografico, secondo il quale la gravita’ sarebbe una manifestazione di una teoria quantistica che vive in un numero minore di dimensioni. Esattamente come avviene in un ologramma. Come sapete, guardando un ologramma, riuscite a percepire un oggetto tridimensionale ma che in realta’ e’ dato da un immagine a 2 sole dimensioni. Bene, la gravita’ funzionerebbe in questo modo: la vera forza e’ una teoria quantistica che vive in un numero ridotto di dimensioni, manifestabili, tra l’altro, all’interno del buco nero. All’esterno, con un numero di dimensioni maggiori, questa teoria ci apparirebbe come quella che chiamiamo gravita’. Il principio non e’ assolutamente campato in aria e permetterebbe anche di unificare agevolmente la gravita’ alle altre forze fondamentali, separate dopo il big bang man mano che l’universo si raffreddava.

Seguendo il ragionamento, capite bene il punto in cui siamo arrivati. Concepire i buchi neri in questo modo non violerebbe assolutamente nessun principio primo della fisica. Con un colpo solo si e’ riusciti a mettere insieme: la meccanica quantistica, la relativita’ generale, il principio di indeterminazione di Heisenberg, le proprieta’ del vuoto e la termodinamica studiando la radiazione termica ed estendendo il secondo principio ai buchi neri.

Attenzione, in tutta questa storia c’e’ un pero’. E’ vero, abbiamo messo insieme tante cose, ma ci stiamo affidando ad una radiazione che non abbiamo mai visto e alla teoria delle stringhe o delle brance che al momento non e’ confermata. Dunque? Quanto sostenuto dai catastrofisti e’ vero? Gli scienziati rischiano di distruggere il mondo basandosi su calcoli su pezzi di carta?

Assolutamente no.

Anche se non direttamente sui buchi neri, la radiazione di Hawking e’ stata osservata in laboratorio. Un gruppo di fisici italiani ha osservato una radiazione paragonabile a quella dell’evaporazione ricreando un orizzonte degli eventi analogo a quello dei buchi neri. Come visto fin qui, l’elemento fondamentale del gioco, non e’ il buco nero, bensi’ la curvatura della singolarita’ offerta dalla gravita’. Bene, per ricreare un orizzonte degli eventi, basta studiare le proprieta’ ottiche di alcuni materiali, in particolare il loro indice di rifrazione, cioe’ il parametro che determina il rallentamento della radiazione elettromagnetica quando questa attraversa un mezzo.

Nell’esperimento, si e’ utilizzato un potente fascio laser infrarosso, in grado di generare impulsi cortissimi, dell’ordine dei miliardesimi di metro, ma con intensita’ miliardi di volte maggiore della radiazione solare. Sparando questo fascio su pezzi di vetro, il punto in cui la radiazione colpisce il mezzo si comporta esattamente come l’orizzonte degli eventi del buco nero, creando una singolarita’ dalla quale la luce presente nell’intorno non riesce ad uscire. In laboratorio si e’ dunque osservata una radiazione con una lunghezza d’onda del tutto paragonabile con quella che ci si aspetterebbe dalla teoria di Hawking, tra 850 e 900 nm.

Dunque? Tutto confermato? Se proprio vogliamo essere pignoli, no. Come visto, nel caso del buco nero gioca un ruolo determinante la gravita’ generata dal corpo. In laboratorio invece, la singolarita’ e’ stata creata otticamente. Ovviamente, mancano ancora degli studi su questi punti, ma l’aver ottenuto una radiazione con la stessa lunghezza d’onda predetta dalla teoria di Hawking e in un punto in cui si genera un orizzonte degli eventi simile a quello del buco nero, non puo’ che farci sperare che la teoria sia giusta.

Concludendo, l’evaporazione dei buchi neri e’ una teoria molto complessa e che richiama concetti molto importanti della fisica. Come visto, le teorie di nuova fisica formulate in questi anni, hanno consentito di indicare la strada probabile per risolvere le iniziali incompatibilita’. Anche se in condizioni diverse, studi di laboratorio hanno dimostrato la probabile esistenza della radiazione di Hawking, risultati che confermerebbero l’esistenza della radiazione e dunque la possibilita’ dell’evaporazione. Ovviamente, siamo di fronte a teorie in parte non ancora dimostrate ma solo ipotizzate. I risultati ottenuti fino a questo punto, ci fanno capire pero’ che la strada indicata potrebbe essere giusta.

