Tag Archives: termico

Ritorno ai dirigibili?

23 Dic

Se proviamo a pensare ai trasporti, la nostra mente sarebbe necessariamente influenzata dall’ambiente in cui viviamo. Oggi, siamo abituati a poter raggiungere qualsiasi posto o citta’ mediante strade, autostrade, ferrovie o, per posti piu’ lontani, con l’aereo. Questo purtroppo non e’ sempre vero. Costruire infrastrutture di questo tipo costa moltissimo e una corretta valutazione costo/utilizzo viene sempre fatta per decidere la convenienza o meno di una nuova costruzione. Anche con l’aereo, il discorso e’ molto simile, solo per darvi un’idea, dovendo andare dal punto A al punto B, e’ necessario avere piste di decollo e atterraggio nei due punti.

Ora, sulla Terra esistono diverse zone, magari poco popolate, in cui queste infrastrutture non sono presenti. Proprio in virtu’ di questo, negli ultimi anni, sta tornando di moda il trasporto mediante dirigibile. I primi a ripensare a questo metodo, sono state le diverse compagnie minerarie e petrolifere che operano in zone molto disagiate e poco raggiungibili del pianeta. Esempio classico e’ quello delle zone della Siberia e della Russia Orientale, ricche di materie prime, ma poco servite da infrastrutture di trasporto. In questo caso, sono necessari costanti viaggi di rifornimento non solo per il trasporto del materiale per la creazione del sito produttivo, ma anche per l’approviggionamento di derrate alimentari e beni per i lavoratori del posto.

Leggendo questa notizie, non possono non venire in mente filmati in bianco e nero con questi enormi dirigibili che solcano i cieli. Perche’ pero’, ad un certo punto, il trasporto con dirigibili e’ stato quasi completamente abbandonato? Fino agli anni ’30 del secolo scorso, dirigibile e aereo si contendevano lo scettro di mezzo di trasporto piu’ sicuro e efficiente per viaggi a lunga distanza. Come spesso accade, quello che ha segnato la fine del dirigibile e’ stato un incidente. Il 6 maggio 1937, durante la fase di atterraggio, il dirigibile Hindemburg si incendio’ causando la morte di 35 delle 97 persone che erano a bordo. Ancora oggi, la reale causa dell’incidente non e’ stata ancora completamente spiegata. Secondo alcuni, l’incendio sarebbe stato provocato da una fuoriuscita di idrogeno presente nel pallone. Questo, a causa dell’elettricita’ accumulata sulla tela o forse a cusa di un fulmine, si incendio’ causando il disastro. Secondo altri ancora, l’ipotesi ragionevole e’ quella di un attentato terroristico. Anche se la causa non e’ stata determinata con precisione, il risultato di questo incidente fu quello gia’ introdotto, il completo abbandono del dirigibile nei confronti dell’aereo.

Ora pero’, a causa della, chiamiamola cosi’, colonizzazione da parte dell’uomo di qualsiasi angolo del pianeta, si e’ ricreata la necessita’ di ricorrere a questo innovativo/antico metodo. Come visto in precedenza, la possibilita’ di un decollo verticale e di atterraggio senza pista, fanno si che il dirigibile possa essere una scelta molto adatta in luoghi impervi. Oltre alle gia’ citate compagnie di estrazione, l’idea e’ quella di utilizzare questo mezzo per le missioni artiche o anche per campagne di raccolta dati scientifici. Gia’ negli anni scorsi, questi sistemi sono stati utilizzati, ad esempio, per raccogliere campioni di atmosfera a diversa altezza o anche per studiare i parametri ambientali su specifici punti del pianeta. Detto questo, capite bene come l’interesse sia assolutamente vivo e anche i possibili campi di applicazione non manchino.

Ora, ci sono gia’ diverse compagnie che si stanno attrezzando con questi sistemi. Come e’ noto, e solo per inciso, oggi si utilizza l’elio, piu’ leggero dell’aria, per far volare i dirigibili. Al contrario dell’idrogeno questo e’ un gas inerte e non infiammabile. Le soluzioni proposte sono essenzialmente di due tipi, uno per trasporto fino a 66 tonnellate e una che puo’ arrivare a trasportare merci per un peso complessivo fino a 250 tonnellate. Per darvi un’idea di questi numeri, un apparecchio del genere e’ in grado di trasportare carri armati, camion, macchinari pesanti e tutto quello che vi viene in mente. Immaginate il guadagno rispetto al dover costruire centinaia, se non migliaia, di kilometri di ferrovia in zone impervie.

A parte la salita del dirigibile, e’ interessante anche discutere i sistemi di movimentazine in orizzontale. Anche in questo caso, si sta lavorando per trovare nuove soluzioni, prima di tutto a basso costo ed alto rendimento e poi anche a basso impatto ambientale. In che modo? I sistemi gia’ proposti utilizzano motori a gasolio per far muovere il sistema parallelamente alla Terra. Al contrario, alcune compagnie stanno lavorando alla realizzazione di teli semirigidi per il dirigibile coperti da panneli solari ricurvi. L’energia prodotta in questo modo servirebbe per alimentare motori elettrici o ibridi ad alta efficienza.

Concludendo, i cari vecchi dirigibili erano stati messi da parte in seguito al terribile incidente del 1937. Oggi pero’, si sta di nuovo accendendo una corsa a questi sistemi a causa dell’impossibilita’ di raggiungere alcune zone specifiche della Terra mediante sistemi, diciamo cosi’, tradizionali. In questo caso, piu’ che di un’idea, parliamo di sistemi gia’ in avanzato stato di realizzazione con diverse grandi compagnie presenti sul mercato. Oltre al trasporto pesante, ci sono gia’ alcune organizzazioni che publicizzano giri turistici in dirigibile per visitare dall’alto zone spettacolari del nostro pianeta.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

I buchi neri che … evaporano

16 Ago

Uno degli aspetti che da sempre fa discutere e creare complottismi su LHC, e’ di sicuro la possibilita’ di creare mini buchi neri. Questa teoria nasce prendendo in considerazione le alte energie in gioco all’interno del collissore del CERN e la possibilita’ che nello scontro quark-quark possa venire a crearsi una singolarita’ simile a quella dei buchi neri.

Se avete perso i precedenti articoli, di LHC abbiamo parlato in questi post:

2012, fine del mondo e LHC

Bosone di Higgs … ma che sarebbe?

Sia ben chiaro, la storia dei buchi neri non e’ la sola creata su LHC. Il CERN ogni giorno riceve lettere che chiedono la chiusura dell’esperimento per il pericolo che questo rappresenta per l’intera terra. Diverse volte il CERN e’ anche stato chiamato in giudizio a fronte di vere e proprie denuncie di pseudo scienziati che lo accusavano farneticando teorie senza capo ne’ coda. Come potete immaginare, tutte le volte le accuse sono state rigettate e non solo LHC il prossimo anno ripartira’, ma a gia’ fornito risultati fisici di prim’ordine.

Perche’ si discute tanto di buchi neri? Qui ognuno puo’ formulare la propria ipotesi. Io ho una mia idea. Parlare di buchi neri, e’ qualcosa che da sempre stimola la curiosita’ e il timore delle persone. Un buco nero e’ visto come qualcosa di misterioso che vive nel nostro universo con caratteristiche uniche nel suo genere: mangia tutto cio’ che gli capita a tiro senza far uscire nulla. L’idea di poter avere un mostro del genere qui sulla terra, scatena gli animi piu’ catastrofisti pensando a qualcosa che nel giro di qualche minuto sarebbe in grado di divorare Ginevra, la Svizzera, il mondo intero.

Come anticipato, LHC e’ ora in stato di fermo. Si sta lavorando incessantemente per migliorare i rivelatori che vi operano al fine di ottenere risultati sempre piu’ accurati e affidabili. Alla ripartenza, avendo ormai preso piu’ confidenza con la macchina, si pensa anche di poter aumentare l’energia del centro di massa, cioe’ quella a disposizione per creare nuove particelle, portandola da 7 a 10 TeV. Come e’ ovvio, questa notizia non poteva che riaccendere gli animi catastrofisti. Al momento non si e’ creato nessun buco nero perche’ l’energia era troppo bassa, gli scienziati stanno giocando con il fuoco e porteranno alla distruzione della Terra. Queste sono le argomentazioni che cominciate a leggere in rete e che non potranno che riaumentare avvicinandoci al momento della ripartenza.

Se anche dovesse formarsi un mini buco nero, perche’ gli scienziati sono tanto sicuri che non accadra’ nulla? Come sapete, si parla di evaporazione dei buchi neri. Una “strana” teoria formulata dal fisico inglese Stephen Hawking ma che, almeno da quello che leggete, non e’ mai stata verificata, si tratta solo di un’idea e andrebbe anche in conflitto con la meccanica quantistica e la relativita’. Queste sono le argomentazioni che leggete. Trovate uno straccio di articolo a sostegno? Assolutamente no, ma, leggendo queste notizie, il cosiddetto uomo di strada, non addetto ai lavori, potrebbe lasciarsi convincere che stiamo accendendo una miccia, pensando che forse si spegnera’ da sola.

Date queste premesse, credo sia il caso di affrontare il discorso dell’evaporazione dei buchi neri. Purtroppo, si tratta di teorie abbastanza complicate e che richiedono molti concetti fisici. Cercheremo di mantenere un profilo divulgativo al massimo, spesso con esempi forzati e astrazioni. Cio’ nonostante, parleremo chiaramente dello stato dell’arte, senza nascondere nulla ma solo mostrando risultati accertati.

Cominciamo proprio dalle basi parlando di buchi neri. La domanda principale che viene fatta e’ la seguente: se un buco nero non lascia sfuggire nulla dal suo interno, ne’ particelle ne’ radiazione, come potrebbe evaporare, cioe’ emettere qualcosa verso l’esterno? Questa e’ un’ottima domanda, e per rispondere dobbiamo capire meglio come e’ fatto un buco nero.

Secondo la teoria della relativita’, un buco nero sarebbe un oggetto estremamente denso e dotato di una gravita’ molto elevata. Questa intensa forza di richiamo non permette a nulla, nemmeno alla luce, di sfuggire al buco nero. Essendo pero’ un oggetto molto denso e compatto, questa forza e’ estremamente concentrata e localizzata. Immaginatelo un po’ come un buco molto profondo creato nello spazio tempo, cioe’ una sorta di inghiottitoio. La linea di confine tra la singolarita’ e l’esterno e’ quello che viene definito l’orizzonte degli eventi. Per capire questo concetto, immaginate l’orizzonte degli eventi come una cascata molto ripida che si apre lungo un torrente. Un pesce potra’ scendere e risalire il fiume senza problemi finche’ e’ lontano dalla cascata. In prossimita’ del confine, cioe’ dell’orizzonte degli eventi, la forza che lo trascina giu’ e’ talmente forte che il pesce non potra’ piu’ risalire e verra’ inghiottito.

