Tag Archives: definizione

17 equazioni che hanno cambiato il mondo

26 Ago

Nel 2013 Ian Stewart, professore emerito di matematica presso l’università di Warwick, ha pubblicato un libro molto interessante e che consiglio a tutti di leggere, almeno per chi non ha problemi con l’inglese. Come da titolo di questo articolo, il libro si intitola “Alla ricerca dello sconosciuto: 17 equazioni che hanno cambiato il mondo”.

Perchè ho deciso di dedicare un articolo a questo libro?

In realtà, il mio articolo, anche se, ripeto, è un testo che consiglio, non vuole essere una vetrina pubblicitaria a questo testo, ma l’inizio di una riflessione molto importante. Queste famose 17 equazioni che, secondo l’autore, hanno contribuito a cambiare il mondo che oggi conosciamo, rappresentano un ottimo punto di inizio per discutere su alcune importanti relazioni scritte recentemente o, anche, molti secoli fa.

Come spesso ripetiamo, il ruolo della fisica è quello di descrivere il mondo, o meglio la natura, che ci circonda. Quando i fisici fanno questo, riescono a comprendere perchè avviene un determinato fenomeno e sono altresì in grado di “predirre” come un determinato sistema evolverà nel tempo. Come è possibile questo? Come è noto, la natura ci parla attraverso il linguaggio della matematica. Modellizare un sistema significa trovare una o più equazioni che  prendono in considerazione i parametri del sistema e trovano una relazione tra questi fattori per determinare, appunto, l’evoluzione temporale del sistema stesso.

Ora, credo che sia utile partire da queste 17 equzioni proprio per riflettere su alcuni importanti risultati di cui, purtroppo, molti ignorano anche l’esistenza. D’altro canto, come vedremo, ci sono altre equazioni estremanete importanti, se non altro per le loro conseguenze, che vengono studiate a scuola senza però comprendere la potenza o le implicazioni che tali risultati hanno sulla natura.

Senza ulteriori inutili giri di parole, vi presento le 17 equazioni, ripeto secondo Stewart, che hanno cambiato il mondo:

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Sicuramente, ognuno di noi, in base alla propria preparazione, ne avrà riconosciute alcune.

Passiamo attraverso questa lista per descrivere, anche solo brevemente, il significato e le implicazioni di questi importanti risultati.

Teorema di Pitagora

Tutti a scuola abbiamo appreso questa nozione: la somma dell’area dei quadrati costruiti sui cateti, è pari all’area del quadrato costruito sull’ipotenusa. Definizione semplicissima, il più delle volte insegnata come semplice regoletta da tenere a mente per risolvere esercizi. Questo risultato è invece estremamente importante e rappresenta uno dei maggiori assunti della geometria Euclidea, cioè quella che tutti conoscono e che è relativa al piano. Oltre alla tantissime implicazioni nello spazio piano, la validità del teorema di Pitagora rappresenta una prova indiscutibile della differenza tra spazi euclidei e non. Per fare un esempio, questo risultato non è più vero su uno spazio curvo. Analogamente, proprio sfruttando il teorema di Pitagora, si possono fare misurazioni sul nostro universo, parlando proprio di spazio euclideo o meno.

 

Logaritmo del prodotto

Anche qui, come riminescenza scolastica, tutti abbiamo studiato i logaritmi. Diciamoci la verità, per molti questo rappresentava un argomento abbastanza ostico e anche molto noioso. La proprietà inserita in questa tabella però non è affatto banale e ha avuto delle importanti applicazioni prima dello sviluppo del calcolo informatizzato. Perchè? Prima dei moderni calcolatori, la trasformazione tra logaritmo del prodotto e somma dei logaritmi, ha consentito, soprattutto in astronomia, di calcolare il prodotto tra numeri molto grandi ricorrendo a più semplici espedienti di calcolo. Senza questa proprietà, molti risultati che ancora oggi rappresentano basi scientifiche sarebbero arrivati con notevole ritardo.

 

Limite del rapporto incrementale

Matematicamente, la derivata di una funzione rappresenta il limite del rapporto incrementale. Interessante! Cosa ci facciamo? La derivata di una funzione rispetto a qualcosa, ci da un’indicazione di quanto quella funzione cambi rispetto a quel qualcosa. Un esempio pratico è la velocità, che altro non è che la derivata dello spazio rispetto al tempo. Tanto più velocemente cambia la nostra posizione, tanto maggiore sarà la nostra velocità. Questo è solo un semplice esempio ma l’operazione di derivata è uno dei pilastri del linguaggio matematico utilizzato dalla natura, appunto mai statica.

 

Legge di Gravitazione Universale

Quante volte su questo blog abbiamo citato questa legge. Come visto, questa importante relazione formulata da Newton ci dice che la forza agente tra due masse è direttamente proporzionale al prodotto delle masse stesse e inversamente proporzionale al quadrato della loro distanza. A cosa serve? Tutti i corpi del nostro universo si attraggono reciprocamente secondo questa legge. Se il nostro Sistema Solare si muove come lo vediamo noi, è proprio per il risultato delle mutue forze agenti sui corpi, tra le quali quella del Sole è la componente dominante. Senza ombra di dubbio, questo è uno dei capisaldi della fisica.

 

Radice quadrata di -1

Questo è uno di quei concetti che a scuola veniva solo accennato ma che poi, andando avanti negli studi, apriva un mondo del tutto nuovo. Dapprima, siamo stati abituati a pensare ai numeri naturali, agli interi, poi alle frazioni infine ai numeri irrazionali. A volte però comparivano nei nostri esercizi le radici quadrate di numeri negativi e semplicemente il tutto si concludeva con una soluzione che “non esiste nei reali”. Dove esiste allora? Quei numeri non esistono nei reali perchè vivono nei “complessi”, cioè in quei numeri che arrivano, appunto, da radici con indice pari di numeri negativi. Lo studio dei numeri complessi rappresenta un importante aspetto di diversi settori della conoscenza: la matematica, l’informatica, la fisica teorica e, soprattutto, nella scienza delle telecomunicazioni.

 

Formula di Eulero per i poliedri

Questa relazione determina una correlazione tra facce, spigoli e vertici di un poliedro cioè, in parole semplici, della versione in uno spazio tridimensionale dei poligoni. Questa apparentemente semplice relazione, ha rappresentato la base per lo sviluppo della “topologia” e degli invarianti topologici, concetti fondamentali nello studio della fisica moderna.

 

Distribuzione normale

Il ruolo della distribuzione normale, o gaussiana, è indiscutibile nello sviluppo e per la comprensione dell’intera statistica. Questo genere di curva ha la classica forma a campana centrata intorno al valore di maggior aspettazione e la cui larghezza fornisce ulteriori informazioni sul campione che stiamo analizzando. Nell’analisi statistica di qualsiasi fenomeno in cui il campione raccolto sia statisticamente significativo e indipendente, la distribuzione normale ci fornisce dati oggettivi per comprendere tutti i vari trend. Le applicazioni di questo concetto sono praticametne infinite e pari a tutte quelle situazioni in cui si chiama in causa la statistica per descrivere un qualsiasi fenomeno.

 

Equazione delle Onde

Questa è un’equazione differenziale che descrive l’andamento nel tempo e nello spazio di un qualsiasi sistema vibrante o, più in generale, di un’onda. Questa equazione può essere utilizzata per descrivere tantissimi fenomeni fisici, tra cui anche la stessa luce. Storicamente poi, vista la sua importanza, gli studi condotti per la risoluzione di questa equazione differenziale hanno rappresentato un ottimo punto di partenza che ha permesso la risoluzione di tante altre equazioni differenziali.

 

Trasformata di Fourier

Se nell’equazione precedente abbiamo parlato di qualcosa in grado di descrivere le variazioni spazio-temporali di un’onda, con la trasformata di Fourier entriamo invece nel vivo dell’analisi di un’onda stessa. Molte volte, queste onde sono prodotte dalla sovrapposizione di tantissime componenti che si sommano a loro modo dando poi un risultato finale che noi percepiamo. Bene, la trasformata di Fourier consente proprio di scomporre, passatemi il termine, un fenomeno fisico ondulatorio, come ad esempio la nostra voce, in tante componenti essenziali più semplici. La trasformata di Fourier è alla base della moderna teoria dei segnali e della compressione dei dati nei moderni cacolatori.

 

Equazioni di Navier-Stokes

Prendiamo un caso molto semplice: accendiamo una sigaretta, lo so, fumare fa male, ma qui lo facciamo per scienza. Vedete il fumo che esce e che lentamente sale verso l’alto. Come è noto, il fumo segue un percorso molto particolare dovuto ad una dinamica estremamente complessa prodotta dalla sovrapposizione di un numero quasi infinito di collissioni tra molecole. Bene, le equazioni differenziali di Navier-Stokes descrivono l’evoluzione nel tempo di un sistema fluidodinamico. Provate solo a pensare a quanti sistemi fisici includono il moto di un fluido. Bene, ad oggi abbiamo solo delle soluzioni approssimate delle equazioni di Navier-Stokes che ci consentono di simulare con una precisione più o meno accettabile, in base al caso specifico, l’evoluzione nel tempo. Approssimazioni ovviamente fondamentali per descrivere un sistema fluidodinamico attraverso simulazioni al calcolatore. Piccolo inciso, c’è un premio di 1 milione di dollari per chi riuscisse a risolvere esattamente le equazioni di Navier-Stokes.

 

Equazioni di Maxwell

Anche di queste abbiamo più volte parlato in diversi articoli. Come noto, le equazioni di Maxwell racchiudono al loro interno i più importanti risultati dell’elettromagnetismo. Queste quattro equazioni desrivono infatti completamente le fondamentali proprietà del campo elettrico e magnetico. Inoltre, come nel caso di campi variabili nel tempo, è proprio da queste equazioni che si evince l’esistenza di un campo elettromagnetico e della fondamentale relazione tra questi concetti. Molte volte, alcuni soggetti dimenticano di studiare queste equazioni e sparano cavolate enormi su campi elettrici e magnetici parlando di energia infinita e proprietà che fanno rabbrividire.

 

La seconda legge della Termodinamica

La versione riportata su questa tabella è, anche a mio avviso, la più affascinante in assoluto. In soldoni, la legge dice che in un sistema termodinamico chiuso, l’entropia può solo aumentare o rimanere costante. Spesso, questo che è noto come “principio di aumento dell’entropia dell’universo”, è soggetto a speculazioni filosofiche relative al concetto di caos. Niente di più sbagliato. L’entropia è una funzione di stato fondamentale nella termodinamica e il suo aumento nei sistemi chiusi impone, senza mezzi termini, un verso allo scorrere del tempo. Capite bene quali e quante implicazioni questa legge ha avuto non solo nella termodinamica ma nella fisica in generale, tra cui anche nella teoria della Relatività Generale di Einstein.