Vorrei chiudere con un pensiero. Se, a questo punto, ancora pensate che potrebbero essere tutte fantasie e che un buco nero si potrebbe creare e distruggere la Terra, vi faccio notare che qui parliamo di teorie scientifiche, con basi solide e dimostrate, e che stanno ottenendo le prime conferme da esperimenti diretti. Quando leggete le teorie catastrofiste in rete, su quali basi si fondano? Quali articoli vengono portati a sostegno? Ci sono esperimenti di laboratorio, anche preliminari ed in condizioni diverse, che potrebbero confermare quanto affermato dai catastrofisti?

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Ancora sugli esopianeti

15 Ago

Come sapete, siamo soliti tornare su argomenti gia’ trattati, qualora su questi venissero richiesti dettagli aggiuntivi o, sopratutto, quando qualcosa di nuovo viene scoperto o introdotto.

Questa volta vogliamo tornare a parlare di esopianeti, su cui molto avevamo detto in questi articoli:

A caccia di vita sugli Esopianeti

Nuovi esopianeti. Questa volta ci siamo?

Esopianeti che non dovrebbero esserci

Perche’ torniamo a parlarne?

Perche’ tutti e due i motivi sopra indicati convergono su questo argomento. Prima di tutto, nella sezione:

Hai domande o dubbi?

e’ stato suggerito di parlare della presunta scoperta di un nuovo esopianeta che sembrerebbe poter essere il corpo extrasolare piu’ simile alla nostra Terra e poi perche’ ci sono anche delle novita’ di cui vorrei parlare.

Andiamo con ordine.

Come potete leggere, la richiesta era relativa all’esopianeta KOI-4742.01. Come giustamente detto, di questo pianeta si e’ avuta l’evidenza solo pochi giorni fa. Perche’ parlo di evidenza e non di scoperta? Usando un linguaggio piu’ simile a quello della fisica delle particelle, si parla di evidenza quando c’e’ il sospetto che potrebbe esserci un corpo in quella zona dell’universo che stiamo osservando, ma ancora non vi e’ la certezza. Per KOI-4742.01 la situazione e’ proprio questa. Come visto negli articoli precedenti, gli esopianeti vengono identificati con il metodo dei passaggi. Per prima cosa, si identifica la stella intorno ala quale potrebbe esserci un sistema stellare. Dopo di che, si osserva questa stella cercando di misurare le minime variazioni di luminosita’ che si hanno quando un pianeta gli passa davanti. Questo e’ il metodo utilizzato per identificare i pianeti fuori dal sistema solare. Come potete facilmente immaginare, si tratta di un metodo molto complicato basato su variazioni minime di luminosita’ percepite ad una distanza cosi’ lontana. Proprio per questo motivo, ruolo determinante in questa ricerca e’ sicuramente quello del telescopio. Strumenti sempre piu’ potenti e precisi, possono consentire di identificare pianeti sempre piu’ lontani e piccoli.

Perche’ parliamo tanto di esopianeti?

Come detto in passato, lo studio di questi corpi e’ di fondamentale importanza per cercare di capire dove si potrebbe essere sviluppata la vita. Qui non stiamo parlando di video fasulli di UFO che passano da qualche parte, ma di una seria ricerca scientifica volta ad identificare pianeti potenzialmente abitabili. Come detto diverse volte, vi ricordo che quando parliamo di vita, non intendiamo necessariamente omini verdi che parlano e girano su astronavi. Ogni qualsiasi forma di vita, dal batterio alla forma piu’ complessa, possono aiutarci a capire meglio la formazione del nostro universo e soprattutto in quali e quanti casi si possono formare le condizioni per ospitare la vita.

Cosa ha di speciale KOI-4742.01?

Come anticipato, si tratta del potenziale esopianeta piu’ simile alla Terra. Cosa significa? Al momento ci sono piu’ di 3500 potenziali esopianeti, di cui quasi 1000 certi e identificati. Volendo fare una ricerca per trovare zone potenzialmente abitabili, di quali parametri terremo conto? Detto in altri termini, come possiamo dire se un pianeta e’ adatto o no per ospitare la vita?

Negli articoli precedenti, avevamo parlato di “zona di abitabilita’”, intendo quella fascia di distanze dalla stella centrale in grado di assicurare la formazione di acqua sul pianeta e delle temperature, diciamo, decenti, cioe’ non troppo calde ne’ troppo fredde.