Bene, questo e’ piu’ o meno il perche’ dal buco nero non esce nulla, nemmeno la luce. Dunque? Come possiamo dire che il buco nero evapora in queste condizioni?

La teoria dell’evaporazione, si basa sulle proprieta’ del vuoto. Come visto in questo articolo:

Se il vuoto non e’ vuoto

nella fisica, quello che immaginiamo come vuoto, e’ un continuo manifestarsi di coppie virtuali particella-antiparticella che vivono un tempo brevissimo e poi si riannichilano scomparendo. Come visto nell’articolo, non stiamo parlando di idee campate in aria, ma di teorie fisiche dimostrabili. L’effetto Casimir, dimostrato sperimentalmente e analizzato nell’articolo citato, e’ uno degli esempi.

Ora, anche in prossimita’ del buco nero si creeranno coppie di particelle e questo e’ altresi’ possibile quasi in prossimita’ dell’orizzonte degli eventi. Bene, ragioniamo su questo caso specifico. Qualora venisse creata una coppia di particelle virtuali molto vicino alla singolarita’, e’ possibile che una delle due particelle venga assorbita perche’ troppo vicina all’orizzonte degli eventi. In questo caso, la singola particella rimasta diviene, grazie al principio di indeterminazione di Heisenberg, una particella reale. Cosa succede al buco nero? Nei testi divulgativi spesso leggete che il buco nero assorbe una particella con energia negativa e dunque diminuisce la sua. Cosa significa energia negativa? Dal vuoto vengono create due particelle. Per forza di cose queste avranno sottratto un po’ di energia dal vuoto che dunque rimarra’ in deficit. Se ora una delle due particelle virtuali e’ persa, l’altra non puo’ che rimanere come particella reale. E il deficit chi lo paga? Ovviamente il buco nero, che e’ l’unico soggetto in zona in grado di pagare il debito. In soldoni dunque, e’ come se il buco nero assorbisse una particella di energia negativa e quindi diminuisse la sua. Cosa succede alla particella, ormai reale, rimasta? Questa, trovandosi oltre l’orizzonte degli eventi puo’ sfuggire sotto forma di radiazione. Questo processo e’ quello che si definisce evaporazione del buco nero.

Cosa non torna in questo ragionamento?

Il problema principale e’, come si dice in fisica, che questo processo violerebbe l’unitarieta’. Per le basi della meccanica quantistica, un qualunque sistema in evoluzione conserva sempre l’informazione circa lo stato inziale. Cosa significa? In ogni stato e’ sempre contenuta l’indicazione tramite la quale e’ possibile determinare con certezza lo stato precedente. Nel caso dei buchi neri che evaporano, ci troviamo una radiazione termica povera di informazione, creata dal vuoto, e che quindi non porta informazione.

Proprio da questa assunzione nascono le teorie che potete leggere in giro circa il fatto che l’evaporazione non sarebbe in accordo con la meccanica quantistica. Queste argomentazioni, hanno fatto discutere anche i fisici per lungo tempo, cioe’ da quando Hawking ha proposto la teoria. Sia ben chiaro, la cosa non dovrebbe sorprendere. Parlando di buchi neri, stiamo ragionando su oggetti molto complicati e per i quali potrebbero valere  leggi modificate rispetto a quelle che conosciamo.

Nonostante questo, ad oggi, la soluzione al problema e’ stata almeno “indicata”. Nel campo della fisica, si racconta anche di una famosa scommessa tra Hawking e Preskill, un altro fisico teorico del Caltech. Hawking sosteneva che la sua teoria fosse giusta e che i buchi neri violassero l’unitarieta’, mentre Perskill era un fervido sostenitore della inviolabilita dei principi primi della meccanica quantistica.

La soluzione del rebus e’ stata indicata, anche se ancora non confermata, come vedremo in seguito, chiamando in causa le cosiddette teorie di nuova fisica. Come sapete, la teoria candidata a risolvere il problema della quantizzazione della gravita’ e’ quella delle stringhe, compatibile anche con quella delle brane. Secondo questi assunti, le particelle elementari non sarebbero puntiformi ma oggetti con un’estensione spaziale noti appunto come stringhe. In questo caso, il buco nero non sarebbe piu’ una singolarita’ puntiforme, ma avrebbe un’estensione interna molto piu’ complessa. Questa estensione permette pero’ all’informazione di uscire, facendo conservare l’unitarieta’. Detto in altri termini, togliendo la singolarita’, nel momento in cui il buco nero evapora, questo fornisce ancora un’indicazione sul suo stato precedente.

Lo studio dei buchi neri all’interno della teoria delle stringhe ha portato al cosiddetto principio olografico, secondo il quale la gravita’ sarebbe una manifestazione di una teoria quantistica che vive in un numero minore di dimensioni. Esattamente come avviene in un ologramma. Come sapete, guardando un ologramma, riuscite a percepire un oggetto tridimensionale ma che in realta’ e’ dato da un immagine a 2 sole dimensioni. Bene, la gravita’ funzionerebbe in questo modo: la vera forza e’ una teoria quantistica che vive in un numero ridotto di dimensioni, manifestabili, tra l’altro, all’interno del buco nero. All’esterno, con un numero di dimensioni maggiori, questa teoria ci apparirebbe come quella che chiamiamo gravita’. Il principio non e’ assolutamente campato in aria e permetterebbe anche di unificare agevolmente la gravita’ alle altre forze fondamentali, separate dopo il big bang man mano che l’universo si raffreddava.

Seguendo il ragionamento, capite bene il punto in cui siamo arrivati. Concepire i buchi neri in questo modo non violerebbe assolutamente nessun principio primo della fisica. Con un colpo solo si e’ riusciti a mettere insieme: la meccanica quantistica, la relativita’ generale, il principio di indeterminazione di Heisenberg, le proprieta’ del vuoto e la termodinamica studiando la radiazione termica ed estendendo il secondo principio ai buchi neri.

Attenzione, in tutta questa storia c’e’ un pero’. E’ vero, abbiamo messo insieme tante cose, ma ci stiamo affidando ad una radiazione che non abbiamo mai visto e alla teoria delle stringhe o delle brance che al momento non e’ confermata. Dunque? Quanto sostenuto dai catastrofisti e’ vero? Gli scienziati rischiano di distruggere il mondo basandosi su calcoli su pezzi di carta?

Assolutamente no.

Anche se non direttamente sui buchi neri, la radiazione di Hawking e’ stata osservata in laboratorio. Un gruppo di fisici italiani ha osservato una radiazione paragonabile a quella dell’evaporazione ricreando un orizzonte degli eventi analogo a quello dei buchi neri. Come visto fin qui, l’elemento fondamentale del gioco, non e’ il buco nero, bensi’ la curvatura della singolarita’ offerta dalla gravita’. Bene, per ricreare un orizzonte degli eventi, basta studiare le proprieta’ ottiche di alcuni materiali, in particolare il loro indice di rifrazione, cioe’ il parametro che determina il rallentamento della radiazione elettromagnetica quando questa attraversa un mezzo.

Nell’esperimento, si e’ utilizzato un potente fascio laser infrarosso, in grado di generare impulsi cortissimi, dell’ordine dei miliardesimi di metro, ma con intensita’ miliardi di volte maggiore della radiazione solare. Sparando questo fascio su pezzi di vetro, il punto in cui la radiazione colpisce il mezzo si comporta esattamente come l’orizzonte degli eventi del buco nero, creando una singolarita’ dalla quale la luce presente nell’intorno non riesce ad uscire. In laboratorio si e’ dunque osservata una radiazione con una lunghezza d’onda del tutto paragonabile con quella che ci si aspetterebbe dalla teoria di Hawking, tra 850 e 900 nm.

Dunque? Tutto confermato? Se proprio vogliamo essere pignoli, no. Come visto, nel caso del buco nero gioca un ruolo determinante la gravita’ generata dal corpo. In laboratorio invece, la singolarita’ e’ stata creata otticamente. Ovviamente, mancano ancora degli studi su questi punti, ma l’aver ottenuto una radiazione con la stessa lunghezza d’onda predetta dalla teoria di Hawking e in un punto in cui si genera un orizzonte degli eventi simile a quello del buco nero, non puo’ che farci sperare che la teoria sia giusta.

Concludendo, l’evaporazione dei buchi neri e’ una teoria molto complessa e che richiama concetti molto importanti della fisica. Come visto, le teorie di nuova fisica formulate in questi anni, hanno consentito di indicare la strada probabile per risolvere le iniziali incompatibilita’. Anche se in condizioni diverse, studi di laboratorio hanno dimostrato la probabile esistenza della radiazione di Hawking, risultati che confermerebbero l’esistenza della radiazione e dunque la possibilita’ dell’evaporazione. Ovviamente, siamo di fronte a teorie in parte non ancora dimostrate ma solo ipotizzate. I risultati ottenuti fino a questo punto, ci fanno capire pero’ che la strada indicata potrebbe essere giusta.

Vorrei chiudere con un pensiero. Se, a questo punto, ancora pensate che potrebbero essere tutte fantasie e che un buco nero si potrebbe creare e distruggere la Terra, vi faccio notare che qui parliamo di teorie scientifiche, con basi solide e dimostrate, e che stanno ottenendo le prime conferme da esperimenti diretti. Quando leggete le teorie catastrofiste in rete, su quali basi si fondano? Quali articoli vengono portati a sostegno? Ci sono esperimenti di laboratorio, anche preliminari ed in condizioni diverse, che potrebbero confermare quanto affermato dai catastrofisti?

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Climatizzatore …. quanto ci costi?

6 Ago

Nell’ottica del risparmio energetico, non solo per fare un favore all’ambiente ma anche al nostro portafoglio, qualche tempo fa avevamo analizzato in dettaglio i consumi dei nostri elettrodomestici:

Elettrodomestici e bolletta

In particolare, avevamo quantificato il reale consumo dei comuni sistemi casalinghi, convertendo il tutto in termini di consumo. Come sappiamo bene, nella nostra bolletta elettrica, viene riportato un consumo in KWh, mentre le etichette e le caratteristiche degli apparecchi elettronici ci forniscono un valore in potenza, cioe’ in Watt.

Detto questo, con la calura estiva di questi giorni, vorrei riprendere questi concetti, analizzando pero’ il discorso condizionatori. Se andate in negozio intenzionati a comprare un sistema di questo tipo, vi trovate di fronte una vasta gamma di prodotti con caratteristiche diverse ma, soprattutto, la capacita’ refrigerante dei condizionatori e’ espressa in Btu/h.

Cerchiamo dunque di fare un po’ di chiarezza, capendo meglio questi concetti.

Prima di tutto, la scelta principale che dovete affrontare e’ quella relativa alle differenze: con o senza pompa di calore, inverter o ON/OFF.

Cosa significa?