 

Relatività

Quella riportata nella tabella, se vogliamo, è solo la punta di un iceberg scientifico rappresentato dalla teoria della Relatività, sia speciale che generale. La relazione E=mc^2 è nota a tutti ed, in particolare, mette in relazione due parametri fisici che, in linea di principio, potrebbero essere del tutto indipendenti tra loro: massa ed energia. Su questa legge si fonda la moderna fisica degli acceleratori. In questi sistemi, di cui abbiamo parlato diverse volte, quello che facciamo è proprio far scontrare ad energie sempre più alte le particelle per produrne di nuove e sconosciute. Esempio classico e sui cui trovate diversi articoli sul blog è appunto quello del Bosone di Higgs.

 

Equazione di Schrodinger

Senza mezzi termini, questa equazione rappresenta il maggior risultato della meccanica quantistica. Se la relatività di Einstein ci spiega come il nostro universo funziona su larga scala, questa equazione ci illustra invece quanto avviene a distanze molto molto piccole, in cui la meccanica quantistica diviene la teoria dominante. In particolare, tutta la nostra moderna scienza su atomi e particelle subatomiche si fonda su questa equazione e su quella che viene definita funzione d’onda. E nella vita di tutti i giorni? Su questa equazione si fondano, e funzionano, importanti applicazioni come i laser, i semiconduttori, la fisica nucleare e, in un futuro prossimo, quello che indichiamo come computer quantistico.

 

Teorema di Shannon o dell’informazione

Per fare un paragone, il teorema di Shannon sta ai segnali così come l’entropia è alla termodinamica. Se quest’ultima rappresenta, come visto, la capicità di un sistema di fornire lavoro, il teorema di Shannon ci dice quanta informazione è contenuta in un determinato segnale. Per una migliore comprensione del concetto, conviene utilizzare un esempio. Come noto, ci sono programmi in grado di comprimere i file del nostro pc, immaginiamo una immagine jpeg. Bene, se prima questa occupava X Kb, perchè ora ne occupa meno e io la vedo sempre uguale? Semplice, grazie a questo risultato, siamo in grado di sapere quanto possiamo comprimere un qualsiasi segnale senza perdere informazione. Anche per il teorema di Shannon, le applicazioni sono tantissime e vanno dall’informatica alla trasmissione dei segnali. Si tratta di un risultato che ha dato una spinta inimmaginabile ai moderni sistemi di comunicazione appunto per snellire i segnali senza perdere informazione.

 

Teoria del Caos o Mappa di May

Questo risultato descrive l’evoluzione temporale di un qualsiasi sistema nel tempo. Come vedete, questa evoluzione tra gli stati dipende da K. Bene, ci spossono essere degli stati di partenza che mplicano un’evoluzione ordinata per passi certi e altri, anche molto prossimi agli altri, per cui il sistema si evolve in modo del tutto caotico. A cosa serve? Pensate ad un sistema caotico in cui una minima variazione di un parametro può completamente modificare l’evoluzione nel tempo dell’intero sistema. Un esempio? Il meteo! Noto a tutti è il cosiddetto effetto farfalla: basta modificare di una quantità infinitesima un parametro per avere un’evoluzione completamente diversa. Bene, questi sistemi sono appunto descritti da questo risultato.

 

Equazione di Black-Scholes

Altra equazione differenziale, proprio ad indicarci di come tantissimi fenomeni naturali e non possono essere descritti. A cosa serve questa equazione? A differenza degli altri risultati, qui entriamo in un campo diverso e più orientato all’uomo. L’equazione di Black-Scholes serve a determinare il prezzo delle opzioni in borsa partendo dalla valutazione di parametri oggettivi. Si tratta di uno strumento molto potente e che, come avrete capito, determina fortemente l’andamento dei prezzi in borsa e dunque, in ultima analisi, dell’economia.

 

Bene, queste sono le 17 equazioni che secondo Stewart hanno cambiato il mondo. Ora, ognuno di noi, me compreso, può averne altre che avrebbe voluto in questa lista e che reputa di fondamentale importanza. Sicuramente questo è vero sempre ma, lasciatemi dire, questa lista ci ha permesso di passare attraverso alcuni dei più importanti risultati storici che, a loro volta, hanno spinto la conoscenza in diversi settori. Inoltre, come visto, questo articolo ci ha permesso di rivalutare alcuni concetti che troppo spesso vengono fatti passare come semplici regolette non mostrando la loro vera potenza e le implicazioni che hanno nella vita di tutti i giorni e per l’evoluzione stessa della scienza.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annunci

Neologismi catastrofisti

22 Nov

Leggendo i giornali c’e’ sempre qualcosa di nuovo da imparare. Come sapete bene, ogni tanto i giornalisti si lasciano prendere un po’ la mano, gonfiando le notizie o, anche, cercando di rendere ad effetto notizie che altrimenti passerebbero in secondo piano.

Di queste cose, diverse volte abbiamo parlato in questo blog. Alcune volte, ci siamo trovati a dover proprio smentire notizie apparse sui giornali nazionale perche’ frutto di incomprensioni o, e questo e’ un problema piu’ frequente di quanto si immagini, per la mancanza di controllo delle fonti da cui le notizie vengono prese.

Questa volta vorrei parlare di pioggia. Lungi da me speculare su quanto accaduto in Sardegna dove la forza della natura ha causato morti e notevoli danni, ma proprio quanto accaduto sull’isola rappresenta l’ultimo esempio di un cattivo costume per la ricerca di titoli ad affetto.

Negli ultimi anni, sempre piu’ spesso sentiamo parlare di forti piogge. Ora, il piu’ delle volte, anche di fronte a gravi problemi per le popolazioni, i giornali tendono a far apparire fenomeni stagionali comuni come eventi rari e inaspettati. Piogge torenziali, soprattutto in periodo autunnale o primaverile ci sono sempre state e sempre ci saranno. Nonostante questo, sempre piu’ spesso sentiamo parlare di “bombe d’acqua”, cioe’ violenti acquazzoni che interessano varie parti dell’Italia e di cui non avevamo mai sentito parlare.

Cosa sarebbero queste bombe d’acqua?

Se proviamo a consultare libri o siti specializzati, non troviamo una definizione di bombe d’acqua. Questo non ci deve sorprendere perche’, come anticipato, le bombe d’acqua in realta’ non esistono.

Ora, potrei far saltare dalla sedia molte persone preoccupate di quanto e’ accaduto in Sardegna o di altri fenomeni meno recenti. La mia considerazione e’ prettamente linguistica e metereologica. Fino a qualche anno fa, nessuno aveva mai sentito parlare di pioggia in questo senso, eppure, nell’ultimo periodo, sembrerebbe quasi che siano comparse queste bombe d’acqua come un fenomeno nuovo casuato da chissa’ quali diavolerie scientifiche o  da modificazioni climatiche naturali o indotte.

Onde evitare fraintendimenti, mi spiego meglio.

Le cosiddette “bombe d’acqua”, altro non sono che i violenti acquazzoni di cui abbiamo sempre sentito parlare. Perche’ allora si usa questo termine? L’origine, e come potrebbe essere diversamente, e’ giornalistica. Questo termine compare la prima volta in un articolo della Nazione di Firenze dopo il violento temporale del 2012. Ecco a voi l’articolo in questione:

La Nazione Firenze

Il termine e’ frutto di una cattiva traduzione dall’inglese dell’espressione “Cloud Burst”. Letteralmente suonerebbe come “Esplosione di Nuvola”. Con Cloud Burst, come potete leggere su wikipedia:

Cloud Burst

si indica un violento temporale con una durata limitata nel tempo ma con una quantita’ di precipitazioni in grado di provocare innondazioni. In molti di questi casi, si possono formare piu’ temporali in breve tempo che provocano appunto la grande quantia’ di precipitazione in uno spazio ristretto. Bene, il termine “bomba d’acqua” e’ dunque mutuato dall’inglese.

Ora pero’, provando a ragionare, si tratta di un termine qualitativo appicicato ad una scienza quantitativa come le meteorologia. Cosa significa tanta pioggia in poco tempo? Tanta quanta? Poco tempo quanto? Capite che, cosi’ come viene dato, questo termine non ha alcun significato se non quello soggettivo.

Operativamente, anche a seguito del diffondersi del termine, si e’ cercato di dare una definizione numerica al termine bomba d’acqua definendo in questo modo precipitazioni in grado di scaricare quantita’ maggiori di 30 mm di pioggia nell’arco di un’ora. Non si tratta di una definizione nel senso stretto del termine dal momento che autori diversi possono utilizzare numeri diversi. C’e’ chi parla di 50 mm in un’ora, chi di 20, chi parla di precipitazioni nell’arco di due ore, ecc.

Detto questo, capite bene come il termine sia in realta’ una forzatura di quello che, fino a pochi anni fa, eravamo soliti chiamare aquazzone ed inoltre non presenta una definizione univoca.

Prima di chiudere, ragioniamo ancora su un particolare: alla luce di quanto osserviamo, sembrerebbe che gli acquazzoni, o le bombe d’acqua, siano aumentati notevolmente negli ultimi anni. E’ una sensazione o l’aumento e’ tangibile? Su alcuni siti trovate numeri veramente sparati a caso. Su piu’ di una fonte ho trovato che prima si poteva parlare di una bomba d’acqua ogni 10 anni mentre ora questo fenomeno si presenta, nel solo territorio italiano, fino a 3-4 volte all’anno. Questo non e’ assolutamente vero.

Negli ultmi anni, il numero di acquazzoni e’ sensibilmente aumentato e questo e’ dovuto all’effetto serra e all’aumento della temperatura media dei mari. Perche’? Quando parliamo di aumento di temperatura delle acqua, al solito, ci si riferisce ad incrementi inferiori al grado, ma che possono avere effetti importanti sulle dinamiche atmosferiche. Durante la formazione delle nuvole temporalesche, la maggior differenza di temperatura tra terra e quota provoca un aumento dell’energia e delle precipitazioni potenziali del fronte. Proprio l’aumento di temperatura dei mari causa una maggior quantita’ di precipitazioni che, nella definizione data prima, provoca un aumento del numero di acquazzoni.

Concludendo, il termine bomba d’acqua non e’ una definizione metereologica ne tantomeno una quantita’ di piogge univocamente accettatata. Come visto, l’origine del termine e’ da ricercarsi nei giornali sempre troppo impegnati a trovare neologismi o parole ad effetto per attrarre maggiormente l’interesse dei lettori. Le bombe d’acqua di cui tanto si parla in questi ultimi tempi, altro non sono che gli acquazzoni violenti di cui abbiamo sempre sentito parlare. Come visto, il numero di fenomeni temporaleschi violenti e’ in sensibile aumento non a causa di strane attivita’ fatte dall’uomo sull’atmosfera ma a causa dell’effetto serra che provoca un aumento minimo della temperatura dei mari.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Annuncio storico: siamo fuori dal Sistema Solare?

