Tag Archives: rivelatore

Troppa antimateria nello spazio

5 Apr

Uno dei misteri che da sempre affascina i non addetti ai lavori e che spinge avanti la ricerca scientifica di base e’ la comprensione del nostro universo. In particolare, come sapete, ad oggi sappiamo veramente molto poco su cosa costituisce il nostro universo. Cosa significa questo? Dalle misure affettuate, solo una piccola frazione, intorno al 5%, e’ composta da materia barionica, cioe’ di quella stessa materia che compone il nostro corpo e tutti gli oggetti che ci circondano. La restante frazione e’ composta da quelli che spesso sentiamo chiamare contributi oscuri, materia oscura ed energia oscura. Mentre sulla materia oscura ci sono delle ipotesi, anche se ancora da verificare, sull’energia oscura, responsanbile dell’espansione dell’universo, sappiamo ancora molto poco.

Detto questo, la comprensione di questi contributi e’ una sfida tutt’ora aperta ed estremamente interessante per la ricerca scientifica.

Di questi argomenti, abbiamo parlato in dettaglio in questo post:

La materia oscura

Perche’ torno nuovamente su questo argomento? Solo un paio di giorni fa, e’ stata fatta una conferenza al CERN di Ginevra nella quale sono stati presentati i dati preliminari dell’esperimento AMS-02. I dati di questo rivelatore, realizzato con un’ampia collaborazione italiana, sono veramente eccezionali e potrebbero dare una spinta in avanti molto importante nella comprensione della materia oscura.

Andiamo con ordine.

Cosa sarebbe AMS-02?

AMS installato sulla Stazione Spaziale

AMS installato sulla Stazione Spaziale

AMS sta per Alpha Magnetic Spectrometer, ed e’ un rivelatore installato sulla Stazione Spaziale Internazionale. Compito di AMS-02 e’ quello di rivelare con estrema precisione le particelle dei raggi cosmici per cercare di distinguere prima di tutto la natura delle particelle ma anche per mettere in relazione queste ultime con la materia ordinaria, la materia oscura, la materia strana, ecc.

In particolare, lo spettrometro di AMS e’ estremamente preciso nel distinguere particelle di materia da quelle di antimateria e soprattutto elettroni da positroni, cioe’ elettroni dalle rispettive antiparticelle.

Vi ricordo che di modello standard, di antimateria e di materia strana abbiamo parlato in dettaglio in questi post:

Piccolo approfondimento sulla materia strana

Due parole sull’antimateria

Antimateria sulla notra testa!

Bosone di Higgs … ma che sarebbe?

Bene, fin qui tutto chiaro. Ora, cosa hanno di particolarmente speciale i dati di AMS-02?

Numero di positroni misurato da AMS verso energia

Numero di positroni misurato da AMS verso energia

Utilizzando i dati raccolti nei primi 18 mesi di vita, si e’ evidenziato un eccesso di positroni ad alta energia. Detto in parole semplici, dai modelli per la materia ordinaria, il numero di queste particelle dovrebbe diminuire all’aumentare della loro energia. Al contrario, come vedete nel grafico riportato, dai dati di AMS-02 il numero di positroni aumenta ad alta energia fino a raggiungere una livello costante.

Cosa significa questo? Perche’ e’  cosi’ importante?

Come detto, dai modelli della fisica ci si aspettarebbe che il numero di positroni diminuisse, invece si trova un aumento all’aumentare dell’energia. Poiche’ i modelli ordinari sono corretti, significa che ci deve essere qualche ulteriore sorgente di positroni che ne aumenta il numero rivelato da AMS-02.

Quali potrebbero essere queste sorgenti non considerate?

La prima ipotesi e’ che ci sia una qualche pulsar relativamente in prossimita’. Questi corpi possono emettere antiparticelle “sballando” di fatto il conteggio del rivelatore. Questa ipotesi sembrerebbe pero’ non veritiera dal momento che l’aumento di positroni e’ stato rivelato in qualsiasi direzione. Cerchiamo di capire meglio. Se ci fosse una pulsar che produce positroni, allora dovremmo avere delle direzioni spaziali in cui si vede l’aumento (quando puntiamo il rivelatore in direzione della pulsar) ed altre in cui invece, seguendo i modelli tradizionali, il numero diminuisce all’aumentare dell’energia. Come detto, l’aumento del numero di positroni si osserva in tutte le direzioni dello spazio.