Per quanto riguarda la pompa di calore, si tratta semplicemente di condizionatori che possono riscaldare oltre a rinfrescare. Detto proprio in parole povere, lo stesso sistema e’ in grado di invertire il ciclo termico, producendo un salto positivo o negativo rispetto alla temperaratura iniziale. Detto ancora piu’ semplicemente, avete la possibilita’ di far uscire aria calda o fredda per riscaldare o rinfrescare.

Convengono questi sistemi?

Se avete un impianto di riscaldamento in casa con caloriferi, pannelli radianti, ecc, allora tanto vale comprare solo un condizionatore, cioe’ qualcosa in da utilizzare in estate per rinfrescare.

Cosa significa invece inverter o ON/OFF?

Qui spesso trovate un po’ di confusione in giro. In realta’, la distinzione e’ molto semplice. Un sistema ON/OFF funziona, come dice il nome stesso, in modalita’ accesa o spenta. Cerchiamo di capire meglio. Impostate una temperatura, il sitema si accende e comincia a buttare aria fredda. Quando la temperatura della sala e’ arrivata a quella desiderata il sistema si spegne. A questo punto, quando la temperatura si rialza, il sistema riparte e la riporta al valore impostato. Al contrario, un sistema inverter e’ in grado di modulare la potenza del compressore funzionando a diversi regimi. Se volete, mentre nel primo caso avevamo un sistema binario acceso o spento, qui c’e’ tutta una regolazione della potenza del compressore gestita da un microprocessore. Quando la temperatura si avvicina a quella impostata, la potenza del condizionatore scende riducendo i giri del compressore. In questo modo, con un piccolo sforzo, si riesce a mantenere la temperatura sempre intorno, con piccole fluttuazioni, al valore impostato.

Molto spesso, leggete che gli inverter sono migliori, garantiscono un notevole risparmio energetico, ecc. A costo di andare contro corrente, sostengo invece che questo non e’ sempre vero. Mi spiego meglio. Se avete intenzione di tenere acceso il condizionatore per diverese ore, allora il sistema inverter vi garantisce un consumo minimo, arrivati intorno al valore desiderato. Al contrario, un ON/OFF quando parte, parte sempre a pieno regime. Se pero’ avete intenzione di tenere acceso il condizionatore per poco tempo, perche’ volete accenderlo solo in determinati momenti della giornata o per un paio d’ore mentre vi addormentate, allora il sistema inverter funzionerebbe, dal momento che prendiamo tutto l’intervallo necessario ad abbassare la temperatura, esattamente come un ON/OFF, cioe’ sempre a pieno regime. In questo caso, il consumo sara’ esattamente lo stesso e non riuscirete assolutamente a rientrare della maggiore spesa necessaria all’acquisto di un inverter.

Un commerciante onesto dovrebbe sempre chiedere il funzionamento richiesto al condizionatore e consigliare la migliore soluzione.

Detto questo, andiamo invece ai BTU/h, cioe’ questa arcana unita’ di misura con cui vengono classificati i condizionatori.

BTU sta per British Thermal Unit ed e’ un’unita’ di misura anglosassone dell’energia. Come viene definita? 1 BTU e’ la quantita’ di calore necessaria per alzare la temperatura di una libbra di acqua da 39F a 40F, cioe’ da 3.8 a 4.4 gradi centigradi. Come capite anche dalla definizione, e’ un’unita’ di misura del lavoro, che nel Sistema Internazionale e’ il Joule, che utilizza solo unita’ anglosassoni.

Perche’ si utilizza?

In primis, per motivi storici, poi perche’, per sua stessa definizione, indica proprio il calore necessario per aumentare, o diminuire, la teperatura di un volume di un fluido, in questo caso acqua.

Bene, ora pero’ sui condizionatori abbiamo i BTU/h. Questa indica semplicemente la quantita’ di BTU richiesti in un’ora di esercizio. Possiamo convertire i BTU/h in Watt dal momento che un lavoro diviso l’unita’ di tempo e’ proprio la definizione di potenza. In questo caso:

3412 BTU/h –> 1KW

A questo punto, abbiamo qualcosa di manipolabile e che e’ simile all’analisi fatta parlando degli altri elettrodomestici.

Compriamo un condizionatore da 10000 BTU/h e questo equivale ad un sistema da 2.9KW. Quanto ci costa tenerlo acceso un’ora? In termini di bolletta, in un’ora consumiamo 2.9KWh. Se assumiamo, come visto nel precedente articolo, un costo al KWh di 0.20 euro, per tenere acceso questo sistema servono 0.58 euro/h.

0.58 euro/h? Significa 6 euro per tenerlo acceso 10 ore. In un bimestre estivo, questo significherebbe 360 euro sulla bolletta?

Questo e’ l’errore fondamentale che spesso viene fatto. Il valore in KWh calcolato e’ in realta’ quello necessario per rinfrescare, o riscaldare se abbiamo la pompa di calore, il nostro ambiente. Quando comprate un condizionatore, c’e’ anche un ‘altro numero che dovete controllare, il cosiddetto EER, cioe’ l’Energy efficiency ratio. Questo parametro indica semplicemente l’efficienza elettrica del sistema quando questo lavora in raffreddamento. Analogamente, per i condizionatori con pompa di calore, trovate anche un indice COP che invece rappresenta il rendimento quando si opera in riscaldamento.

Detto proprio in termini semplici, quando assorbite 1 KWh dalla rete, il condizionatore rende una quantita’ pari a 1KWh moltiplicato per il EER. Facciamo un esempio. Valori tipici di EER sono compresi tra 3 e 5. Se supponiamo di comprare un condizionatore con EER pari a 4, per ogni KWh assorbito dalla rete, il sistema ne fornisce 4 sotto forma di energia frigorifera.

Se adesso riprendiamo il calcolo di prima, dai valori inseriti, se il nostro condizionatore ha un EER pari a 4, per tenerlo acceso un’ora spenderemo:

0.58/4 = 0.15 euro

Se confrontiamo questi valori con quelli degli altri elettrodomestici visti nell’articolo precedente, ci rendiamo conto che il condizionatore e’ un sistema che “consuma” molta energia.

Ultima considerazione, fino a questo punto abbiamo parlato di BTU/h, prendendo un numero a caso di 10000. In commercio trovate sistemi con valori tra 5000 e 30000, o anche piu’, BTU/h. Volete rinfrescare una camera, che condizionatore dovete prendere?

In realta’, la risposta a questa domanda non e’ affatto semplice. Come potete immaginare, la potenza del sistema che dovete prendere dipende prima di tutto dalla cubatura dell’ambiente, ma ache da parametri specifici che possono variare molto il risultato: superficie vetrata ed esposizione, superficie di muro ed esposizione, eventuale coibentazione della stanza, se ci sono appartamenti sopra e sotto, se siete sotto tetto, ecc.

Giusto per fornire dei valori a spanne, potete far riferimento a questa tabella:

LOCALE DA CLIMATIZZARE (m²)

POTENZA NOMINALE RICHIESTA (BTU)

da 0 a 10

5000

da 10 a 15

7000

da 15 a 25

9000

da 25 a 40

12000

da 40 a 50

15000

da 50 a 60

18000

da 60 a 80

21000

da 80 a 100

24500

da 100 a 130

35000

da 130 a 160

43000

da 160 a 180

48000

da 180 a 200

65000

Come vedete, in linea di principio, per rinfrescare con un salto termico accettabile una stanza da 20 m^2, vi basta un sistema da 9000 BTU/h.

Concludendo, prima di acquistare un condizionatore, si devono sempre valutare le caratteristiche richieste dall’utilizzo che vogliamo farne e dall’ambiente in cui vogliamo utilizzarlo. Detto questo, i parametri specifici del sistema, possono far variare notevolmente il consumo effettivo del condizionatore, influendo in modo significativo sulla bolletta che poi andremo a pagare.

 

”Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Dall’asfalto bollente all’energia

26 Giu

In questo articolo:

Caldo record? In Germania scoppiano le autostrade?

e’ stato fatto un commento davvero molto interessante. Come potete leggere, il commento pone l’attenzione sugli studi attualmente in corso per la produzione di energia sfruttando il calore accumulato dall’asfalto delle nostre strade. Questa possibile soluzione non e’ in realta’ l’unica al vaglio dei ricercatori e proprio per questo motivo, credo sia interessante fare il punto della situazione.

Come sapete bene, diverse volte ci siamo occupati di fonti di energia alternativa o anche di utilizzi piu’ intelligenti delle risorse a nostra disposizione. Questi sono solo alcuni degli articoli che potete trovare sul blog:

Elezioni, promesse verdi e protocollo di Kyoto

Il futuro verde comincia da Masdar

Energia solare nel deserto

Pannelli, pannelli e pannelli

Il led rosso dello stadby …

Elettrodomestici e bolletta

Ora, come anticipato, vogliamo analizzare le possibili tecniche per sfruttare il calore che viene raccolto dalle nostre strade per poter creare energia elettrica. Come sapete bene, l’asfalto e’ in grado di accumulare una notevole quantita’ di calore, che poi viene ceduta all’ambiente in tempi molto lunghi. Proprio per questo motivo, le nostre strade rimangono ad una temperatura elevata anche per diverse ore dopo il tramonto del sole. Purtroppo, riuscire a catturare questo calore non e’ semplice. Prima di tutto, una limitazione e’ data dall’enorme superficie da cui estrarre calore, cioe’ l’intera lunghezza della strada, e soprattutto nella scelta del metodo piu’ adatto per raccogliere efficientemente questa energia.

Il metodo proposto nel commento da cui siamo partiti, punta ad utilizzare il calore per scaldare l’acqua contenuta all’interno di piccole tubature inglobate nell’asfalto stesso. In tal senso, tubicini di materiale in grado di condurre molto bene il calore vengono posizionati a circa 1 cm dalla superficie, in modo da poter raccogliere il calore del catrame. L’acqua cosi’ riscaldata puo’ poi essere utilizzata per produrre energia o anche per fornire acqua calda sanitaria per le diverse postazioni o edifici intorno alla strada stessa. Questo metodo presenta anche due ulteriori vantaggi importanti. Il primo e’ che in questo modo viene ridotto il calore che rimane intrappolato nell’asfalto e che, quando ceduto all’ambiente, crea il cosiddetto problema dell’isola di calore soprattutto nelle nostre citta’. L’altro vantaggio notevole e’ che un impianto cosi’ realizzato potrebbe essere sfruttato anche al contrario, un po’ come avviene nei pannelli radianti sotto il pavimento utilizzati per riscaldare le nostre case. Cosa significa? Durante i mesi invernali, si potrebbe pompare nel sistema acqua a temperatura maggiore, in modo da riscaldare la strada e non permettere la formazione di ghiaccio, responsabile molto spesso di incidenti.

Questa che abbiamo visto, non e’ pero’ l’unica soluzione al vaglio dei ricercatori.