18 Set

In questo blog, diverse volta abbiamo parlato delle due sonde Voyager. Lo abbiamo fatto un po’ per passione, un po’ per raccontare la storia di questa missione che, lanciata addirittura nel 1977, ancora oggi, a distanza di cosi’ tanti anni, ci fornisce risultati importantissimi per capire come e’ fatto l’universo che ci circonda.

Oltrre a questi “nobili” scopi di cronaca, in questi articoli:

Siamo fuori dal sistema solare … o forse no?

Aggiornamento sulla Voyager-1

abbiamo parlato di queste sonde per smentire molta speculazione che e’ nata negli ultimi tempi riguardo alla missione. Come ricorderete, molto si era discusso sul fatto che la Voyager-1 fosse uscita o meno fuori dal Sistema Solare. Per ben due volte, era stato annunciato questo storico passaggio. Come visto, in almeno un’occasione, anche siti accreditati, per fretta o per approfittare della notorieta’ della missione, si erano lanciati in dichiarazioni che avevano addirittura richiesto una smentita ufficiale da parte della NASA.

La cosa piu’ importante da capire in questa discussione e’ “che cosa significa uscire fuori dal sistema solare”. Come detto in passato, non dobbiamo certo pensare che esista una linea ben marcata, una sorta di cartello stradale, che dica “benvenuti nello spazio intergalattico”.

Scientificamente, la definizione di questo passaggio non e’ semplice, ma soprattutto univoca. In linea di principio, come e’ facile immaginare, il confine tra sistema solare e spazio esterno, non puo’ certo prescindere dal nostro Sole. Qualche tempo fa, si identificava un confine del sistema solare come lo spazio dopo Plutone, cioe’ fuori dai pianeti, anche se Plutone e’ stato declassificato, che orbitano intorno al Sole. Questa definizione, anche se facilmente comprensibile e forse meglio definibile di altre, non e’ adatta per il semplice scopo che dopo Plutone, l’interazione del nostro Sole e’ ancora molto presente.

Proprio da questo concetto, nasce la definizione di confine con lo spazio intergalattico. Detto molto semplicemente, possiamo vederla come quella linea oltre la quale gli effetti del Sole divengono minori di quelli dovuti allo spazio esterno. Anche se scientificamente questa definizione e’ molto comprensibile, immaginare questa separazione non e’ semplice, soprattutto se parliamo di regioni di spazio poco conosciute e di cui, e’ possibile, si conoscono poco le interazioni con lo spazio esterno.

Proprio da questa considerazione, come visto nell’articolo precedente, era nata la notizia falsa di qualche mese fa. Grazie ai dati forniti da Voyager-1, e’ stato possibile identificare una nuova regione la cui esistenza non era stata neanche ipotizzata prima. Vedete la potenza e l’importanza di queste missioni? Ovviamente, il modo migliore di poter studiare qualcosa e’ andare li per vedere come e’ fatto. Purtroppo, in campo cosmologico, questo non e’ quasi mai possibile. La voyager e’ gia’ ora l’oggetto piu’ lontano dalla Terra che l’uomo abbia costruito e che comunque e’ in comunicazione con noi.

Dopo questo lungo cappello introduttivo, cerchiamno invece di capire perche’ sto tornando a parlare di Voyager-1.

Solo pochi giorni fa, e’ stato fatto, finalmente, l’annuncio storico. Questa volta, a scanso di equivoci, la fonte ufficiale e’ proprio la NASA. Senza anticiparvi nulla, vi giro il link in questione:

NASA, annuncio Voyager-1

La sonda ha iniziato il suo viaggio nello spazio interstellare. Riprendendo il titolo di uno dei post precedenti: “Siamo fuori dal Sistema Solare”.

Come e’ facile immaginare, si tratta di un passo storico per l’uomo, paragonabile se volete al primo allunaggio nel 1969.

Perche’ e’ stato fatto l’annuncio? Come ci si e’ accorti del passaggio?

In realta’, anche se l’annuncio e’ del 12 settembre 2013, lo storico passaggio e’ avvenuto mesi prima, ma non e’ stato possibile determinarlo. Mi spiego meglio.

Per determinare il confine con il Sistema Solare, si cerca di evidenziare una zona in cui la densita’ del plasma di particelle cresce notevolmente rispetto ai valori standard. Detto molto semplicemente, le particelle emesse dal sole formano una sorta di bolla che ricopre quello che chiamamiamo sistema solare ed esiste un confine tra dentro e fuori offerto dell’eliopausa.

Cosa si e’ visto dai dati di Voyager?

Grazie ad una potente emissione solare che ha scagliato particelle verso l’esterno, i sensori di Voyager hanno potuto misurare la densita’ elettroncia intorno alla navicella. In questo modo, anche senza un sensore di plasma, e’ stato possibile identificare la variazione di densita’ tipica dello spazio interstellare, cioe’ fuori dla sistema solare. Per poter caire quando il passaggio fosse avvenuto, i ricercatori hanno dovuto spulciare all’indietro i dati raccolti da Voyager nei mesi precedenti, per cercare di identificare gli andamenti della densita’. Da questo studio, e’ emerso che il passaggio attraverso il confine cosi’ definito era avvenuto circa un anno fa, il 25 agosto 2012.

Come e’ facile immaginare, oltre allo storico annuncio, tutti questi studi sono stati pubblicati sulla rivista Science.

E ora?

In questo istante, la Voyager si trova a circa 19 miliardi di Kilometri da Terra. I segnali inviati verso di noi hanno una potenza di appena 22 Watt e giungono fino a noi impiegando 17 ore. Sembra quasi incredibile che da Terra si riescano a percepire e identificare segnali paragonabili a quelli di una lampadina che si trova cosi’ distante nell’universo.

La sonda e’ alimentata da una batteria TRG che, a meno di sorprese, dovrebbe garantire il funzionamento della Voyager fino al 2025. A quella data, la sonda si dovrebbe trovare, spostandosi a circa 17 Km/s, a qualcoa come 25 miliardi di kilometri dal nostro pianeta. Speriamo che durante questa nuova fase del suo viaggio, possa permetterci altre importanti evidenze scientifiche.

Concludendo, lo storico annuncio dell’ingresso nello spazio interstellare e’ finalmente arrivato. La sonda Voyager e’ l’oggetto piu’ lontano dalla Terra costruito dall’uomo e che e’ ancora in contatto con noi. Dopo quanto annunciato e scritto in questo articolo, non credo sia il caso di chiedersi se questa missione e’ stata fruttuosa oppure no!

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Orologi atomici e precisione del tempo

25 Ago

Qualche giorno fa, le pagine scientifiche di molti giornali hanno ospitato una notizia che e’ passata un po’ in sordina ma che, a mio avviso, merita di essere commentata se non altro per le interessanti discussioni a corollario. La notizia in questione, che molto sicuramente avrete letto, parlava di una nuova serie di orologi atomici costruiti dai ricercatori del NIST, National Institute of Standards and Technology, e che sono in grado di mantenere la precisione per un tempo paragonabile all’eta’ dell’universo.

Leggendo questa notizia, credo che le domande classiche che possono venire in mente siano: come funziona un orologio atomico? Come si definisce il secondo? Ma soprattutto, a cosa serve avere un orologio tanto preciso?

In realta’, rispondere a queste domande, non e’ cosa facile ma cercheremo di farlo sempre in modo divulgativo spiegando passo passo tutti i concetti richiamati.

Prima di tutto, cos’e’ il tempo? Come potete immaginare, in questo caso la risposta non e’ semplice, ma richiama tantissime discipline, non solo scientifiche, che da secoli si sono interrogate sulla migliore definizione di tempo. Tutti noi sappiamo che il tempo passa. Come ce ne accorgiamo? Proprio osservando il trascorrere del tempo, cioe’ degli avvenimenti che osserviamo intorno a noi. In tal senso, scientificamente, possiamo definire il tempo come quella dimensione nella quale si misura il trascorrere degli eventi. Questa definizione ci permette dunque di parlare di passato, presente e futuro, dividendo gli eventi in senso temporale. Ovviamente, non e’ l’unica definizione che potete dare di tempo e forse neanche la piu’ affascinante ma, sicuramente, e’ la piu’ pratica per l’utilizzo che se ne vuole fare nelle scienze.

salvador_dali

Detto questo, se parliamo di tempo come una dimensione, dobbiamo saper quantificare in qualche modo il suo scorrere. Detto in altri termini, abbiamo bisogno di un’unita’ di misura. Nel “Sistema Internazionale di unita’ di misura”, che e’ quello accettato in molti paesi e considerato la standard a cui riferirsi, l’unita’ di misura del tempo e’ il secondo.

Come viene definito un secondo?

Storicamente, la definizione di secondo e’ cambiata molte volte. Nella prima versione, il secondo era definito come 1/86400 del giorno solare medio. Questa definizione non e’ pero’ corretta a causa del lento e continuo, per noi impercettibile, allungamento delle giornate dovuto all’attrazione Terra-Luna e alle forze mareali, di cui abbiamo parlato in questo post:

Le forze di marea

Utilizzando pero’ questa definizione, non avremmo avuto a disposizione qualcosa di immutabile nel tempo. Per ovviare a questo problema, si decise dunque di riferire il secondo non piu’ in base alla rotazione della terra su se stessa, ma a quella intorno al Sole. Anche questo movimento pero’ e’ non uniforme, per cui fu necessario riferire il tutto ad un preciso anno. Per questo motivo, il secondo venne definito nel 1954 come: la frazione di 1/31 556 925,9747 dell’anno tropico per lo 0 gennaio 1900 alle ore 12 tempo effemeride. La durata della rotazione intorno al Sole era conosciuta da osservazioni molto precise. Qualche anno dopo, precisamente nel 1960, ci si rese conto che questa definizione presentava dei problemi. Se pensiamo il secondo come una frazione del giorno solare medio, chi ci assicura che il 1900 possa essere l’anno in cui il giorno aveva la durata media? Detto in altri termini, le definizioni date nei due casi possono differire tra loro di una quantita’ non facilmente quantificabile. Dovendo definire uno standard per la misura del tempo, conosciuto e replicabile da chiunque, abbiamo bisogno di un qualcosa che sia immutabile nel tempo e conosciuto con grande precisione.

Proprio queste considerazioni, portarono poi a prendere in esame le prorieta’ degli atomi. In particolare,  si penso’ di definire il secondo partendo dai tempi necessari alle transizioni atomiche che ovviamente, a parita’ di evento, sono sempre identiche tra loro. Proprio per questo motivo, il secondo venne definito come: la durata di 9 192 631 770 periodi della radiazione corrispondente alla transizione tra due livelli iperfini, da (F=4, MF=0) a (F=3, MF=0), dello stato fondamentale dell’atomo di cesio-133. In questo modo si e’ ottenuta una definizione con tutte le proprieta’ che abbiamo visto.