Quale potrebbe essere allora la spiegazione?

Come potete immaginare, una delle ipotesi piu’ gettonate e’ quella della materia oscura. Come anticipato, esistono diverse ipotesi circa la natua di questa materia. Tra queste, alcune teorie vorrebbero la materia oscura come composta da particelle debolmente interagenti tra loro e con la materia ordinaria ma dotate di una massa. In questo scenario, particelle di materia oscura potrebbero interagire tra loro producendo nello scontro materia ordinaria, anche sotto forma di antimateria, dunque di positroni.

In questo scenario, i positroni in eccesso rivelati da AMS-02 sarebbero proprio prodotti dell’annichilazione, per dirlo in termini fisici, di materia oscura. Capite dunque che questi dati e la loro comprensione potrebbero farci comprendere maggiormente la vera natura della materia oscura e fissare i paletti su un ulteriore 20% della materia che costituisce il nostro universo.

Dal momento che la materia oscura permea tutto l’universo, questa ipotesi sarebbe anche compatibile con l’aumento dei positroni in tutte le direzioni.

Ora, come anticipato, siamo di fronte ai dati dei primi 18 mesi di missione. Ovviamente, sara’ necessario acquisire ancora molti altri dati per disporre di un campione maggiore e fare tutte le analisi necessarie per meglio comprendere questa evidenza. In particolare, i precisi rivelatori di AMS-02 consentiranno di identificare o meno una sorgente localizzata per i positroni in eccesso, confermando o escludendo la presenza di pulsar a discapito dell’ipotesi materia oscura.

Per completezza, spendiamo ancora qualche parola su questo tipo di ricerca e sull’importanza di questi risultati.

Come detto in precedenza, per poter confermare le ipotesi fatte, sara’ necessario prendere ancora molti dati. Ad oggi, AMS-02 potra’ raccogliere dati ancora per almeno 10 anni. Come anticipato, questo strumento e’ installato sulla Stazione Spaziale Internazionale. Questa scelta, piuttosto che quella di metterlo in orbita su un satellite dedicato, nasce proprio dall’idea di raccogliere dati per lungo tempo. La potenza richiesta per far funzionare AMS-02 consentirebbe un funzionamento di soli 3 anni su un satellite, mentre sulla ISS il periodo di raccolta dati puo’ arrivare anche a 10-15 anni.

AMS-02 e’ stato lanciato nel 2010 sullo Shuttle dopo diversi anni di conferme e ripensamenti, principalmente dovuti agli alti costi del progetto e alla politica degli Stati Uniti per le missioni spaziali.

Perche’ si chiama AMS-02? Il 02 indica semplicemente che prima c’e’ stato un AMS-01. In questo caso, si e’ trattato di una versione semplificata del rivelatore che ha volato nello spazio a bordo dello shuttle Discovery. Questo breve viaggio ha consentito prima di tutto di capire la funzionalita’ del rivelatore nello spazio e di dare poi la conferma definitiva, almeno dal punto di vista scientifico, alla missione.

Confronto tra AMS e missioni precedenti

Confronto tra AMS e missioni precedenti

Il risultato mostrato da AMS-02 in realta’ conferma quello ottenuto anche da altre due importanti missioni nello spazio, PAMELA e FERMI. Anche in questi casi venne rivelato un eccesso di positroni nei raggi cosmici ma la minore precisione degli strumenti non consenti’ di affermare con sicurezza l’aumento a discapito di fluttuazioni statistiche dei dati. Nel grafico a lato, vedete il confronto tra i dati di AMS e quelli degli esperimento precedenti. Come vedete, le bande di errore, cioe’ l’incertezza sui punti misurati, e’ molto maggiore negli esperimenti precedenti. Detto in termini semplici, AMS-02 e’ in grado di affermare con sicurezza che c’e’ un eccesso di positroni, mentre negli altri casi l’effetto poteva essere dovuto ad incertezze sperimentali.