Un altro metodo per sfruttare le nostre strade e’ quello di integrare direttamente pannelli solari. Cosa significa? Come detto in precedenza, l’asfalto e’ soggetto, molto spesso, ad un irraggiamento notevole. Le piu’ grandi arterie sono praticamente sempre assolate garantendo un’esposizione buona ai raggi solari. Bene, sostituendo le nostre strade con una sequenza di pannelli solari, si potrebbe produrre direttamente elettricita’ sfruttando l’effetto fotovoltaico. Questa energia potrebbe al solito essere utilizzata per alimentare aree di servizio e abitazioni in prossimita’, ma potrebbe anche essere immessa nelle rete elettrica e dunque essere a disposizione dei consumatori.

Come e’ possibile mettere un pannello solare al posto delle strade?

Ingegneristicamente parlando, la soluzione proposta e’ molto interessante. Negli USA e’ gia’ in corso uno studio utilizzando pannelli di larghezza 3,7 metri, che e’ la larghezza standard delle corsie americane. Se consideriamo un’esposizione di 4 ore al giorno, con un efficienza anche solo del 10%, poiche’ l’orientamento dei pannelli e’ deciso dalla strada e non dall’ottimizzazione dell’esposizione, si potrebbero produrre circa 5-6 KWh per pannello al giorno. Se ora pensiamo che, solo negli Sati Uniti, ci sono circa 100000 Km di autostrade, direi che i numeri cominciano a diventare interessanti.

Tornando pero’ all’ingegneria, come puo’ un pannello resistere al passaggio di una macchina o, ancor piu’, ad un mezzo pesante? I pannelli per questo scopo sono costruiti con una protezione in vetro, pensata come quella dei vetri anti proiettile delle vetrine. Essendo questi vetri studiati per resistere ai notevoli impulsi dei proiettili, sarebbero in grado di supportare anche il peso di un veicolo. C’e’ un altro problema da considerare. Per evitare slittamenti dei veicoli al loro passaggio sul vetro, la superficie verrebbe lavorata in piccolissimi prismi, in grado di assicurare una buona presa degli pneumatici sui pannelli. Come detto, una sperimentazione in questa direzione e’ gia’ in corso negli USA appunto per verificare costi e benefici di una soluzione del genere.

C’e’ poi un’ultima soluzione che vorrei presentarvi, anche se leggermente diversa dalle precedenti. Il problema principale di molte strade e’, come sappiamo bene tutti, il traffico. Per sfruttare questo, una compagnia privata giapponese, ha studiato uno speciale dosso in grado di trasformare il passaggio di un mezzo in energia elettrica. Il meccanismo e’ semplicissimo. Quando un veicolo passa su questo speciale dosso, manda in pressione dei pistoni idraulici che a loro volta possono essere sfruttati per far muovere delle turbine e produrre corrente elettrica. Un primo prototipo di dosso e’ stato costruito ed e’ lungo circa 1 metro, con un’altezza dell’ordine dei 6 mm. Questa soluzione andrebbe implemantata nei punti piu’ nevralgici per il traffico dove si hanno molti mezzi pesanti che circolano a velocita’ ridotta. Soluzioni ottimali potrebbero essere all’interno delle citta’, in prossimita’ dei porti o anche vicino ad aree di parcheggio. Il costo di questo sistema non e’ molto basso e si aggira intorno ai 300000 dollari a dosso, comprensivi ovviamente anche del sistema di produzione dell’energia. Secondo quanto riportato dalla ditta, in un punto di traffico sostenuto in cui transitano circa 20000 veicoli al giorno, il prezzo verrebbe ripagato nel giro di 3-4 anni e sarebbe in grado di fornire corrente per almeno 100 case. Ovviamente, si tratta di numeri molto provvisori, detti poi dalla ditta produttrice del sistema.

Concludendo, esistono diversi metodi per poter sfruttare le nostre strade nella produzione di energia. Come avete visto, non stiamo parlando di soluzioni innovative di tecnologie non utilizzate prima, bensi’ di applicazioni, a mio avviso anche molto intelligenti, di sistemi conosciuti in ambiti nuovi. Questo rientra a pieno titolo nello sfruttamento piu’ intelligente dei sistemi che gia’ conosciamo. Ora, come detto, si tratta di soluzioni sulle quali sono in corso studi ancora molto preliminari, ma chissa’ che un giorno queste non diventeranno soluzioni standard nella costruzione delle nostre, assolutamente non eliminabili, strade.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Caldo record? In Germania scoppiano le autostrade

23 Giu

Come volevasi dimostrare, dopo il freddo record, la primavera con temperature glaciali, il sole che sarebbe in procinto di impazzire, finalmente e’ arrivata l’estate. E di cosa si parla? Facile, di caldo record!

Tutti quei siti che fino a ieri parlavano di estate che non ci sarebbe stata e freddo che faceva presagire una nuova era glaciale, oggi parlano di caldo record e di anomalie ambientali.

Ormai, siamo abituati a questo genere di informazione, ma e’ comunque interessante vedere le motivazioni che spingono queste persone a parlare di temperature fuori dalla norma.

Tratto di autostrada in Germania con asfalto esploso

Tratto di autostrada in Germania con asfalto esploso

La notizia che sta facendo tanto discutere in rete in questi giorni, viene dalla Germania, dove, e la notizia e’ reale, per il caldo diversi tratti dell’autostrada stanno letteralmente scoppiando. Come anticipato, non si tratta di una burla. Improvvisamente e senza nessun segnale premonitore, l’asfalto di diversi tratti di autostrada, soprattutto nel sud della Germania, esplode sgretolandosi. Proprio a causa di questo problema, e’ morto anche un motociclista che e’ stato letteralmente sbalzato contro il guard-rail morendo sul colpo. Come riportato dai siti tedeschi, il problema sembra relativo a circa 3000 dei 13000 Km di autostrade tedesche e, come detto, non si e’ in grado di capire dove e quando lo scoppio potrebbe avvenire. Ad oggi, ci sono stati quasi 20 episodi di questo tipo.

Come vedete, si tratta di un problema serio e reale, soprattutto dopo la morte del motociclista. Cosa potete leggere in rete? Come potete immaginare, c’e’ chi parla di anomalie provenienti dal Sole che e’ in procinto di inviare flare estremamente potenti sulla Terra. In alternativa, c’e’ chi punta il dito contro eventi simici e geologici. Secondo queste ipotesi, la terra si muoverebbe respirando in diversi punti, come per presagire un forte terremoto in arrivo in quelle zone.

Ovviamente, come sempre, si tratta di ipotesi campate in aria e senza alcun fondamento scientifico. E’ interessante pero’ analizzare il fatto in se, per capire l’origine di questo curioso fenomeno.

Quello che avviene e’ una sempice e naturale conseguenza della dilatazione termica. Come sapete, i materiali, non tutti in realta’, quando vengono scaldati si dilatano. Proprio per questo motivo si parla di dilatazione termica. Ciascun materiale avra’ un coefficiente di dilatazione diverso, che dunque indica di quanto questo si dilata aumentando la temperatura. In base alla forma in esame, parliamo di dilatazione termica lineare, superficiale o volumica.

Come e’ fatto il manto autostradale?

Distanziatori utilizzati sui ponti

Distanziatori utilizzati sui ponti

Molto spesso, l’asfalto viene posto in opera utilizzando appositi lastroni lunghi 5 metri che vengono affiancati uno all’altro. Per contrastare la naturale dilatazione termica, tra una lastra e l’altra viene lasciato un piccolo spazio che serve appunto a consentire la dilatazione senza ostacoli. Lo stesso spazio viene lasciato anche qundo l’asfalto viene deposto direttamente in loco in forma semi fluida.

Un esempio noto a tutti di questa tecnica, e’ facilmente visibile sui ponti. Qui, poiche’ la dilatazione potrebbe essere ancora maggiore a causa dei volumi minori, ad intervalli regolari vengono lasciate apposite fughe che consentono di assorbire le dilatazioni. Ci si accorge facilmente di queste fughe quando, passando con la macchina sopra un viadotto, si sentono sobbalzi ad intervalli regolari.

Bene, anche per la stesa dell’asfalto viene utilizzata la stessa tecnica.

Cosa sta succedendo in Germania?

Il problema dell’asfalto che esplode, come anticipato, e’ relativo solo a circa 3000 Km di autostrade, cioe’ quelle costruite alla fine degli anni 80. In quegli anni, non veniva utilizzato materiale di riempimento sotto l’asfalto in grado di diminuire la dilatazione ma, soprattutto, i lastroni impiegati avevano uno spessore minore, 22 cm, rispetto a quelli utilizzati in seguito, 28 cm. Lo spessore minore permette una maggiore dilatazione termica che potrebbe, in casi eccezionali, essere maggiore delle fughe lasciate durante la posa in opera.

Perche’ il fenomeno si sta verificando ora?

Nei giorni scorsi, si sono registrate temperature molto alte in Germania, che hanno toccato anche 5-7 gradi sopra la media. Questo ovviamente ha portato una notevole dilatazione termica delle lastre. Inoltre, il problema principale della Germania e’ la grande escursione termica che si registra tra estate ed inverno. Se, da un lato, durante l’estate l’asfalto si dilata, durante l’inverno si avra’ un accorciamento dovuto all’abbassamento delle temperature. In particolare, gli asfalti tedeschi devono resistere a variazioni anche di 60 gradi nel corso dell’anno, da -30 a +30 gradi centigradi.

Cosa c’entra questo?

Come anticipato, nella posa dell’asfalto si devono lasciare vie di fuga tra le lastre. Questi spazi devono essere in grado di assorbire le dilatazioni estive, ma non devono lasciare uno spazio troppo ampio nei mesi freddi. In alternativa, si potrebbero avere danni ai veicoli a causa degli intervalli troppo ampi.

Bene, a causa delle elevate temperature e dell’invecchiamento dell’asfalto le vie di fuga sulle autostrade tedesche non sono state in grado di assorbire le dilatazioni. In questo modo, due lastre possono spingere una contro l’altro fino ad arrivare allo sbriciolamento dell’asfalto che viene sollevato quando la spinta e’ troppo eccessiva.

Purtroppo, fenomeni del genere non sono prevedibili, nel senso che le esplosioni potrebbero verificarsi da un momento all’altro in un punto qualsiasi di maggiore assolazione.

Per il momento, i tecnici tedeschi sono in stato di allerta, pronti ad intervenire ad ogni segnalazione. Si sta anche pensando, come soluzione limite, di imporre limiti di velocita’ molto stringenti nei tratti interessati fino ad arrivare anche alla chiusura dei tratti maggiormente problematici.

Concludendo, la notizia delle autostrade tedesche che esplodono in questi giorni e’ reale. Ad oggi, si sono verificati circa 20 episodi. Come visto, si tratta di un problema dovuto alla dilatazione termica delle lastre di asfalto utilizzate che non viene contenuta dalle vie di fuga lasciate nella messa in opera. Quelle che invece sono completamente false, sono le tante ipotesi catastrofiste che non potevano certo mancare su una notizia di questo tipo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Cosa c’e’ sotto i nostri piedi?