A questo punto, la domanda e’: come misurare il tempo? Ovviamente, di sistemi di misurazione del tempo ne conosciamo moltissimi, sviluppati e modificati nel corso dei secoli e ognuno caratterizzato da una precisione piu’ o meno elevata. Cosa significa? Affinche’ un orologio sia preciso, e’ necessario che “non perda un colpo”, cioe’ che la durata del secondo misurata sia quanto piu’ vicina, al limite identica, a quella della definizione data. In caso contrario, ci ritroveremo un orologio che dopo un certo intervallo, giorni, mesi, anni, migliaia di anni, si trova avanti o indietro di un secondo rispetto allo standard. Ovviamente, piu’ e’ lungo il periodo in cui questo avviene, maggiore e’ la precisione dell’orologio.

Come tutti sanno, gli orologi piu’ precisi sono quelli atomici. Cosi’ come nella definizione di secondo, per la misura del tempo si utilizzano fenomeni microscopici ottenuti mediante “fontane di atomi”, eccitazioni laser, o semplici transizione tra livelli energetici. Al contrario, negli orologi al quarzo si utilizza la vibrazione, indotta elettricamente, degli atomi di quarzo per misurare il tempo. La bibliografia su questo argomento e’ molto vasta. Potete trovare orologi atomici costruiti nel corso degli anni sfruttando proprieta’ diverse e con precisioni sempre piu’ spinte. Negli ultimi anni. si e’ passati alla realizzazione di orologi atomici integrando anche fasci laser e raffreddando gli atomi a temperature sempre piu’ vicine allo zero assoluto.

Nel caso della notizia da cui siamo partiti, l’orologio atomico costruito sfrutta la transizione di atomi di itterbio raffreddati fino a 10 milionesimi di grado sopra lo zero assoluto indotta mediante fasci laser ad altissima concentrazione. Questo ha permesso di migliorare di ben 10 volte la precisione dell’orologio rispetto a quelli precedentemente costruiti.

A questo punto, non resta che rispondere all’ultima domanda che ci eravamo posti all’inizio: a cosa serve avere orologi cosi’ precisi? Molto spesso, leggndo in rete, sembrerebbe quasi che la costruzione dell’orologio piu’ preciso sia una sorta di gara tra laboratori di ricerca che si contendono, a suon di apparecchi che costano milioni, la palma della miglior precisione. In realta’ questo non e’ vero. Avere una misura sempre piu’ precisa di tempo, consente di ottenere risultati sempre piu’ affidabili in ambito diverso.

Per prima cosa, una misura precisa di tempo consente di poter sperimentare importanti caratteristiche della relativita’. Pensate, ad esempio, alla misura della distanza tra Terra e Luna. In questo caso, come visto in questo articolo:

Ecco perche’ Curiosity non trova gli alieni!

si spara un laser da Terra e si misura il tempo che questo impiega a tornare indietro. Maggiore e’ la precisione sulla misura del tempo impiegato, piu’ accurata sara’ la nostra distanza ottenuta. Molto spesso infatti, si suole misurare le distanze utilizzando tempi. Pensiamo, ad esempio, all’anno luce. Come viene definito? Come la distanza percorsa dalla luce in un anno. Tempi e distanze sono sempre correlati tra loro, condizione per cui una piu’ accurata misura di tempi  consente di ridurre l’incertezza in misure di distanza.

Anche quando abbiamo parlato del sistema GPS:

Il sistema di posizionamento Galileo

Abbiamo visto come il posizionamento viene fatto misurando le differenze temporali tra i satelliti della galassia GPS. Anche in questo caso, la sincronizzazione e’ fondamentale per avere precisioni maggiori nel posizionamento. Non pensate solo al navigatore che ormai quasi tutti abbiamo in macchina. Questi sistemi hanno notevole importanza in ambito civile, marittimo, militare. Tutti settori di fondamentale importanza per la nostra societa’.

Concludendo, abbiamo visto come viene definito oggi il secondo e quante modifiche sono state fatte nel corso degli anni cercando di avere una definizione che fosse immutabile nel tempo e riproducibile per tutti. Oggi, abbiamo a disposizione molti sistemi per la misura del tempo ma i piu’ precisi sono senza dubbio gli orologi atomici. Come visto, ottenere precisioni sempre piu’ spinte nella misura del tempo e’ di fondamentale importanza per tantissimi settori, molti dei quali anche strategici nella nostra soscieta’. Ad oggi, il miglior orologio atomico realizzato permette di mantenere la precisione per un tempo paragonabile all’eta’ dell’universo, cioe’ circa 14 miliardi di anni.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Climatizzatore …. quanto ci costi?

6 Ago

Nell’ottica del risparmio energetico, non solo per fare un favore all’ambiente ma anche al nostro portafoglio, qualche tempo fa avevamo analizzato in dettaglio i consumi dei nostri elettrodomestici:

Elettrodomestici e bolletta

In particolare, avevamo quantificato il reale consumo dei comuni sistemi casalinghi, convertendo il tutto in termini di consumo. Come sappiamo bene, nella nostra bolletta elettrica, viene riportato un consumo in KWh, mentre le etichette e le caratteristiche degli apparecchi elettronici ci forniscono un valore in potenza, cioe’ in Watt.

Detto questo, con la calura estiva di questi giorni, vorrei riprendere questi concetti, analizzando pero’ il discorso condizionatori. Se andate in negozio intenzionati a comprare un sistema di questo tipo, vi trovate di fronte una vasta gamma di prodotti con caratteristiche diverse ma, soprattutto, la capacita’ refrigerante dei condizionatori e’ espressa in Btu/h.

Cerchiamo dunque di fare un po’ di chiarezza, capendo meglio questi concetti.

Prima di tutto, la scelta principale che dovete affrontare e’ quella relativa alle differenze: con o senza pompa di calore, inverter o ON/OFF.

Cosa significa?

Per quanto riguarda la pompa di calore, si tratta semplicemente di condizionatori che possono riscaldare oltre a rinfrescare. Detto proprio in parole povere, lo stesso sistema e’ in grado di invertire il ciclo termico, producendo un salto positivo o negativo rispetto alla temperaratura iniziale. Detto ancora piu’ semplicemente, avete la possibilita’ di far uscire aria calda o fredda per riscaldare o rinfrescare.

Convengono questi sistemi?

Se avete un impianto di riscaldamento in casa con caloriferi, pannelli radianti, ecc, allora tanto vale comprare solo un condizionatore, cioe’ qualcosa in da utilizzare in estate per rinfrescare.

Cosa significa invece inverter o ON/OFF?

Qui spesso trovate un po’ di confusione in giro. In realta’, la distinzione e’ molto semplice. Un sistema ON/OFF funziona, come dice il nome stesso, in modalita’ accesa o spenta. Cerchiamo di capire meglio. Impostate una temperatura, il sitema si accende e comincia a buttare aria fredda. Quando la temperatura della sala e’ arrivata a quella desiderata il sistema si spegne. A questo punto, quando la temperatura si rialza, il sistema riparte e la riporta al valore impostato. Al contrario, un sistema inverter e’ in grado di modulare la potenza del compressore funzionando a diversi regimi. Se volete, mentre nel primo caso avevamo un sistema binario acceso o spento, qui c’e’ tutta una regolazione della potenza del compressore gestita da un microprocessore. Quando la temperatura si avvicina a quella impostata, la potenza del condizionatore scende riducendo i giri del compressore. In questo modo, con un piccolo sforzo, si riesce a mantenere la temperatura sempre intorno, con piccole fluttuazioni, al valore impostato.

Molto spesso, leggete che gli inverter sono migliori, garantiscono un notevole risparmio energetico, ecc. A costo di andare contro corrente, sostengo invece che questo non e’ sempre vero. Mi spiego meglio. Se avete intenzione di tenere acceso il condizionatore per diverese ore, allora il sistema inverter vi garantisce un consumo minimo, arrivati intorno al valore desiderato. Al contrario, un ON/OFF quando parte, parte sempre a pieno regime. Se pero’ avete intenzione di tenere acceso il condizionatore per poco tempo, perche’ volete accenderlo solo in determinati momenti della giornata o per un paio d’ore mentre vi addormentate, allora il sistema inverter funzionerebbe, dal momento che prendiamo tutto l’intervallo necessario ad abbassare la temperatura, esattamente come un ON/OFF, cioe’ sempre a pieno regime. In questo caso, il consumo sara’ esattamente lo stesso e non riuscirete assolutamente a rientrare della maggiore spesa necessaria all’acquisto di un inverter.

Un commerciante onesto dovrebbe sempre chiedere il funzionamento richiesto al condizionatore e consigliare la migliore soluzione.

Detto questo, andiamo invece ai BTU/h, cioe’ questa arcana unita’ di misura con cui vengono classificati i condizionatori.

BTU sta per British Thermal Unit ed e’ un’unita’ di misura anglosassone dell’energia. Come viene definita? 1 BTU e’ la quantita’ di calore necessaria per alzare la temperatura di una libbra di acqua da 39F a 40F, cioe’ da 3.8 a 4.4 gradi centigradi. Come capite anche dalla definizione, e’ un’unita’ di misura del lavoro, che nel Sistema Internazionale e’ il Joule, che utilizza solo unita’ anglosassoni.

Perche’ si utilizza?

In primis, per motivi storici, poi perche’, per sua stessa definizione, indica proprio il calore necessario per aumentare, o diminuire, la teperatura di un volume di un fluido, in questo caso acqua.

Bene, ora pero’ sui condizionatori abbiamo i BTU/h. Questa indica semplicemente la quantita’ di BTU richiesti in un’ora di esercizio. Possiamo convertire i BTU/h in Watt dal momento che un lavoro diviso l’unita’ di tempo e’ proprio la definizione di potenza. In questo caso:

3412 BTU/h –> 1KW

A questo punto, abbiamo qualcosa di manipolabile e che e’ simile all’analisi fatta parlando degli altri elettrodomestici.

Compriamo un condizionatore da 10000 BTU/h e questo equivale ad un sistema da 2.9KW. Quanto ci costa tenerlo acceso un’ora? In termini di bolletta, in un’ora consumiamo 2.9KWh. Se assumiamo, come visto nel precedente articolo, un costo al KWh di 0.20 euro, per tenere acceso questo sistema servono 0.58 euro/h.

0.58 euro/h? Significa 6 euro per tenerlo acceso 10 ore. In un bimestre estivo, questo significherebbe 360 euro sulla bolletta?