Concludendo, i risultati di AMS-02 sono davvero eccezionali e mostrano, con estrema precisione, un aumento di positroni ad alta energia rispetto ai modelli teorici attesi. Alla luce di quanto detto, questo eccesso potrebbe essere dovuto all’annichilazione di particelle di materia oscura nel nostro universo. Questi risultati potebbero dunque portare un balzo in avanti nella comprensione del nostro universo e sulla sua composizione. Non resta che attendere nuovi dati e vedere quali conferme e novita’ potra’ mostrare questo potente rivelatore costruito con ampio contributo italiano.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Pubblicità

Perche’ la ricerca: economia

5 Gen

Nel post precedente:

Perche’ la ricerca: scienza e tecnologia

abbiamo cercato di rispondere alla domanda “perche’ fare ricerca?” discutendo il lato tecnologico e le possibili ricadute scientifiche nella vita di tutti i giorni. Come detto, stiamo cercando di rispondere a questa domanda non in senso generale, ma proprio contestualizzando la risposta in questi anni di profonda crisi economica o, comunque, investendo nella ricerca a discapito di settori considerati piu’ importanti o vitali per tutti i cittadini.

Dopo queste considerazioni piu’ tecniche, vorrei invece analizzare il discorso economico della ricerca. Come sappiamo, e come abbiamo visto nel precedente post, fare ricerca ad alti livelli implica investimenti molto massicci. Tolte le ricadute tecnologiche, cerchiamo invece di capire se sono investimenti a fondo perduto o se implicano un ritorno economico tangibile per le nazioni.

Come nel caso precedente, prendiamo come esempio tra grandi ricerche in settori diversi per cercare di quantificare in modo pratico, numeri alla mano. I soliti tre esempi sono: ITER, il reattore a fusione per scopi di ricerca, le missioni spaziali e il CERN, come esempio di grande laboratorio per la fisica delle particelle.

Partiamo da ITER e partiamo con una considerazione che ci deve far riflettere. ITER e’ una collaborazione internazionale in cui entrano gli Stati Uniti, il Giappone e alcuni paesi europei. Come detto, parliamo di un investimento dell’ordine di 10 miliardi di euro. Forse vi fara’ riflettere il fatto che Francia e Giappone hanno discusso per lungo tempo proprio per cercare di costruire il reattore nel proprio paese. Ovviamente averlo in casa offre dei vantaggi notevoli in termini di ricadute tecnologiche, ma sicuramente implica una maggiore spesa per il paese ospitante. Conoscendo la situazione economica attuale, se un paese cerca in tutti i modi di averlo in casa e dunque spendere di piu’, significa che qualcosa indietro deve avere.

Passiamo invece alle missioni spaziali. Altro tema scottante nel discorso economico e molte volte visto come una spesa enorme ma non necessaria in tempi di crisi. Partiamo, ad esempio, dal discorso occupazionale. Molte volte sentiamo dire dai nostri politicanti o dagli esperti di politica ecnomica che si devono fare investimenti per creare posti di lavoro. Vi faccio un esempio, al suo apice, il programma di esplorazione Apollo dava lavoro a circa 400000 persone. Non pensiamo solo agli scienziati. Un programma del genere crea occupazione per tutte le figure professionali che vanno dall’operaio fino al ricercatore, dall’addetto alle pulizie dei laboratori fino all’ingegnere. Ditemi voi se questo non significa creare posti di lavoro.

Passando invece all’esempio del CERN, sicuramente i numeri occupazionali sono piu’ piccoli, ma di certo non trascurabili. Al CERN ci sono circa 2500 persone che tutti i giorni lavorano all’interno del laboratorio. A questi numeri si devono poi sommare quelli dei paesi che partecipano agli esperimenti ma non sono stanziali a Ginevra. In questo caso, arriviamo facilmente ad una stima intorno alle 15000 unita’.

A questo punto pero’ sorge una domanda che molti di voi si staranno gia’ facendo. LHC, come esempio, e’ costato 6 miliardi di euro. E’ vero, abbiamo creato posti di lavoro, ma la spesa cosi’ elevata giustifica questi posti? Con questo intendo, se il ritorno fosse solo di numeri occupazionali, allora tanto valeva investire cifre minori in altri settori e magari creare piu’ posti di lavoro.