28 Apr

In questi giorni, molti giornali e siti internet hanno pubblicato la notizia di una nuova misura rigurdante la temperatura al centro della Terra. Come avrete letto, il nuovo risultato stabilisce una temperatura del centro della Terra a 6000 gradi centigradi, ben 1000 gradi maggiore rispetto al valore precedentemente conosciuto e misurato circa 20 anni fa. Tra l’altro, moltissime fonti enfatizzano il fatto che questi 6000 gradi, misurati al centro del nostro pianeta, sono paragonabili alla temperatura esterna del Sole.

Temperature della Terra dalla superficie al centro

Temperature della Terra dalla superficie al centro

E dunque? Purtroppo, come spesso accade, molti siti sono sempre pronti a pubblicare notizie di carattere scientifico, ma un po’ meno a dare spiegazioni. In realta’, questa misura e’ estremamente complessa ed e’ stata possibile solo grazie alla collaborazione di diversi centri di ricerca. Inoltre, la nuova determinazione della temperatura interna del pianeta, consente di verificare molti modelli riguardanti diversi settori della scienza.

Da quanto detto, credo che questa notizia meriti un piccolo approfondimento, anche solo per capire meglio questi concetti, che sempre affascinano le persone.

Per prima cosa: come e’ stata fatta questa misura?

Ad oggi, sappiamo che, scendendo verso il centro della Terra, ci sono zone ad alta pressione occupate da ferro e zolfo liquidi. Pian piano che ci avvicianiamo al centro pero’, e le pressioni continuano ad aumentare, si trova un blocco di ferro solido, che occupa la parte piu’ interna del nostro pianeta. Come sappiamo questo? L’evidenza di questa composizione, ma anche il volume occupato dalla parte solida e da quella liquida, vengono determinati studiando le onde sismiche dei terremoti di intensita’ maggiore. Cosa significa? Le onde emesse durante un forte sisma, si propagano all’interno della Terra e interagiscono in modo diverso incontrando un volume solido o liquido. Bene, misurando queste interferenze, se volete ascoltando il loro eco, e’ possibile determinare lo spessore del nucleo solido del nostro pianeta. Purtroppo, questi studi non ci danno nessuna informazione sulla temperatura interna della Terra. Per ricavare questi valori e’ necessario procedere in modo diverso.

Arriviamo dunque alla misura in questione. Come potete immaginare, sapendo che nel nucleo e’ presente sia ferro solido che liquido, basta determinare i punti di fusione di questo metallo per arrivare all’informazione cercata. Purtroppo, il discorso non e’ cosi’ semplice. In questo caso, oltre alla temperatura, gioca un ruolo essenziale anche la pressione a cui il ferro e’ sottoposto. Pressione e temepratura sono due variabili indipendenti di cui tenere conto per determinare il punto di fusione del ferro.

Per capire questo importante concetto, vi faccio un esempio noto a tutti. Quando si dice che la temperatura di ebollizione dell’acqua e’ 100 gradi, ci si riferisce alla pressione atmosferica. Come sicuramente avrete sentito dire, esistono delle differenze per questo valore a seconda che vi troviate al mare o in montagna. Questo e’ comprensibile proprio considerando i diversi valori di pressione. In questo caso, possiamo vedere la pressione come il peso della colonna d’aria sopra le nostre teste. Variando il valore della pressione, cambia dunque la temperatura di ebollizione dell’acqua. La stessa cosa avviene per il ferro al centro della terra, ma per valori di temperatura e pressioni molto diversi da quelli a cui siamo abituati.

Quando parliamo di pressioni al centro della Terra, stiamo pensando a valori che si aggirano intorno a qualche milione di atmosfere. Per poter studiare le traformazioni di fase del ferro con questi valori di pressione e temperatura, i ricercatori francesi hanno costruito uno strumento ad hoc, di cui vi mostro uno schema:

Schema dello strumento utilizzato per simulare le pressioni al centro della Terra

Schema dello strumento utilizzato per simulare le pressioni al centro della Terra

Come vedete, una lamina di ferro viene messa tra due diamanti, in modo tale che la punta tocchi la superficie. Spingendo i due diamanti su un punto molto piccolo, si riescono a creare le pressioni richieste per la misura. Per scaldare invece il ferro alle temperature richieste, vengono utilizzati potenti fasci laser in grado di far salire la temperatura fino a diverse migliaia di gradi.

A questo punto, appare evidente che tutto il sistema debba essere isolato termicamente e chimicamente dall’ambiente esterno per impedire perdite di calore ma anche che il ferro reagisca con l’ambiente viziando il risultato. In questo caso, per poter determinare lo stato solido o liquido del campione, si sono utilizzate le emissioni a raggi X del materiale, in modo da poter determinare lo stato fisico, senza perturbare in nessun modo la misura.

Dai modelli sismici utilizzati, nello strato in cui il ferro e’ liquido, si ha una temperatura di 4800 gradi con una pressione di 2.2 milioni di atmosfere, risultato confermato dalla misura. Se pero’ aumentiamo ancora la pressione, analogamente a quanto accade mentre scendiamo vicino la centro della Terra, e la portiamo ad un valore di 3.3 milioni di atmosfere, ci si accorge che per far solidificare il ferro, come osservato dallo studio delle onde sismiche, e’ necessaria una temperatura di 6000 gradi.

Cosa significa questo? Riassumendo, sappiamo dai modelli sismici che il centro della terra e’ di ferro solido circondato da ferro liquido. Con il dispositivo visto, e’ stato possibile determinare che alle pressioni del centro della Terra, affinche’ il ferro sia solido, e’ necessaria una temperatura di 6000 gradi. Bene, questo e’ proprio il valore della temperatura al centro del nostro pianeta e che e’ stato possibile misurare con precisione, solo 500 gradi di incertezza sperimentale, con questa importantissima ricerca.

Come vi avevo anticipato, queto nuovo valore e’ circa 1000 gradi superiore a quello precedente ottenuto 20 anni fa. Perche’ questa differenza? Il sistema usato in precedenza per ottenere le alte pressioni richieste era molto simile a quello odierno. La caratteristica che ha permesso di misurare con precisione la temperatura, e’ lo studio delle transizioni del ferro osservando il tutto ai raggi X. Nella precedente misura, venivano utilizzate onde visibili. Come evidenziato in questa nuova misura, arrivati a circa 5000 gradi, si presentano fenomeni di cristallizzazione superficiale del ferro, che molto probabilemnte sono stati interpretati in passato come l’inizio della transizione nella fase solida, mentre, come visto in questa misura, per arrivare in questo stato, e’ necessario aumentare ancora di 1000 gradi la temperatura.

Ultima importante considerazione: come visto, la temperatura del mantello intorno al nucleo e’ di circa 4800 gradi, cioe’ 1200 gradi inferiore a quella del blocco di ferro solido. Bene, questa differenza di temperatura e’ fondamentale per capire un altro importante parametro del nostro pianeta e di cui spesso abbiamo parlato, il campo magnetico. Come sapete, spesso abbiamo parlato di geomagnetismo per sfatare tutte quelle voci catastrofische che vorrebbero un’inversione dei poli in corso:

Inversione dei poli terrestri

L’anomalia del Sud Atlantico

Il battito naturale …. della Terra

Bene, la differenza di temperatura tra gli strati interni, insieme anche alla rotazione della terra intorno al suo asse, sono proprio i responsabili della generazione del nostro campo magnetico. Per dirlo in parole semplici, l’interno della Terra si comporta come una dinamo in cui le correnti sono correnti termiche spinte dalla differenza di temperatura.

Come vedete, alla luce di quanto detto, e’ abbastanza riduttivo quanto si puo’ leggere sui giornali. Questa misura e’ estremamente interessante dal punto di vista tecnico, ma soprattutto i risultati ottenuti sono di prim’ordine. Come anticipato, i nuovi valori trovati consentiranno di migliorare notevolmente i modelli anche dal punto di vista geologico, utili anche per studiare la propagazione dei terremoti sul nostro pianeta. Detto questo, la misura apre il campo anche a possibili studi per cercare di riprodurre in laboratorio le condizioni di pressione e temperatura presenti in ogni strato del nostro pianeta. Avere una mappa di questo tipo, potrebbe fornire dati estremamente importanti per capire al meglio anche l’origine e l’evoluzione della nostra Terra.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Il futuro dell’eolico?

22 Apr

In questo articolo, vorrei tornare nuovamente a parlare di energie rinnovabili. Come sappiamo bene, il continuo aumento della richiesta di energia unita ovviamente al mantenimento e alla conservazione del nostro pianeta, impongono l’utilizzo anche di sorgenti rinnovabili. Quello che pero’ non dobbiamo mai dimenticare e’ che il nostro attuale stato dell’arte non rappresenta assolutamente un punto di arrivo. Le soluzioni disponibili oggi per lo sfruttamento delle sorgenti verdi, non sono ancora sufficienti e non consentono l’autosostentamento che sarebbe richiesto.

Di energie rinnovabili abbiamo parlato, ad esempio, in questi post:

Elezioni, promesse verdi e protocollo di Kyoto

Il futuro verde comincia da Masdar

Energia solare nel deserto

Pannelli, pannelli e pannelli

Mentre negli articoli precedenti ci siamo occupati principalmente di energia solare, in questo post vorrei parlare della seconda fonte per disponibilita’ che siamo in grado di sfruttare, l’energia eolica.

Come tutti sanno, lo sfruttamento dell’energia eolica avviene mediante delle enormi pale che vengono messe in moto dal vento e questa energia meccanica viene poi convertita in energia elettrica. Anche in Italia, abbiamo diverse installazioni di pale eoliche, soprattutto in quelle regioni dove la forza del vento e’ maggiore.

Quali sono i problemi principali delle pale eoliche?

Prima di tutto, come detto, si tratta di turbine molto grandi e che vengono installate su piloni molto alti. Come sostenuto anche da molti esperti, l’impatto ambientale di queste soluzioni e’ molto elevato. Detto in altri termini, le pale eoliche, secondo molti, “sono brutte”. Se ci pensate bene, molto spesso, infatti, queste pale rovinano il paesaggio, soprattutto perche’ vengono installate in vallate o comunque in zone isolate dove la natura e’ ancora dominante. Sapete perche’ vengono installate in questi punti e non all’interno dei centri abitati? Perche’ le pale, durante il normale funzionamento, hanno dei livelli di rumorosita’ molto elevati. Qualsiasi mezzo meccanico messo in movimento, produce necessariamente un rumore di fondo che, nel caso delle pale, e’ anche molto elevato. Proprio questo problema, rende inutilizzabili le pale all’interno dei centri abitati.

Dunque? Esiste una soluzione alternativa?

In questi ultimi tempi, e’ in fase di studio una soluzione alternativa che prevede lo sfruttamento dell’energia eolica senza apparentemente nessuna parte meccanica in movimento. Questa soluzione, chiamata Ewicon, sfrutta infatti una variazione del campo elettrico indotto dal vento per creare energia elettrica. Se volete, invece di convertire energia meccanica in elettrica, il nuovo sistema e’ direttamente basato su una vairazione di energia in forma elettrica per produrre corrente.