Per poter procedere in modo sistematico e scientifico, e’ stato introdotto un indice matematico proprio per racchiudere queste caratteristiche. Come indicato nel commento da cui siamo partiti, si tratta del cosiddetto ESI, cioe’ “indice di similarita’ alla Terra”. Come funziona? Volendo utilizzare una terapia d’urto, vi faccio vedere la formula che definisce l’ESI:

esi_formula

Non spaventatevi, altro non e’ che il prodotto di probabilita’ ottenuto mettendo insieme 4 fattori: il raggio del pianeta, la densita’ interna, la velocita’ di fuga (indicatore della gravita’ sul pianeta) e la temperatura media della superficie. Ogni parametro viene confrontato con quelli della Terra e pesato in modo diverso. In tal senso, per la potenziale formazione della vita, si considera la temperatura superficiale piu’ importante del raggio e cosi’ via. Mettendo i parametri nella formula, ottenete una valore compreso tra 0 e 1, dove 1 indica qualcosa identico alla nostra Terra.

KOI-4742.01 ha un ESI pari a 0,91 ed e’, qualora venisse confermato, l’esopianeta piu’ simile alla Terra trovato fino a questo punto. Prima di questo, il primo posto in classifica spettava a Kepler-62e, con un ESI pari a 0,83. Per essere precisi, dobbiamo dire che il primo posto in classifica spetta ancora a Kepler-62e, dal momento che KOI-4742.01 non e’, come detto in precedenza, stato ancora confermato. Allo stesso modo, esistono anche altri esopianeti non confermati che potrebbero avere un ESI maggiore di 0,83, anche se minore di quello di KOI-4742.01.

Il sito piu’ completo e aggiornato con tutte le recenti scoperte e con tantissime informazioni su questo tipo di ricerche e’ senza dubbio quello del PHL, cioe’ Planet Habitability Laboratory, gestito dall’universita’ di Porto Rico:

PHL site

Come potete vedere, qui trovate tantissime informazioni sulla ricerca in corso di esopianeti, insieme anche al catalogo aggiornato sia dei corpi identificati che di quelli sospetti:

PHL, database

Nell’immagine che segue, trovate poi la classifica dei pianeti con ESI maggiore gia’ confermati:

Classifica degli esopianeti confermati con ESI maggiore

Classifica degli esopianeti confermati con ESI maggiore

Prima di concludere, vorrei darvi qualche informazione aggiuntiva. Come potete vedere sul sito del PHL, gli esopianeti vengono anche classificati in base alla loro tipologia: terrestre caldo, superterrestre, subterrestre, mercuriano, ecc. Questa identificazione viene data considerando la tipologia di pianeta, se roccioso o meno, la temperatura e la massa del pianeta. Per farvi un esempio, Kepler-62e e’ classificato di tipo superterrestre, avendo una massa di circa 3 volte e mezzo quella della Terra. Anche questa distinzione risulta molto importante per la classificazione dei pianeti in base alla loro possibilita’ di ospitare o meno la vita.

Proprio per questo motivo, capite bene che l’ESI e’ si un parametro molto importante ma non e’ l’unico utilizzato. Nella classificazione degli esopianeti, si tiene conto di 7 parametri definiti a partire dala nostra Terra. Oltre all’indice di similarita’, si tiene conto della posizione, se in fascia abitabile o meno, dell’abitabilita’ per piante e vegetazione complessa, che dipende anche dall’umidita’ oltre che dalla temperatura, della tipologia dell’interno del pianeta, oltre che alla densita’ inserita nell’ESI qui si tiene conto se il nucleo e’ ricco di ferro o no, e tanti altri parametri importanti per la vita.

Concludendo, la ricerca degfli esopianeti continua senza sosta e il database di corpi conosciuti fuori dal nostro sistema solare cresce senza sosta. Come sappiamo bene, uno degli scopi principali di questa ricerca e’ quello di determinare se su qualche pianeta esistono le condizioni per la formazione e lo sviluppo di forme di vita. A tal proposito, sono stati introdotti diversi indici per formalizzare e confrontare facilmente le caratteristiche degli esopianeti. Tra questi, ruolo determinante e’ quello dellESI, cioe’ l’indice di somiglianza alla Terra. Fate pero’ attenzione ad una cosa: se anche dovessimo trovare un pianeta del tutto simile alla Terra e con caratteristiche adatte alla vita, non significherebbe assolutamente che esiste la certezza di trovare vita su quel pianeta. Per questo, non resterebbe che andare a vedere con i nostri occhi!

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.