Questo e’ l’errore fondamentale che spesso viene fatto. Il valore in KWh calcolato e’ in realta’ quello necessario per rinfrescare, o riscaldare se abbiamo la pompa di calore, il nostro ambiente. Quando comprate un condizionatore, c’e’ anche un ‘altro numero che dovete controllare, il cosiddetto EER, cioe’ l’Energy efficiency ratio. Questo parametro indica semplicemente l’efficienza elettrica del sistema quando questo lavora in raffreddamento. Analogamente, per i condizionatori con pompa di calore, trovate anche un indice COP che invece rappresenta il rendimento quando si opera in riscaldamento.

Detto proprio in termini semplici, quando assorbite 1 KWh dalla rete, il condizionatore rende una quantita’ pari a 1KWh moltiplicato per il EER. Facciamo un esempio. Valori tipici di EER sono compresi tra 3 e 5. Se supponiamo di comprare un condizionatore con EER pari a 4, per ogni KWh assorbito dalla rete, il sistema ne fornisce 4 sotto forma di energia frigorifera.

Se adesso riprendiamo il calcolo di prima, dai valori inseriti, se il nostro condizionatore ha un EER pari a 4, per tenerlo acceso un’ora spenderemo:

0.58/4 = 0.15 euro

Se confrontiamo questi valori con quelli degli altri elettrodomestici visti nell’articolo precedente, ci rendiamo conto che il condizionatore e’ un sistema che “consuma” molta energia.

Ultima considerazione, fino a questo punto abbiamo parlato di BTU/h, prendendo un numero a caso di 10000. In commercio trovate sistemi con valori tra 5000 e 30000, o anche piu’, BTU/h. Volete rinfrescare una camera, che condizionatore dovete prendere?

In realta’, la risposta a questa domanda non e’ affatto semplice. Come potete immaginare, la potenza del sistema che dovete prendere dipende prima di tutto dalla cubatura dell’ambiente, ma ache da parametri specifici che possono variare molto il risultato: superficie vetrata ed esposizione, superficie di muro ed esposizione, eventuale coibentazione della stanza, se ci sono appartamenti sopra e sotto, se siete sotto tetto, ecc.

Giusto per fornire dei valori a spanne, potete far riferimento a questa tabella:

LOCALE DA CLIMATIZZARE (m²)

POTENZA NOMINALE RICHIESTA (BTU)

da 0 a 10

5000

da 10 a 15

7000

da 15 a 25

9000

da 25 a 40

12000

da 40 a 50

15000

da 50 a 60

18000

da 60 a 80

21000

da 80 a 100

24500

da 100 a 130

35000

da 130 a 160

43000

da 160 a 180

48000

da 180 a 200

65000

Come vedete, in linea di principio, per rinfrescare con un salto termico accettabile una stanza da 20 m^2, vi basta un sistema da 9000 BTU/h.

Concludendo, prima di acquistare un condizionatore, si devono sempre valutare le caratteristiche richieste dall’utilizzo che vogliamo farne e dall’ambiente in cui vogliamo utilizzarlo. Detto questo, i parametri specifici del sistema, possono far variare notevolmente il consumo effettivo del condizionatore, influendo in modo significativo sulla bolletta che poi andremo a pagare.

 

”Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

L’esperimento della goccia di pece

23 Lug

Pochi giorni fa, e’ stata annunciata la notizia che finalmente e’ stato possibile riprendere uno degli esperimenti scientifici piu’ lunghi, secondo alcuni anche piu’ noioso, della storia.

Di cosa si tratta?

L’esperimento in questione e’ quello della goccia di pece. Come sapete bene, la pece e’ quella sostanza di colore nero, ricavata dai bitumi e da legni resinosi. In condizioni normali, la pece si presenta come un solido, tanto che e’ possibile romperla utilizzando un martello.

Confronto tra fluidi ad alta e bassa viscosita'. Fonte: Wikipedia

Confronto tra fluidi ad alta e bassa viscosita’. Fonte: Wikipedia

Anche se apparentemente sembra un solido, la pece e’ un fluido, precisamente un fluido ad altissima viscosita’. Come sapete, la viscosita’ di un fluido indica la resistenza della sostanza allo scorrimento. L’animazione riportata aiuta a capire bene la differenza tra fluidi ad alta e bassa viscosita’ quando questi vengono attraversati da solidi.

Bene, cosa c’entra la pece con questo esperimento?

Come anticipato, la pece e’ in realta’ un fluido ad alta viscosita’. Detto questo, anche se con tempi molto lunghi, questa sostanza deve comportarsi come un fluido. Sulla base di questa considerazione, e’ possibile realizzare un esperimento per misurare la viscosita’ della sostanza facendola scendere all’interno di un imbuto.

Il primo che propose questo esperimento fu il professor Thomas Parnell dell’università del Queensland. Parnell prese un pezzo di pece, lo sciolse e lo fece colare all’interno di un cono di vetro. Questo venne fatto addirittura nel 1927.

Per poter iniziare l’esperimento, fu necessario far raffreddare la pece, operazione che duro’ circa 3 anni, fino al 1930. Solo a questo punto, la parte finale del cono venne rotta formando un imbuto. Dal momento che la pece e’ un fluido, si devono osservare delle gocce cadere dall’imbuto.

Facile, direte voi. E’ vero, ma per eseguire questo esperimento serve tanta tanta pazienza.

Non ci credete?

La prima goccia di pece, cadde dopo ben 9 anni! Lo stesso avvenne per le gocce successive. Ecco una tabella riassuntiva dell’esperimento:

Data Evento Durata(Mesi) Durata(Anni)
1927 Inizio dell’esperimento: la pece viene versata nell’imbuto sigillato
1930 Il fondo dell’imbuto viene aperto
Dicembre 1938 Caduta della prima goccia 96-107 8-8,9
Febbraio 1947 Caduta della seconda goccia 99 8,3
Aprile 1954 Caduta della terza goccia 86 7,2
Maggio 1962 Caduta della quarta goccia 97 8,1
Agosto 1970 Caduta della quinta goccia 99 8,3
Aprile 1979 Caduta della sesta goccia 104 8,7
Luglio 1988 Caduta della settima goccia 111 9,3
28 novembre 2000 Caduta dell’ottava goccia 148 12,3

Perche’ questo esperimento e’ stato ritirato fuori in questi giorni?

Come evidenziato dalla tabella, sono state effettivamente osservate le gocce di pece cadere nel bicchiere sottostante, ma fino ad oggi, nessuno era mai riuscito a filmare la goccia che cadeva. In occasione dell’ottava goccia nel 200o, la telecamera che era stata montata era guasta, per cui si perse questo importante momento.

Seguendo il link, potete vedere il filmato della fatidica goccia che cade:

Video goccia di pece

Dai tempi misurati nell’esperimento, si e’ ricavato che la pece ha una viscosita’ pari a 230 miliardi di volte quella dell’acqua!

Durante questi 83 anni, l’esperimento e’ sempre stato in funzione e, nei primi anni del 2000, quando ci si rese conto che le variazioni di temperatura potevano modificare la viscosita’ della pece, la campana che conteneva l’apparato e’ stata termalizzata in modo da mantenere costanti i parametri.

Nel 2005, in memoria del professor Parnell, venne assegnato all’esperimento della goccia di pece l’IG Nobel, parodia, ormai seguitissima, del piu’ cleebre premio Nobel.

A parte gli scherzi, si tratta di un esperimento utile per evidenziare proprieta’ dei fluidi ad alta viscosita’. Certo, oggi come oggi, le misure sono state fatte, ma l’esperimento e’ ancora in corso perche’ rappresenta ormai un simbolo sia dell’universita’ del Queensland sia una memoria storica della fisica.

Se avete tempo libero, ma ne serve molto, potete ache seguire in diretta l’esperimento, collegandovi a questo link:

Diretta Pece

Dal punto di vista chimico-fisico, i fluidi alta viscosita’ sono assolutamnete interessanti e dalle proprieta’ a dir poco strabilianti. Anche il vetro, classificato come sostanza amorfa, puo’ essere definito un fluido ad alta viscosita’. Proprio per questo motivo, alcune vetrate delle chiese piu’ antiche, mostrano delle forme allargate verso il basso, caratteristica dovuta proprio al lento movimento del fluido.

Certamente, oggi come oggi non stiamo parlando di un esperimento in grado di stravolgere la fisica, ma di un’esperienza importante dal punto di vista storico e sicuramente curiosa per noi abituati alla comunicazione e ai risultati immediati. Punto a favore, e’ certamente il costo zero dell’esperimento che richiede solo un po’ di aria condizionata per termostatare il piccolo apparato.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Aggiornamento sulla Voyager-1

1 Lug

Solo qualche mese, avevamo parlato della sonda Voyager-1, discutendo il clamoroso equivoco in cui era caduta la American Geophysical Union, che male aveva interpretato un comunicato della NASA. Come visto in questo articolo:

Siamo fuori dal sistema solare … o forse no?

intorno a Marzo, la sonda si trovava in una zona del sistema solare nota come Magnetic Highways. Qui, il campo magnetico esercitato dal Sole presentava una repentina variazione che poteva far credere che la sonda fosse uscita dal sistema solare. Nella comunita’ scientifica, questo momento di passaggio e’ atteso con trepidante attesa visto che, per la prima volta, un oggetto tecnologico costruito dall’uomo potrebbe entrare nello spazio interstellare.

La sonda Voyager

La sonda Voyager

Ovviamente, come visto nel precedente articolo, non e’ semplice definire un confine esatto per il nostro sistema solare. Come e’ facile immaginare, ruolo dominante in questa definizione viene dato al Sole. Se pensiamo alla forza gravitazionale, questa ha in realta’ un intervallo infinito in cui fa sentire i suoi effetti. Nonostante questo, si e’ soliti definire il confine del sistema solare come quella zona in cui il campo magnetico del Sole scende bruscamente e dunque non arrivano le particelle cariche emesse dalla nostra stella. Se vogliamo, questa data e’ una definizine operativa che ci permette dunque di avere un confine piu’ o meno preciso della seprazione tra il nostro sistema solare o lo spazio profondo.

Come visto anche in precedenza, questo confine e’ molto lontano dalla nostra posizione, trovandosi a circa 123 unita’ astroniche, cioe’ circa 18 miliardi di kilometri dal Sole, ben oltre l’orbita di Plutone.

Perche’ torno a parlare di questo?

Nei mesi trascorsi dal nostro ultimo aggiornamento, la Voyager-1 ha continuato a spingersi verso il confine del sistema solare e, dopo il passaggio nella Magnetic Highway, ci si aspettava da un momento all’altro l’ingresso nello spazio profondo. La sonda lanciata nel 1977, continua ad essere alimentata dalla sue batterie atomiche, e, ad intervalli regolari, invia a terra le misure sia di campo magnetico che di flussi di particelle. Proprio questi dati, come visto nella definizione operativa di confine, ci darebbero il momento storico del passaggio.