Come funziona Ewicon?

Anche se il discorso non e’ semplicissimo, cerchero’ di essere divulgativo mostrando il concetto di base sfruttato in questa soluzione.

Immaginate di avere due conduttori elettrici posti ad una certa distanza e caricati con segno opposto. In altre parole, potete vedere il sistema come le armature di un condensatore. Ora, nella regione di spazio tra i due conduttori si crea un campo elettrico. Se adesso mettete una carica singola all’interno del volume, dove si spostera’ questa? Se la carica e’ positiva, questa ovviamente si muovera’ verso l’elettrodo negativo, spinta dal campo elettrico. Bene, fin qui tutto normale. Se adesso pero’, la forza del vento spinge la carica in verso opposto, cioe’ porta la carica verso l’elettrodo dello stesso segno. L’accumulo di cariche sull’elettrodo provochera’ dunque una variazione della tensione che puo’ essere convertita in energia elettrica.

Questo e’ proprio il principio sfruttato da Ewicon.

Il sistema eolico, prevede due file di elettrodi di segno opposto distanti circa 40 cm tra loro. Nel sistema sono presenti una serie di ugelli che vaporizzano goccioline d’acqua caricate positivamente. Il vento spinge le goccioline di carica positiva verso l’elettrodo dello stesso segno, creando la variazione di campo elettrico. Questa tecnica e’ anche nota come Electrospraying ed in realta’ e’ stata proposta gia’ nel 1975. Ewicon, che sta per Electrostatic Wind Energy Converter, sfrutta proprio questo principio fisico per creare energia dal vento, ma senza mezzi meccanici in movimento.

Per meglio comprendere il principio di base, vi riporto anche un video del sistema:

come vedete, il tutto si basa sulla forza del vento in grado di spingere le gocce d’acqua  in verso opposto a quello determinato dal campo elettrico degli elettrodi.

Il primo prototipo di Ewicon e’ stato realizzato e posto di fronte alla facolta di ingegneria della Delft University:

Prototipo del sistema eolico davanti alla Delft University of Technology

Prototipo del sistema eolico davanti alla Delft University of Technology

Quali sono i vantaggi di questa soluzione? Prima di tutto, come visto, eliminando le parti in movimento, il sistema non soffre piu’ della rumorosita’ delle pale eoliche. In questo modo, il sistema Ewicon puo’ anche essere installato, come nel caso del prototipo, all’interno dei centri abitati. Inoltre, le diverse forme realizzabili consentono di integrare il sistema anche nelle architetture dei piu’ moderni centri urbani. Ad oggi, gia’ diverse soluzioni di design sono state proposte e pensate per adattarsi a molte capitali europee.

Quali sono gli svantaggi? Come potete capire, si tratta ancora di un sistema in forma di prototipo. Prima di tutto, per elettrizzare le goccioline d’acqua e’ necessaria un’energia di partenza. Al momento, questo problema e’ risolto integrando delle batteria all’interno di Ewicon. Se pero’ vogliamo pensare questi sistemi utilizzabili anche “off shore”, cioe’ in mare aperto, e’ impensabile andare di volta in volta a cambiare le batterie dei generatori.

Inoltre, l’acqua necessaria per il funzionamento, viene prelevata dall’umidita’ dell’aria. Questo rende il sistema non utilizzabile in luoghi dove l’umidita’ e’ troppo bassa. Come visto in uno degli articoli precedentemente riportati, uno degli sviluppi futuri, non solo per il solare ma anche per l’eolico, e’ la costruzione di impianti di grandi dimensioni in zone desertiche. In questo caso, il sistema non sarebbe utilizzabile a meno di collegare Ewicon ad una fonte idrica, cosa ugualmente non realizzabile in zone desertiche.

Altro problema non da poco e’ la miscela utilizzata. Nel prototipo visto, non viene utilizzata soltanto acqua, ma una miscela al 70% di acqua demineralizzata e 30% di etanolo.

Ovviamente, si tratta di problemi normali in un sistema in fase di prototipo. Per poter risolvere questi punti, sara’ ovviamente necessario lavorare ancora molto sul progetto e altresi’ investire capitali in questo genere di studi. Come detto all’inizio, ad oggi gia’ disponiamo di metodi per lo sfruttamento delle sorgenti rinnovabili, e proprio per questo dobbiamo utilizzarli. Questo pero’ non preclude lo studio di soluzioni alternative, come Ewicon o come il solare termodinamico, che in un futuro non troppo lontano potranno migliorare notevolmente l’efficienza di produzione energetica e risolvere anche gli altri problemi che ancora affliggono le attuali soluzioni.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Il Muos di Niscemi

2 Apr

Diversi lettori del blog mi hanno scritto per chiedere il mio punto di vista sul sistema MUOS la cui costruzione era prevista a Niscemi in Sicilia.

Per chi fosse completamente a digiuno, il MUOS e’ un sistema di comunicazione satellitare che prevede 4 satelliti in orbita e 4 stazioni di terra. Questo sistema e’ direttamente gestito e voluto dal Dipartimento della Difesa degli Stati Uniti e servira’ per gestire, comandare e controllare in ogni parte del globo, le unita’ marine, aeree e di terra. Il sistema prevede diversi servizi tra cui la comunicazione vocale, lo scambio dati e la connessione di rete, tutto ad accesso riservato per scopi militari e di coordinamento. Le stazioni di terra verranno utilizzate per comunicare direttamente con i satelliti in orbita e la costruzione era prevista nelle Hawaii, in Australia, in Virginia e, come anticipato, a Niscemi a circa 60 Km dalla base militare di Sigonella.

Le stazioni di terra prevedono la costruzione di antenne operanti ad altissima frequenza e a banda stretta. Ecco una foto dell’installazione nelle isole Hawaii:

MUOS: stazione di terra nelle Hawaii

MUOS: stazione di terra nelle Hawaii

Perche’ stiamo parlando di questo sistema? Per quanto riguarda la costruzione della stazione di Niscemi, per diverso tempo ci sono stati dibattiti e scontri circa l’eventuale pericolo che queste antenne avrebbero costituito per la popolazione del posto. Nel corso degli anni, si sono formati comitati cittadini creati per impedire la costruzione di questa stazione e il dibattito ha riempito le pagine di molti quotidiani anche a livello nazionale. Ovviamente non e’ mancata la discussione politica. Diverse volte l’aministrazione regionale ha tentato di bloccare i lavori causando una discussione tra Parlamento Italiano, regione Sicilia e governo degli Stati Uniti. Come forse avrete letto, solo pochi giorni fa, l’amministrazione Crocetta ha bloccato definitivamente la costruzione della stazione ma, almeno a mio avviso, la discussione durera’ ancora per molto tempo.

Detto questo, non voglio assolutamente entrare in discussioni politiche sul MUOS e sulla regione Sicilia. Quello che molti utenti mi hanno richiesto e’ solo un parere scientifico sull’inquinamento elettromagnetico della stazione MUOS. Ovviamente, non entrero’ nel merito della discussione politica, degli accordi bilaterali tra Italia e USA ne tantomeno sull’eventuale valutazione di impatto ambientale che una stazione del genere sicuramente comporta sul panorama della zona.

A questo punto, la domanda su cui vorrei aprire una discussione e’: il MUOS e’ dannoso per la salute della popolazione?

A livello scientifico, ci sono due voci principali che si sono mosse parlando del MUOS. Da un lato Antonino Zichichi sostiene che l’installazione non e’ assolutamente dannosa per la popolazione vista la bassa potenza in gioco, dall’altro il Prof. Massimo Zucchetti del politecnico di Torino afferma che questa installazione potrebbe comportare seri rischi per la salute dei cittadini.

Come vedete, l’inizio non e’ dei migliori. Siamo di fronte a due punti di vista completamente opposti.

Ora, mentre Zichichi si e’ limitato a rilasciare interviste a diversi quotidiani, Zucchetti ha preparato una relazione tecnica sull’installazione che potete leggere a questo indirizzo:

Zucchetti, relazione MUOS

Come vedete anche dalla pagina, la relazione di Zucchetti viene pubblicizzata proprio da uno dei comitati cittadini nati per impedire l’installazione del MUOS a Niscemi, il comitato NoMuos.

Detto questo, proviamo a commentare la relazione di Zucchetti per cercare di capire se e come il MUOS potrebbe rappresentare un pericolo per la popolazione.

Prima di tutto, ci tengo a sottolineare che Zucchetti e’ esperto di radioprotezione ma e’ importante ragionare su quanto scritto per capire le motivazioni che spingono questa relazione nella direzione di considerare il MUOS come pericoloso.

Per prima cosa, dove doveva sorgere il nuovo impianto e’ gia’ presente un sistema radar detto NRTF le cui antenne sono in funzione dal 1991. Le analisi quantitative presentate nella relazione di Zucchetti riguardano proprio questo esistente impianto e vengono fatte considerazioni circa l’eventuale aggiunta del MUOS alle emissioni del NRTF.

Nella relazione vengono mostrate misure di campo elettrico fatte in diverse zone dell’impianto e che possiamo riassumere in questa tabella:

5,9 ± 0,6 V/m in località Ulmo (centralina 3)
4,0 ± 0,4 V/m in località Ulmo (centralina 8)
2 ± 0,2 V/m in località Martelluzzo (centralina 1)
1 ± 0,1 V/m in località del fico (centralina 7)

Come potete leggere nella relazione, queste misure, fatte dall’ARPA della Sicilia, potrebbero essere affette da un’incertezza al livello del 10%. Ora, per chi non lo sapesse, i limiti per la legislazione italiana impongono un campo inferiore a 6 V/m. Come potete vedere, anche considerando un’incertezza del 10%, solo il primo valore, se l’incertezza tendesse ad amentare la misura, sarebbe leggermente superiore al limite.

Cosa comporterebbe superare i 6 V/m? In realta’ assolutamente nulla. Cerchiamo di capire bene questo punto. Ad oggi, vi sono molte voci anche molto discordi sui reali effetti dell’inquinamento elettromagnetico. Mentre ci sono particolari frequenze ed esposizioni per cui e’ stato accertato un reale rischio per la salute, in moltissimi altri casi il discorso e’ ancora aperto e non si e’ giunti ad una conclusione. Pensate solo un attimo al discorso cellulari: fanno male? Non fanno male? Causano problemi al cervello? Tutte domande su cui spesso viene posta l’attenzione e su cui non esistono ancora dati certi. Con questo non voglio assolutamente tranquillizzare nessuno, ma solo far capire l’enorme confusione ancora presente su queste tematiche.

Tornando al discorso limiti di legge, superare di poco i 6 V/m non comporta assolutamente nulla. Perche’? Come detto siamo di fronte a fenomeni non ancora capiti dal punto di vista medico. Proprio per questo motivo esiste il “principio di precauzione”, cioe’ in caso di fenomeni scientificamente controversi si deve puntare ad una precauzione maggiore. Detto in altri termini, se non sappiamo se una determinata cosa fa male o meno, meglio mettere limiti molto stringenti.

Nel caso dei campi elettrici, il limite dei 6 V/m e’ nettamente inferiore a quello di altre nazioni europee, anche se, ad esempio, nel Canton Ticino il limite e’ di 3 V/m, e circa 500 volte inferiore al valore in cui ci si dovrebbero aspettare effetti diretti. Detto questo, se invece di 6 V/m, ne abbiamo 6,5 V/m, non succede assolutamente nulla. Non siamo ovviamente in presenza di un effetto a soglia, sotto il limite non succede nulla, appena sopra ci sono effetti disastrosi. Fermo restando che stiamo pensando l’incertezza del 10% sulla misura tutta nel verso di aumentarne il valore.

Detto questo, nella relazione da cui siamo partiti, si afferma pero’ che queste misure potrebbero essere sottistimate perche’ la strumentazione utilizzata non era sensibile alle emissioni a bassa frequenza intorno ai 45 KHz. In realta’, su questo punto non possono essere assolutamente d’accordo. La legge italiana stabilisce i limiti di cui abbiamo parlato per frequenze sopra i 100 KHz. Sotto questo valore, le onde elettromagnetiche sono assorbite pochissimo dal corpo umano per cui la loro emissione non viene neanche regolamentata. Questo solo per dire come le misure riportate nella relazione e fatte dall’ARPA della Sicilia sono del tutto attendibili e assolutamente non sottostimate.

Fin qui dunque, i valori misurati per l’installazione gia’ in funzione non mostrano nessun superamento dei limiti di legge italiani e potrebbero dunque essere considerati sicuri.

Andiamo ora invece, sempre seguendo la relazione da cui siamo partiti, al MUOS vero e proprio.

Per come dovrebbero essere fatte le antenne, e se la fisica non e’ un’opinione, il campo prodotto da un’antenna parabolica ha una forma cilindrica con una divergenza molto bassa. Detto in altri termini, il campo e’ all’interno dell’area della parabola e tende molto poco ad allargarsi appunto per non disperdere potenza. Detto questo, al di fuori del cilindro prodotto delle antenne, il campo e’ praticamente nullo e non comporta nessun problema nelle vicinanze.

Proviamo a fare due calcoli. Alla potenza di 1600 W, cioe’ la massima prevista per le antenne, il campo all’interno del cilindro sarebbe di circa 50 W/m^2. Questo valore e’ abbondantemente al di sopra dei limiti di legge di 1 W/m^2, ma per l’esposizione delle persone. Come potete facilmente immaginare, le antenne devono essere puntate verso il cielo per poter funzionare e per comunicare con i satelliti. Da quanto detto per la dispersione angolare fuori-cilindro, lontano dalle antenne il campo e’ praticamente nullo, diminuendo molto rapidamente.

Da questi numeri, e’ ovvio che se le antenne venissero puntate verso l’abitato, l’inquinamento elettromagnetico sarebbe elevatissimo, ma antenne di questo tipo hanno dei ferma-corsa meccanici che impediscono l’avvicinarsi dell’antenna troppo vicino all’orizzonte, oltre ovviamente a limitazioni software pensate appositamente per impedire queste esposizioni.

Detto in questo senso, le antenne del MUOS non dovrebbero essere un pericolo per la popolazione.

Sempre secondo la relazione e secondo le voci del web, le antenne del MUOS entrerebbero in funzione insieme a quelle gia’ discusse del NRTF. Cosa comporta questo? Ovviamente i due contributi si sommano, ma non linearmente come qualcuno potrebbe erroneamente pensare. Premesso che il MUOS sarebbe in funzione simultaneamente al NRTF solo inizialmente per poi sostituirlo del tutto, i due sistemi, alla luce dei calcoli fatti, non dovrebbero superare il limite di legge neanche quando sono simultaneamente accesi.

Se proprio vogliamo essere pignoli, resta quella misura dell’ARPA quasi al limite di legge. Sicuramente quella zona dovrebbe essere monitorata per capire meglio se il limite viene sistematicamente superato oppure no, ma solo a scopo di precauzione. Inoltre, bisognerebbe valutare la presenza di altre installazioni minori e il loro contributo totale, anche se non possono che rappresentare una piccola aggiunta al totale, oltre ovviamente ad eventuali fluttuazioni fuori asse delle emissioni. Questo genere di problematiche necessiterebbero di un monitoraggio continuo e completo dell’intera zona al fine di costruire una mappa del campo e valutare eventuali zone di picchi anomali.

Detto questo, se ci limitiamo al puro aspetto scientifico, il MUOS non dovrebbe rappresentare un pericolo per la popolazione della zona. Ovviamente, siamo in un campo molto difficile e ancora poco noto sia della scienza ma soprattutto della medicina. Non voglio assolutamente schierarmi a favore o contro il MUOS anche perche’ restano da valutare, indipendentemente da questa installazione, eventuali danni alla salute derivanti da un’esposizione prolungata nel tempo anche a limiti inferiori a quelli di legge. Come anticipato, questa tematica e’ ancora molto discussa e non si e’ ancora giunti ad un quadro completo.

Nella discussione, ho appositamente non valutato problematiche di natura diversa da quella dei campi elettromagnetici. Perche’ dobbiamo costruire una stazione radar degli USA in Italia? E’ giusto? Non e’ giusto? Questa installazione rovina il paesaggio della zona? I valori dichiarati per il progetto saranno quelli veri di esercizio?

Concludendo, alla luce dei dati analizzati, per l’installazione MUOS i limiti di legge sarebbero ampiamente soddisfatti. L’unico problema potrebbe derivare, anche se impossibile tenendo conto dei limiti meccanici imposti, da un puntamento diretto verso le abitazioni. L’ingresso del MUOS sostituirebbe il pre-esistente NTRF sicuramente piu’ vecchio ed operante a potenze e frequenze diverse. Purtroppo, il discorso non puo’ limitarsi a queste considerazioni, ma deve necessariamente racchiudere tematiche ambientali, politiche e mediche a cui non e’ possibile dare una risposta univoca in questo momento.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Pannelli, pannelli e pannelli

12 Mar

Qualche post fa, parlando del futuro delle energie rinnovabili, abbiamo visto alcuni dei grandi progetti pensati da qui a qualche anno. In particolare, il progetto DESERTEC, che pero’ sta avendo qualche problema gestionale iniziale, e soprattutto i grandi impianti dei paesi arabi che molto stanno investendo in questi settori:

Energia solare nel deserto

Ora, come sottolineato in questo articolo, molto spesso i non addetti ai lavori tendono a mescolare le diverse tecnologie solari, parlando semplicemente di “pannelli”. In realta’, e’ necessario fare delle distinzioni ben precise, distinguendo le diverse soluzioni in base al principio fisico che ne e’ alla base. Proprio per questo motivo, ho deciso di scrivere questo post, appunto per illustrare le diverse tecnologie per lo sfruttamento dell’energia solare, sempre mantenendo un profilo divulgativo e senza entrare troppo in dettagli che potrebbero risultare noiosi. Ovviamente, chi poi vorra’ avere informazioni aggiuntive, potra’ contattarmi oppure cercare in rete la vastissima bibliografia che molto facilmente potete reperire su questi argomenti.

A questo punto, prima di tutto, vogliamo distinguere tre grandi categorie di pannelli, parlando di fotovoltaico, solare termico e solare termodinamico. Come vedremo, anche se possono sembrare simili, le tre soluzioni sono radicalmente differenti dal punto di vista tecnico-scientifico. Anche l’utilizzo e la diffusione di queste soluzioni risulta molto diversificata ed, in particolare, come vedremo, ad esempio il solare termodinamico e di piu’ recente introduzione e ancora in fase di importante sviluppo.

Pannello fotovoltaico

Elemento base di questo pannello e’ la cella fotovoltaica. La cella si presenta come una superficie nera o bluastra, ricoperta da un materiale semiconduttore, tra i quali il piu’ diffuso e’ certamente il silicio. Le celle standard prodotte a livello industriale hanno forme quadrate con lati da 4 o 6 pollici, anche se esitono esemplari piu’ piccoli utilizzati per alimentare calcolatrici e orologi.

Pannelli fotovoltaici in cui si vedono chiaramente le singole celle

Pannelli fotovoltaici in cui si vedono chiaramente le singole celle

Il principio di funzionamento della celle e’ appunto noto come “Effetto fotovoltaico”. Quando la luce incide sulla superficie della cella, questa si comporta come un generatore di corrente continua, sfruttando proprio le proprieta’ intrinseche del semiconduttore. Per ottenere una tensione maggiore, un certo numero di celle vengono connesse in serie per formare poi il pannello solare che tutti conosciamo.

Nel pannello fotovoltaico dunque, la radiazione solare viene convertita, attraverso il semiconduttore, direttamente in una corrente elettrica.

Purtroppo la connessione in serie implica una serie di problemi, come ad esempio la diminuzione di potenza del modulo se una o piu’ celle si trovano in ombra rispetto alle altre. In questo caso, e’ necessario assicurare una illuminazione uniforme di tutte le celle o in alternativa utilizzare moduli per l’inseguimento solare. Quest’ultima soluzione e’ utilizzata anche per migliorare l’esposizione in generale del pannello, consentendo a questo di ruotare offrendo sempre la propria area attiva in direzione del Sole. Come potete capire bene, l’utilizzo di motori per la rotazione implica ovviamente anche un consumo di energia, per cui e’ sempre necessario trovare un buon compromesso in queste soluzioni.

Poiche’, come detto, le celle si comportano come generatori di corrente, i pannelli devono poi essere collegati ad un inverter il cui compito e’ appunto quello di trasformare la tensione in alternata e quindi, poter immetere la produzione nella rete elettrica o anche per l’utilizzo nelle nostre abitazioni.

Ovviamente, come tutti sapete, il pannello fotovoltaico e’ quello maggiormente utilizzato ed e’ quello che viene utilizzato anche per la costruzione dei campi fotovoltaici, visibili in diverse zone, e che vengono costruiti appunto per la produzione e vendita dell’energia elettrica.

Solare Termico

Questo tipo di impianti viene utilizzato per catturare l’energia solare, immagazzinarla ed utilizzarla per scopi diversi. Tra questi, quelli maggiormente diffusi sono quelli per la produzione di acqua calda sanitaria, cioe’ per la produzione di acqua calda da utilizzare in casa. Come potete facimemte capire, in questo caso, questi impianti lavorano in sostituzione o di concerto con la caldaia che invece utilizza gas naturale.

Impianto solare termico domestico per acqua calda sanitaria

Impianto solare termico domestico per acqua calda sanitaria

I pannelli termici possono essere di vari tipi, anche se i piu’ diffusi sono costituiti da una lastra di rame, percorsa da una serpentina, e verniciata di nero. L’intero pannello e’ poi coperto da una lastra di vetro.