Bene, ormai a 18 miliardi di kilometri da noi, la Voyager-1, invece di entrare nello spazio interstellare, ha trovato una nuova regione del tutto inattesa dai modelli teorici.

Di cosa si tratta?

Analizzando i dati inviati a terra, i tecnici della NASA hanno trovato valori molto altalenanti sia di campo magnetico che di flusso di particelle. La regione piu’ esterna dell’eliosfera, anche detta Eliosheath o elioguaina, che e’ quella in cui ci trovavamo prima, invece di lasciare il posto allo spazio profondo, viene seguita da una regione in cui gli effetti del nostro Sole si sovrappongono a quelli delle stelle esterne al Sistema Solare. Questa regione e’ stata subito ribattezzata “Eliosheath depletion region”.

Nella nuova regione scoperta, il campo magnetico solare e’ ancora presente ma calano bruscamente i flussi di particelle cariche provenienti dalla nostra stella. Come evidenziato pero’ dagli strumenti della Voyager-1, nella regione cominciano a farsi sentire i flussi di raggi cosmici provenienti dall’esterno.

Molto interessante e’ il video pubblicato proprio dal nostro INAF per spiegare questa nuova importante scoperta:

Se vogliamo dirlo in parole semplici, la Voyager si trova ora in una zona di separazione tra il sistema solare e l’esterno, che, ovviamente, non e’ una linea. Quello che invece era inatteso, e’ questo comportamento altalenante dai valori dovuto, se vogliamo, ad un mescolamento delle linee di forza del campo magnetico del Sole con quello delle stelle esterne.

Come vedete, la sonda Voyager continua ad offirci importanti risultati. Anche se tutti siamo in attesa di questo storico passaggio nello spazio esterno, la scoperta fatta e’ del tutto inattesa e assolutamente non aspettata dai modelli teorici. La cosa piu’ affascinante e’ che la sonda venne lanciata ormai 36 anni fa per misurare importanti parametri di Giove e Saturno. A distanza di decadi, e’ ormai pronta per il passaggio verso l’esterno e continua ad inviare dati con regolarita’, regalandoci di volta in volta scoperte ed emozioni sempre nuove.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Oroscopo … non ci crede nessuno?

13 Giu

Come sapete, questo e’ un blog di divulgazione della scienza. Per fare questo pero’, ci siamo affidati ad una chiave di lettura completamente diversa. Come siamo soliti fare, partiamo dalle tante teorie catastrofiste, complottiste e pseudo-scientifiche per passarle in esame, spiegare la vera scienza che c’e’ alla base (sempre se c’e’) ed in questo modo, parliamo di scienza discutendo gli ultimi risultati, l’attuale conoscenza raggiunta, come viene spiegato un fenomeno piuttosto che un altro, e via dicendo.

In base a questo approccio, arrivati oltre i 450 articoli, abbiamo parlato degli argomenti piu’ diversi e sempre attuali: come funziona il Sole, il ciclo solare, la nostra Terra, i pianeti del sistema solare, la galassia, l’universo, il big bang. Solo rimanendo nell’ambito astrofisico, abbiamo affrontato tantissimi argomenti capendo come funzionano molti aspetti di quello che ci circonda e raggiungendo una consapevolezza, spero, migliore dei meccanismi di natura.

Perche’ faccio questo discorso?

In un recente post, un nostro lettore ha chiesto una mia opinione sugli oroscopi. Ovviamente, facendo questa domanda ad un fisico, la risposta e’ quantomeno scontata. Nonostante questo, capendo in fondo la natura del commento, vorrei prima di tutto argomentare sulla mia posizione, ma soprattutto darvi qualche interessante chicca che vi fara’ ricredere su tante convinzioni.

Primo punto fondamentale, convinzione fondamentale dell’astrologia e’ che una persona nata sotto un determinato segno abbia delle linee caratteriali e comportamentali determinate proprie dal segno di nascita.

Prima considerazione, cosa sono i segni zodiacali?

Di come si muovono i pianeti nel sistema solare abbiamo parlato tante volte. Come sappiamo, la Terra gira intorno al Sole compiendo un’orbita ellittica. La Terra inoltre gira su stessa, intorno ad un asse che ha una certa inclinazione rispetto al piano dell’orbita. Bene, questo movimento fa si che da Terra vediamo il Sole muoversi lungo una traiettoria definita che e’ quella che chiamiamo “eclittica”.

Ora, se vedete una qualsiasi mappa del cielo, trovate tantissime costellazioni rappresentate. Queste altro non sono che disegni realizzati unendo diverse stelle e formando oggetti o comunque elementi noti. Tra queste costellazioni ve ne sono 12 piu’ speciali, che fanno parte dello zodiaco. Perche’? A causa dei moti relativi visti da Terra, cioe’ da un corpo che e’ in movimento, vediamo il Sole sorgere in determinati periodi dell’anno in costellazioni diverse. Ecco svelato l’arcano. Le costellazioni dello zodiaco sono quelle posizionate a cavallo dell’eclittica in cui il Sole sorgera’, per periodi diversi, durante il corso dell’anno.

Bene, ora abbiamo capito perche’ ci sono delle costellazioni speciali. Seguendo questo ragionamento, se siete nati in un giorno X e durante questo periodo il Sole sorge in una costellazione Y, voi siete del segno dell’Y.

Allarghiamo il discorso, prendendo una costellazione, non necessariamente dello zodiaco, queste sono formate da un certo numero di stelle che unite danno la figura rappresentata. Queste stelle sono davvero in relazione tra loro? La risposta e’ assolutamente no. Guardando il cielo, vediamo le stelle tutte di fronte a noi, per un semplice gioco di prospettiva. In realta’, stelle che appartengono alla stessa costellazione, possono essere distanti milioni di anni luce tra loro. Perche’ stelle cosi’ distanti dovrebbero influenzarsi tra loro o anche appartenere alla stessa costellazione? Capite bene che questo discorso non ha senso. Facendo un paragone prospettico, e’ come vedere la classica foto del tizio che tiene la Torre di Pisa perche’ si mette nella posizione giusta tra la torre e la macchina fotografica.

Nonostante queste cosnsiderazioni, moltissime persone credono agli oroscopi, e, per fortuna molte meno, dichiarano di leggere di frequente le previsioni giornaliere degli esperti, semplicemente perche’ “non costa nulla”. Questa e’ esattamente la stessa conclusione a cui eravamo giunti parlando di superstizioni e scaramanzie:

Superstizioni e scaramanzie

Non devo passare sotto la scala perche’ porta male. Non ci credo, ma nel dubbio lo faccio, tanto non costa nulla.

Alimentare gli oroscopi significa ragionare allo stesso modo. Cosi’ come avveniva per le superstizioni in generale, anche credendo agli oroscopi si insultano centinaia di anni di osservazioni e scoperte scientifiche fatte e che ci hanno permesso di esplorare e capire molti, anche se ancora pochi, meccanismi che avvengono nell’universo.

Bene, a questo punto siamo arrivati a dire che le costellazioni non esistono e che e’ assurdo pensare che possano influenzare i nati in un determinato periodo.

Ora, vorrei aprire una parentesi. Come saprete, l’origine storica degli oroscopi e dei segni zodiacali si perde in tempi remoti. Proprio per questo motivo, ci sono segni zodiacali che ricordano oggetti di uso comune in un lontano passato. Pensando di azzerare tutte le costellazioni note e di avere dunque solo un insieme di stelle a cavallo dell’eclittica, immaginate cosa potrebbe accadere se oggi volessimo ridefinire i segni zodiacali. Forse, avremmo la costellazione del “notebook”, quella dello “smartphone”, il camion con rimorchio, e via dicendo. E’ possibile questo? Certamente si, come detto le stelle sono completamente scorrelate tra loro. Il voler tracciare un disegno che le unisce per formare qualcosa e’ un retaggio di tempi andati.

Chi sono gli astrologi? Semplici persone che svolgono un po’ il ruolo degli oracoli nei tempi dell’antichita’. Anche in quel caso, gli oracoli erano scelti, se non per parentele o motivi di credenze particolari, in base alla fantasia che avevano nel formulare previsioni. Anche oggi, gli astrologi non fanno altro che dare indicazioni vaghe e che difficilmente potrebbero non avverarsi. Immaginate la seguente previsione: oggi incontrerete qualcuno di speciale. Ora, a meno che quel giorno non decidiate di chiudervi a chiave dentro casa ed isolarvi dal mondo, qualcuno lo incontrerete. Incontreremo qualcuno speciale? Ma che significa speciale? Questo non e’ dato sapersi. In realta’, il significato di speciale lo trovate voi stessi. Ho incontraro Tizio, era speciale perche’ andavamo a scuola insieme, l’oroscopo aveva ragione. Ho incontrato Caio e mi sta pure fortemente antipatico. E’ una persona speciale perche’ mi sta “specialmente antipatica”. Capite come vengono formulate le previsioni?

Come anticipato, tolte le previsioni del giorno, scopo dell’astrologia e’ quello di determinare delle caratteristiche associative per i nati sotto lo stesso segno. Gli arieti sono cosi’, i Gemelli cosi’, ecc. Ci rendiamo conto di questo? Uno e’ testardo perche’ e’ nato in questo mese? Pero’ tutti sappiamo che esiste il DNA e che molte informazioni sono contenute in questa sequenza di geni. Tutti conosciamo la psicologia. Sei testardo perche’ hai vissuto in questa famiglia o hai fatto queste esperienze. In tutti e due i casi, singoli o in associazione, ci mettete il segno zodiacale?

Solo qualche anno fa, e’ stato fatto uno studio, svolto nella modalita’ del doppio cieco, prendendo in esame proprio le previsioni caratteriali formulate dagli astrologi. Per fare questo, sono stati selezionati i migliori, non so secondo quale parametro, astrologi sulla piazza e sono stati messi nelle condizioni ideali per operare. In tal senso, l’ambiente, l’ora, la posizione, ecc erano state decise proprio da ciascun astrologo. Questo per evitare qualsiasi contestazione possibile. Bene, in questo ambiente controllato, le previsioni degli astrologi si sono rivelate giuste con un valore che era del tutto paragonabile a quello statistico della casualita’. Che significa? Che se sparate cose a caso, esiste una probabilita’ che in alcuni casi queste cose si rivelino corrette. Bene, la percentuale di risposte attese sparando a caso, furono del tutto paragonabili a quelle dati dagli astrologi. Ovviamente vi sto parlando di misure reali, condotti in ambiente accademico ed i cui risultati sono stati pubblicati anche su Nature:

Nature, oroscopi

Come la mettiamo? Le costellazioni sono invenzioni prospettiche, non possono in alcun modo influenzare l’essere umano, studi scientifici condotti in ambiente controllato hanno mostrato la casualita’delle previsioni astrologiche.

Qualcosa da aggiungere?

In realta’ si, ancora non abbiamo finito. Come detto in precedenza, le costellazioni dello zodiaco si trovano sul piano dell’eclittica. In realta’, le costellazioni non sono 12 come si pensava, ma ne esite una tredicesima, chiamata Ofiuco, scoperta solo pochi anni fa. Perche’ e’ stata scoperta cosi’ di recente? Semplicemente perche’ la luminosita’ delle sue stelle e’ molto bassa e sono necessari sistemi buoni per poterla visualizzare. Poiche’, come detto, nel corso dell’anno il sole sorge, via via, in una costellazione diversa, se aggiungo un altro segno, devo rismazzare i giorni.

Questo e’ il ragionamento minimale che andrebbe fatto. In realta’, come sapete bene, nessuno ha fatto una cosa del genere e i segni sono rimasti 12.

Di nuovo attenzione, le diverse costellazioni hanno grandezze apparenti da Terra che possono essere molto diverse tra loro. Perche’ i segni zodiacali hanno tutti la stessa durata? Anche questo e’ un errore formale che ci fa capire che, giusto o sbagliato, tanto in astrologia ci limitiamo a dare indicazioni. Dunque sara’ concettualmente sbagliato avere tutti i segni della stessa durata in giorni.

Oltre a questo fatto, c’e’ da considerare il moto di precessione della Terra. Questo moto fa si che, di anno in anno, l’asse terrestre non resti immobile ma si muova ruotando di un pochino. In tal senso, i segni in cui il sole sorge durante l’anno, non restano sempre gli stessi. Come detto, siamo nel caso dei moti relativi e in questo caso, siamo proprio noi che stiamo spostando simultaneamente alla Terra.

Da queste considerazioni, vorrei mostrarvi una tabella:

Reali periodi di corrispondenza per i segni zodiacali

Reali periodi di corrispondenza per i segni zodiacali

La definizione dei segni zodiacali e’ avvenuta in tempi remoti, circa 2000 anni fa. In questo lasso di tempo, l’asse terrestre si e’ spostato di un po’ e dunque le finestre nel corso dell’anno di ciascun segno sono cambiate. Nella tabella trovate, sia il valore attualmente falso che stiamo utilizzando sia quello reale. Dico “attualmente falso” perche’ questi erano veri quando sono stati definiti i segni, ora non lo sono piu’.

In questo senso, vedete come molti segni sono in realta’ modificati. Nel mio caso, non sono piu’ della bilancia come ho pensato per tanto tempo, ma sono in realta’ della vergine. Ora, se fino a ieri vi eravate identificati con le caratteristiche di un segno, se la scienza vi dice che in realta’ il vostro segno e’ un altro, cosa fate?

Concludendo, non vi e’ nessuna motivazione scientifica per credere che stelle distanti anni luce tra loro, possano in qualche modo interagire e soprattutto influenzare pesantemente il carattere di una persona. Inoltre, studi scientifici hanno mostrato la completa casualita’ delle previsioni, oltre ovviamente al fatto incontrovertibile che le costellazioni si siano spostate e che ne manchi una all’appello che dovrebbe, come tutte le altre, godere della definizione di zodiacale.

Ultimissima cosa, come nello spirito del blog, notate come analizzando il dicorso oroscopi, non scienza, abbiamo acquisito molte informazioni aggiuntive, scienza, e che ci hanno permesso di incrementare la nostra conoscenza dell’universo.

 

”Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Elettrodomestici e bolletta

11 Giu

In un commento apparso nella sezione:

Hai domande o dubbi?

e’ stato chiesto di analizzare i consumi medi dei nostri elettrodomestici. Come giustamente detto nel commento stesso, questo genere di tematiche non sono semplici, vista in primis la vastita’ degli argomenti, ma soprattutto le fluttuazioni di questi valori che possono modificare sensibilmente stime grossolane di consumi elettrici.

Nonostante questo, cerchiamo di fare un po’ di chiarezza su questi argomenti, visto che, molto spesso, tanti ignorano come vengono calcolati i consumi elettrici della propria abitazione o anche ignorano quali elettrodomestici incidono maggiormente sulla nostra bolletta.

A tal senso, qualche tempo fa, avevamo gia’ parlato di consumi elettrici analizzando il discorso dello stand-by, cioe’ di quella lucina rossa che molto spesso teniamo accesa e indica che il nostro apparecchio e’ pronto a funzionare:

Il led rosso dello stadby …

Come potete immaginare, questi argomenti sono molto importanti dal punto di vista ambientale, ma soprattutto dal punto di vista della nostra economia domestica che, in momenti di crisi come questo, non e’ assolutamente un discorso trascurabile.

Prima di tutto, quando compriamo un elettrodomestico, troviamo sempre indicata la potenza richiesta al massimo da questo oggetto. Come sapete, si tratta di un valore espresso in Watt, unita’ di misura indicante appunto la potenza.

Ora pero’, quando arriva la bolletta a casa, vediamo che il pagamento avviene conteggiando non i Watt, bensi’ i Wattora, Wh. Che significa? Mentre il Watt rappresenta una potenza in termini fisici, il Wh e’ un unita’ di misura dell’energia. Come e’ intuibile, il Wattora e’ semplicemente ottenuto moltiplicando la potenza richiesta da un oggetto per il tempo in cui questo e’ acceso.

Per capire meglio questo importante concetto, facciamo un esempio pratico. Immaginate di avere un sistema che richieda una potenza di 1000W per funzionare. Se ora tenete acceso questo oggetto per 1 ora, il consumo energetico sara’ di:

1000W x 1ora = 1000Wh = 1KWh

cioe’ esattamente 1 KiloWattora. Pensandoci bene, questo e’ del tutto normale. La potenza richiesta dall’elettrodomestico interessa solo marginalmente, quello che conta per conteggiare il consumo e’ l’effettivo tempo in cui questo sistema e’ acceso e dunque richiede energia per funzionare.

Bene, a questo punto abbiamo capito come vengono conteggiati i consumi in bolletta. Ora, cerchiamo di capire quanto cosumano i nostri elettrodomestici. Per fare esempi pratici, prendiamo una casa tipo in cui si sara’ un frigorifero, una lavatrice, un asciugacapelli e un forno elettrico. Ovviamente, il calcolo fatto potra’ essere applicato direttamente a qualsiasi elettrodomestico avete in casa, semplicemente modificando i valori.

Prima di avventurarci nel calcolo, dobbiamo pero’ stimare il costo dell’energia dal nostro fornitore. Come saprete molto bene, anche questo valore puo’ presentare fluttuazioni molto elevate, grazie a speciali sconti che vengono offerti in bolletta, ad esempio, sfruttando specifiche fasce orarie o cambiando gestore. Per non fare un torto a nessuno, prendiamo un valore medio pari a 0,20 euro per KWh. Questo valore non dovrebbe discostarsi molto dal prezzo che paghiamo in bolletta in media.

Etichetta di classe energetica per gli elettrodomestici

Etichetta di classe energetica per gli elettrodomestici

Partiamo dunque dal frigorifero. Questo elettrodomestico ha una potenza diversa in base al volume interno, alla presenza o meno del vano congelatore ma anche alla tipologia stessa di elettrodomestico. In particolare, quest’ultimo punto ci permette di parlare di un altro aspetto molto importante e che spesso ci viene mostrato quando andiamo a comprare un nuovo elettrodomestico: la classe energetica. Nell’ottica di un risparmio e di una maggiore salvaguardia dell’ambiente, sono state definite delle classi energetiche in base al consumo di un determinato elettrodomestico. Inizialmente, le classi dovevano essere 7, e chiamate con lettere da A a G. Successivamente, grazie anche al risparmio apportato da nuove soluzioni, la classe piu’ energeticamente vantaggiosa, cioe’ la  A, e’ stata a sua volta divisa da A+ ad A+++, dove un numero crescente di segni “+” indica un maggior risparmio energetico.

Detto questo, quanto consuma un frigorifero? Seguendo la legislazione sulle classi energetiche di questo elettrodomestico, troviamo:

Classe Consumo annuo
A+++ <188 kWh
A++ 188 – 263 kWh
A+ 263 – 344 kWh
Classe Consumo annuo
A < 300 kWh
B 300 – 400 kWh
C 400 – 560 kWh
D 563 – 625 kWh
E 625 – 688 kWh
F 688 – 781 kWh
G > 781 kWh

Dove questi valori sono calcolati prendendo un sistema con potenza compresa tra 100 e 300W, operante in continuo ma non sempre a potenza massima e, naturalmente, sono stimati in condizioni standard di laboratorio con un frigorifero tenuto sempre a porte chiuse.

Dal valore riportato prima di 0,20 Euro/KWh, vediamo come un frigo di classe A da 300KWh/anno ci costera’ in bolletta 60 euro. Al contrario di quanto si pensa, il frigorfero non e’  l’elettrodomestico piu’ impegnativo che abbiamo.

Passiamo ora al discorso lavatrice. Anche qui, sono state definite delle classi energetiche, i cui valori sono:

A < 247 kWh
B 247 – 299 kWh
C 299 – 351 kWh
D 351 – 403 kWh
E 403 – 455 kWh
F 455 – 507 kWh
G > 507 kWh

Come sono stimati questi consumi? A livello legislativo, si e’ supposto di utilizzare la lavatrice per 2 lavaggi settimanali con programmi da 45 minuti a 60 gradi.  Se volete calcolare il vostro caso specifico, basta utilizzare le considerazioni viste prima. Supponendo di avere una lavatrice da 3000W, che teniamo accesa per 4 lavaggi a settimana da 60 minuti, cioe’ 4 ore a settimana, la quantita’ di energia richiesta sara’:

3000W x 4ore x 52sett/anno = 624KWh/anno

Vedete come cambiando leggermente i dati, in fondo chi fa solo 2 lavatrici a settimana, il valore cambia profondamente rispetto alla tabella dichiarata. Fate attenzione, questo non significa che i valori dati per legge siano sbagliati, semplicemente che sono applicati a condizioni tipo che possono essere molto diverse dalla realta’ di ciascuno di noi. Queste tabelle sono molto utili per fare un raffronto tra le diverse classi. In tal senso, e’ sempre possibile dire la classe X consuma P% in meno della classe Y, ma non e’ detto che i valori assoluti siano confrontabili con i nostri. Nel caso del calcolo visto, con 624KWh, il costo dell’energia richiesto sarebbe di 125 euro/anno.