In questo caso, molto spesso si possono vedere sui tetti delle abitazioni dei pannelli in cui nella parte alta sono facilmente distinguibili serbatoi d’acqua. In questa soluzione, l’energia solare catturata viene utilizzata immediatamente per riscaldare appunto il fluido ed utilizzarlo nell’abitazione. Solo per completezza, ci sono diverse tipologie di impianti che vengono distinte in base alle temperature di esercizio e che possono variare tra 120 gradi (bassa temperatura) fino anche a 1000 gradi (alta temperatura) quando utilizzati in impianti industriali.

Solare Termodinamico

In questo caso, il principio di funzionamento e’ del tutto simile a quello termico, ma con l’aggiunta di un ciclo termodinamico detto ciclo Rankine. I pannelli solari termodinamici hanno forme paraboliche per poter concentrare la radiazione solare e proprio per questo sono anche detti impianti a concentrazione.

A differenza degli impianti termici domestici, nel solare termodinamico l’energia termica accumulata viene utilizzata attraverso una turbina a vapore o anche un alternatore per produrre energia elettrica. Inoltre, l’energia termica puo’ essere accumulata in modo da essere sfruttata anche durante la notte o in condizioni di cielo nuvoloso garantendo in questo modo una produzione costante e non intermittente come avviene nelle soluzioni precedentemente viste.

Impianto solare termodinamico con pannelli a concentrazione

Impianto solare termodinamico con pannelli a concentrazione

L’immagazzinamento dell’energia termica avviene mediante un fluido termovettore adatto appunto ad immagazzinare e trasportare il calore nel punto di conversione in energia elettrica. Nella prima generazione di impianti termodinamici, veniva utilizzato come fluido un olio diatermico, questo e’ stato poi sostituito con una miscela di sali fusi, molto piu’ efficienti ed in gradi di trattenere per tempi piu’ lunghi il calore. Proprio il fluido termovettore e’ quello che garantisce la produzione di energia durante la notte. Il calore accumulato dal fluido durante l’esposizione al sole, rimane immagazzinato per diverse ore, in alcuni casi anche giorni, garantendo in questo modo una produzione costante.

Come visto nell’articolo precedente, proprio questo genere di pannelli, grazie al principio fisico che sfruttano, possono anche essere utilizzati in condizioni estreme, come ad esempio il deserto del Sahara. Ad oggi pero’, il costo dell’energia prodotta con questi sistemi e’ ancora 5-6 volte maggiore rispetto a quello di altre soluzioni percorribili. Il motivo di questo e’ da ricercarsi nella relativa giovane eta’ di questa tecnologia e soprattutto nella mancanza ancora di una produzione industriale massiccia di questi pannelli. In questo senso, la ricerca, soprattutto nella migliore concentrazione solare e nel piu’ vantaggioso fluido da utilizzare, sta andando avanti molto velocemente. Questo ci spinge a pensare che nel giro di pochi anni questa diverra’ una tecnologia sfruttabile a pieno e da cui si potranno avere buone produzioni energetiche anche in diverse parti del mondo.

Concludendo, come abbiamo visto, non possiamo parlare semplicemente di pannelli confondendo soluzioni radicalmente diverse tra loro. I principi tecnico-scientifici alla base di ciascuna soluzione sono radicalmente diversi, anche dal punto di vista dell’utilizzo. A livello di ricerca, il solare termodinamico sta portando importanti risultati e molto probabilmente, nel giro di pochi anni, questa soluzione potra’ avere costi piu’ contenuti e dunque una maggiore diffusione su scala mondiale.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Energia solare nel deserto

9 Mar

Parlando scientificamente di promesse politiche, in un post precedente avevamo discusso insieme alcuni dei futuri verdi utilizzati dai nostri politici in campagna elettorale:

Elezioni, promesse verdi e protocollo di Kyoto

Successivamente poi, sempre parlando di green economy, abbiamo analizzato invece il grande progetto Masdar che gli Emirati Arabi stanno portando avanti con decisione per creare la prima citta’ ad emissioni zero:

Il futuro verde comincia da Masdar

In questi giorni, un nostro lettore ha invece lasciato un interessante commento per chiedere quali potrebbero essere i risvolti futuri dell’utilizzazione delle rinnovabili, anche alla luce del progetto Masdar.

Prima di parlare di questo, vi ricordo che potete in ogni momento porre domande o chiedere delucidazioni su argomenti specifici, lasciando un commento in questa pagina:

Richiedi e suggerisci argomenti!

In questo post, vorrei continuare a concentrarmi sull’energia solare, dal momento che questa fonte rappresenta in larga parte quella piu’ utilizzata ma anche quella meglio conosciuta anche dai non addetti ai lavori.

In tal senso, ripartiamo sempre dai paesi arabi ed in particolare dall’Arabia Saudita. In questo paese infatti, e precisamente nella citta’ di Riyad, si sta costruendo il piu’ grande impianto solare termico del mondo.

La struttura occupera’ un’area di 36000 metri quadri, corrispondenti a circa 5 campi da calcio, e servira’ per dare energia alla Princess Nora Bint Abdul Rahman, la prima universita’ al mondo per sole donne e che vanta qualcosa come 40000 iscritte.

Per darvi un’idea dei numeri, l’investimento totale ammonta a circa 4,7 milioni di dollari.

Per un non esperto, sembrerebbe scontata l’idea di utilizzare l’energia solare direttamente nel deserto, dove l’intensita’ dei raggi e’ molto elevata. Questo in realta’ e’ completamente falso.

Al contrario di quanto si pensa, l’alta temperatura di queste zone, riduce notevolmente l’efficienza dei pannelli al silicio. Inoltre, le continue tempeste di sabbia, opacizzano la superficie dei vetri, diminuendo ancora la produzione di energia. Proprio per questo, parliamo invece di soluzioni che utilizzano sali fusi per alimentare turbine elettriche e produrre energia.

Come discusso nei post precedenti, anche se a prima vista puo’ sembrare strano, i paesi arabi, i piu’ ricchi di petrolio, gia’ da tempo stanno investendo notevoli risorse nelle energie rinnovabili. Il perche’ di questo e’ facilmente intuibile. In primis, questi paesi meglio di chiunque altro sanno che il petrolio e’ una risorsa non infinita e prima o poi la sua disponibilita’ comincera’ a venire meno. In questo scenario completamente diverso da quello a cui siamo abituati, le rinnovabili non saranno piu’ un’alternativa, ma una necessita’. Detto questo e’ ovvio che chi oggi investe in queste risorse, domani potrebbe avere un ruolo di controllo favorito rispetto agli altri. Altro punto importante e’ che i paesi arabi sanno molto bene che e’ molto piu’ conveniente vendere il petrolio piuttosto che utilizzarlo in casa. Nell’ottica di un prezzo sempre crescente, preferiscono utilizzare metodi alternativi in casa e destinare il petrolio alle esportazioni.

Piccola parentesi scientifica, dal momento che spesso sento una gran confusione sulle diverse soluzioni, nel prossimo post cercheremo di fare un po’ di chiarezza distinguendo tra fotovoltaico, solare termodinamico e a concentrazione. Tecniche che spesso vengono confuse, parlando semplicemente di pannelli solari. Nel prossimo post cercheremo dunque di fare un po’ di chiarezza, presentando le diverse soluzioni e confrontando pregi e difetti di ciascuna di queste.

Messo da parte l’impianto di Riyad, l’atro grosso progetto di cui vorrei parlare e’ invece DESERTEC.

Il progetto Desertec e’ un progetto globale basato su diverse energie rinnovabili sfruttate nelle zone in cui queste sono maggiormente disponibili per la produzione di energia elettrica per tutta l’Europa. La parte principale del progetto e’ ovviamente quella che viene dal solare e che verrebbe sfruttata direttamente nelle zone vicine al Sahara. La corrente elettrica verrebbe poi trasportata madiante cavidotti in Europa.

Questo e’ un schema del progetto, con le diverse fonti rinnovabili e le linee di trasmissione dell’energia dai luoghi di produzione all’Europa:

Schema di produzione e distribuzione dal Sahara in Europa

Schema di produzione e distribuzione dal Sahara in Europa

Il progetto e’ sponsorizzato da 21 societa’ e 36 partner in 15 paesi per un investimento totale di 400 miliardi di dollari. Il progetto e’ stato lanciato nel 2009 con lo scopo di incrementare anche l’economia di molti paesi emergenti soprattutto nel nord Africa.

L’ambizioso progetto prevede la fornitura di circa il 20% dell’energia necessaria all’Europa.

Purtroppo, negli ultimi anni, complice anche la crisi globale, il progetto ha subito notevoli ritardi. La prima istallazione che avrebbe ufficialmente dato il via a Desertec era attesa per quest’anno, con la costruzione di una centrale solare termica da 150MW, interamente finanziata a realizzata dalla Spagna. Questo progetto e’ stato completamente cancellato.

180234125-a57eda2e-6f23-4a00-96ea-d2aa78d306c1

Oltre alla Spagna, altre due grandi societa’, la Siemes e la Bosch, si sono ufficialmente ritirate dal progetto, a causa dei notevoli ritardi e del non sicuro ritorno degli investimenti fatti.

Nonostante queste defezioni, il progetto sembra andare avanti anche se con notevoli punti interrogativi.

Oltre alle difficolta’ tecniche e alla ricerca necessaria per costruire un impianto cosi’ all’avanguardia, quello che da sempre rappresenta un problema nella realizzazione di Desertec sono gli equilibri politici della zona. Come vedete dalla mappa, il progetto prevede una stretta collaborazione tra i  paesi europei e quelli del nord Africa. Non diciamo nulla di nuovo sostenendo che gli equilibri politici di questi paesi sono da sempre precari e molto a rischio. In un impianto del genere, molti paesi europei diverrebbero dipendenti energeticamente da altri paesi non propriamente liberi. Inoltre, nello schema attuale, alcuni impianti si troverebbero in zone di confine molte delicate e che separano paesi da sempre non in buoni rapporti tra loro.

Concludendo, i paesi arabi si stanno dimostrando sempre piu’ innovatori ed investitori nelle energie rinnovabili. Come visto anche negli articoli precedenti, molto probabilmente questi paesi continueranno a tenere lo scettro energetico mondiale grazie anche ai massicci investimenti fatti oggi in questi settori. Per quanto riguarda Desertec, il progetto e’ estremamente affascinante dal punto di vista tecnico ed offrirebbe una valida alternativa verde al futuro energetico dell’Europa. Purtroppo, complici gli equilibri politici africani e la crisi che sta interessando molte aziende europee, il progetto sembrerebbe essersi arenato. Questo ovviamente non esclude una futura ripresa e la continua ricerca in questi settori per lo studio di soluzioni sempre migliori e sempre piu’ sostenibili.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.