Discorso analogo vale per il forno elettrico. Prendendo un forno standard da 50 litri, le classi energetiche vengono cosi’ definite:

Classe Consumo annuo
A < 80 kWh
B 80 – 100 kWh
C 100 – 120 kWh
D 120 – 140 kWh
E 140 – 160 kWh
F 160 – 180 kWh
G > 180 kWh

Come nel caso della lavatrice, volendo fare un calcolo specifico dei nostri consumi, questi valori lasciano un po’ il tempo che trovano. Se prendiamo un forno da 2000W utilizzato per 100 cicli di cottura da 30 minuti in un anno, l’energia richiesta sara’ di:

2000W x 100cicli x 0.5ore = 100KWh/anno

cioe’ 20 euro/anno che se ne vanno in bolletta.

Sempre nell’ambito degli elettrodomestici utilizzati non in continuo, stesso discorso puo’ essere fatto per l’asciugacapelli. Qui non sono state definite classi energetiche perche’ il consumo e’ strettamente personale e diverso da caso a caso. Se prendiamo un phon da 1000W che utilizziamo per 15 minuti al giorno, 0,25ore, tutti i giorni, allora il consumo energetico sara’:

1000W x 0,25ore x 365giorni = 91KWh/anno

cioe’ altri 18 euro da sommare in bolletta.

Ora, qual e’ lo scopo di questo post? Prima di tutto, spiegare come e’ possibile calcolare su carta i consumi energetici di ciascun apparecchio elettrico che abbiamo in casa. In tal senso, potete ripetere l’esercizio con tutto quello che volete, dal pc alla singola lampadina, passando per sistemi piu’ complessi come condizionatori, lavastoviglie, ecc. Il discorso classi energetiche e’ molto importante perche’, come mostrato, ci fa vedere molto bene quanto sarebbe il risparmio energetico passando da un apparecchio ormai datato ad un uno piu’ recente. Spesso, l’investimento iniziale per il passaggio viene ripagato dopo poco tempo dall’utilizzo dell’elettrodomestico. I valori specifici che pero’ troviamo sulle tabelle, non corrispondono esattamente al reale consumo che poi avremo in casa. Come detto, questi valori devono intendersi come relativi ad una classe rispetto ad un’altra. Per poter determinare il nostro consumo specifico, conviene ricorrere ad esercizi di calcolo come quelli fatti nell’articolo. Meglio ancora sarebbe quello di ricorrere a dei misuratori di consumi che, inseriti in serie tra la presa e l’elettrodomestico, misurano l’effettivo consumo richiesto dall’apparecchio. Inoltre, i nuovi contatori gia’ presenti in molte case, permettono di leggere dati importanti anche sul consumo medio ed istantaneo che e’ stato registrato.

Dal punto di vista ambientale, un risparmio energetico corrisponde ad una maggiore salvaguardia dell’ambiente visto che, ancora oggi, molta dell’energia che consumiamo dalla rete viene prodotta da combustibili fossili e fonti non rinnovabili. Inoltre, e assolutamente meno importante, risparmiare energia significa risparmiare tanti bei soldini che spesso regaliamo al nostro gestore e che potrebbero diminuire applicando un consumo piu’ accorto delle risorse.

Ovviamente, quando poi andate a leggere la vostra bolletta di fornitura elettrica, non dimenticate di inserire le tantissime tasse e spese fisse che vengono applicate e che, molto spesso, incidono piu’ dello stesso consumo elettrico.

 

”Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Scontro tra un Boeing ed un UFO!

9 Giu

Dopo un paio di giorni di assenza, leggo le ultime notizie e cosa trovo? Addirittura, un Boeing 757 della Air China si e’ scontrato in volo con un UFO. L’aereo, partito il 4 Giugno alle 10.11 ora locale da Chengdu e diretto a Guangzhou, dopo circa 20 minuti dalla partenza si e’ scontrato in volo con un oggetto non identificato ed il pilota e’ stato costretto a tornare a Terra. Non si e’ trattato di un vero e proprio atterraggio di emergenza, dal  momento che l’aeromobile era completamente funzionante, ma, dopo l’atterraggio, i tecnici hanno evidenziato un notevole danno a muso dell’aereo che ‘e risultato completamente schiacciato da un lato a causa dell’impatto.

Ecco le foto del 757 dopo l’atterraggio:

Il Boeing della Air China dopo l'atterraggio di emergenza

Il Boeing della Air China dopo l’atterraggio di emergenza

Cosa potrebbe aver ridotto in questo modo il muso dell’aereo? Semplice, secondo moltissimi siti internet, si e’ trattato necessariamente di un UFO. Le autorita’ hanno preferito chiudere il caso dicendo che si e’ trattato di un “uccello”, ma ovviamente, i complottisti non sono mica fessi, e’ impossibile che si sia trattato di un uccello. Prima di tutto, come evidenziato dalle foto, non ci sono evidenze di materiale organico, un uccello che arriva sul muso dell’aereo dovrebbe lasciare sangue, ma, soprattutto, l’urto e’ avvenuto a 8000 metri di quota. Quale uccello volerebbe a questa altezza? Come potrebbe un “uccello” lasciare un segno cosi’ esteso ad un Boeing?

Questi complottisti diventano ogni giorno piu’ furbi, non si riescono piu’ a raggirare …

Ovviamente, la mia e’ solo ironia. Leggendo i tanti siti internet c’e’ veramente da restare stupiti. Su alcuni forum addirittura si scherza sulla notizia dicendo che solo uno pterodattilo riuscirebbe a fare questa ammaccatura.

Davvero? Forse e’ il caso di parlare un po’ di natura, ma un po’ di piu’ di fisica.

Prima osservazione, possibile che un uccello voli a 8000 metri? Anche se non e’ una quota abituale, la cosa non e’ assolutamente improbabile. Generalmente, il volo dei grandi uccelli migratori avviene tra i 500 e i 1500 metri di quota ma la reale altezza scelta dipende in realta’ dalle termiche e dalle correnti. Come potete immaginare, dovendo percorrere lunghe distanze senza fermarsi, anche gli uccelli scelgono la via migliore che permette un notevole ed importante risparmio energetico. In fondo, e’ quello che fanno anche le compagnie aeree seguendo le correnti d’aria. Dicevamo tra 500 e 1500, ma non sono insoliti voli anche fino a 4000 metri. Si, ma nell’articolo si parla di 8000 metri. Bene, vi riporto un link di focus:

Focus, quote migrazioni

Come potete leggere, gia’ nel 1967 sono stati avvistati cigni selvatici in volo a 8230 metri. Ora, in questo caso c’e’ stata proprio l’osservazione diretta, oggi non stiamo mica a controllare le quote di volo di tutti gli uccelli che passano. Questa notizia ci fa pero’ capire come un volo a 8000 metri non sia affatto impossibile.

Bene, ora pero’ resta da discutere l’incidente. Che genere di uccello potrebbe causare un simile danno ad un 757?

Al contrario di quanto si pensi, non serve assolutamente uno pterodattilo. Sicuramente tutti conoscerete la definizione fisica di forza, cioe’ una sollecitazione in grado di modificare lo stato di moto di un corpo. Un’altra variabile molto utilizzata, ed introdotta per la prima volta da Cartesio, e’ la quantita’ di moto, data dal prodotto tra la massa di un corpo e la velcoita’ con cui questo si muove. La quantita’ di moto e’ direttamente legata al concetto di forza, ma utile per descrivere il movimento di un oggetto. Pensateci bene, a parita’ di quantita’ di moto, un corpo grande che si muove con velocita’ piccola sara’ del tutto equivalente ad un corpo piccolo che si muove a velocita’ molto grande.

Bene, ora ragioniamo in termini scientifici. Quanto pesa un uccello? Mezzo kg? 1 kg? 10 kg? Non importa, supponiamo per praticita’ che il peso stimato sia di 5 Kg. A che velocita’ vola un uccello? Sicuramente non cosi’ alta. Se la quantita’ di moto e’ il prodotto massa per velocita’ e la massa e’ di 5 Kg, a quanto dovrebbe volare questo uccello? In realta’, il ragionamento e’ sbagliato. Non e’ l’uccello che vola cosi’ veloce, bensi’ e’ l’aereo che ha una velocita’ elevata. Entriamo nel discorso dei moti relativi. Se una macchina va contro un muro a 50Km/h si fa molto male. Se una macchina va a 50Km/h contro un’altra macchina che va a 50Km/h, lo scontro e’ equivalente a quello di una macchina che va a 100Km/h contro il muro. D’accordo?

Bene, se un uccello che vola a velocita’ trascurabile sbatte contro un aereo, questo incidente e’ equivalente a quello di un uccello che si muove alla velocita’ dell’aereo e sbatte contro il velivolo fermo.

A che velocita’ viaggia un 757? La velocita’ di crociera e’ di 860 Km/h. Poiche’ il boeing della Air China era partito solo da 20 minuti, supponiamo che andasse solo a 600 Km/h.

Bene, tenendo le stesse unita’di misura, anche se sbagliando perche’ si dovrebbe portare la velocita’ in metri al secondo, la quantita’ di moto di un uccello di 5 Kg che si scontra a 600 Km/h e’ di 3000 KgKm/h.

Con un paragone semplice semplice, questo urto e’ equivalente a quello di una massa di 300Kg che viaggia a 10 Km/h, capiamo dunque come il danno risultante sia assolutamente possibile.

Da questi calcoli, pensate ancora che l’urto sia impossibile? Non stiamo facendo supposizioni, stiamo parlando di numeri e di fisica.

Se non vi bastasse, vi voglio mostrare un link molto interessante:

BirdStrike

F111 dopo lo scontro con un pellicano

F111 dopo lo scontro con un pellicano

E’ il sito di una compagnia che si occupa di studiare il fenomeno del Birdstrike, cioe’ proprio dell’urto di aerei con uccelli. Questo e’ un problema molto importante in diversi aereoporti, soprattutto nella fase di partenza e atterraggio di aerei. Come potete vedere su questo siti, ci sono decine di casi documentati.

Ragionando su questi incidenti, dovete tenere conto anche del fatto che i materiali utilizzati subiscono un invecchiamento che tende a rendere meno flessibili le superfici dal momento che queste si induriscono a causa della continua esposizione ai raggi solari. A fianco e’ riportata la foto di un caccia F111 dopo lo scontro con un pellicano. Vedendo questa foto possono venire in mente due pensieri, il primo e’ che l’incidente del boeing e’ perfettamente comprensibile, il secondo e’ che poteva andare molto peggio.

Concludendo, il caso dell’incidente al Boeing 757 della Air China e’ perfettamente spiegabile in termini di scontro con un uccello. Non solo e’ possbile vedere voli migratori sopra gli 8000 metri, ma, causa l’alta velocita’ dell’aereo, lo scontro puo’ avere conseguenze anche molto gravi. Detto questo, e’ assolutamente fuori luogo parlare di scontro con dischi volanti.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.