L’obiezione e’ corretta. Se il ritorno fosse solo questo, allora io stesso giudicherei l’investimento economico, non scientifico, fallimentare. Ovviamente c’e’ molto altro in termini finanziari.

Prima di tutto vi devo spiegare come funziona il CERN. Si tratta di un laboratorio internazionale, nel vero senso della parola. Il finanziamento del CERN viene dai paesi membri. Tra questi, dobbiamo distinguere tra finanziatori principali e membri semplici. Ovviamente i finanziatori principali, che poi sono i paesi che hanno dato il via alla realizzazione del CERN, sono venti, tra cui l’Italia, ma, ad esempio, alla costruzione di LHC hanno partecipato circa 50 paesi. Essere un finanziatore principale comporta ovviamente una spesa maggiore che viene pero’ calcolata anno per anno in base al PIL di ogni nazione.

Concentriamoci ovviamente sul caso Italia, ed in particolare sugli anni caldi della costruzione di LHC, quelli che vanno dal 2000 al 2006, in cui la spesa richiesta era maggiore.

Nel 2009, ad esempio, il contributo italiano e’ stato di 83 milioni di euro, inferiore, in termini percentuali, solo a Francia, Germania e Regno Unito.

Contributo italiano al CERN in milioni di euro. Fonte: S.Centro, Industrial Liasion Officer

Contributo italiano al CERN in milioni di euro. Fonte: S.Centro, Industrial Liaison Officer

Il maggiore ritorno economico per i paesi e’ ovviamente in termini di commesse per le industrie. Che significa questo? Servono 100 magneti, chi li costruisce? Ovviamente le industrie dei paesi membri che partecipano ad una gara pubblica. Il ritorno economico comincia dunque a delinearsi. Investire nel CERN implica un ritorno economico per le industrie del paese che dunque assumeranno personale per costruire questi magneti. Stiamo dunque facendo girare l’economia e stiamo creando ulteriori posti di lavoro in modo indiretto.

Apriamo una parentesi sull’assegnazione delle commesse. Ovviamente si tratta di gare pubbliche di appalto. Come viene decretato il vincitore? Ogni anno, il CERN calcola un cosiddetto “coefficiente di giusto ritorno”, e’ un parametro calcolato come il rapporto tra il ritorno in termini di commesse per le industrie e il finanziamento offerto alla ricerca. Facciamo un esempio, voi investite 100 per finanziare la costruzione di LHC, le vostre industrie ottengono 100 di commesse dal CERN, il coefficiente di ritorno vale 1.

Ogni anno, in base al profilo di spesa, ci saranno coefficienti diversi per ciascun paese. Si parla di paesi bilanciati e non bilanciati a seconda che il loro coefficiente sia maggiore o minore del giusto ritorno. In una gara per una commessa, se l’industria di un paese non bilanciato arriva seconda dietro una di un paese gia’ bilanciato, e lo scarto tra le offerte e’ inferiore al 20%, allora l’industria del paese non bilanciato puo’ aggiudicarsi la gara allineandosi con l’offerta del vincitore. In questo modo, viene ripartito equamente, secondo coefficienti matematici, il ritorno per ciascun paese.

Cosa possiamo dire sull’Italia? Negli anni della costruzione di LHC, LItalia ha sempre avuto un coefficiente molto superiore al giusto ritorno. Per dare qualche numero, tra il 1995 e il 2008, il nostro paese si e’ aggiudicato commesse per le nostre aziende per un importo di 337 milioni di euro.

Vi mostro un altro grafico interessante, sempre preso dal rapporto del prof. S.Centro dell'”Industrial Liaison Officer for Italian industry at CERN”:

Commesse e coefficiente di ritorno per l'Italia. Fonte: S.Centro, Industrial Liaison Officer

Commesse e coefficiente di ritorno per l’Italia. Fonte: S.Centro, Industrial Liaison Officer

A sinistra vedete gli importi delle commesse per gli anni in esame per il nostro Paese, sempre in milioni di euro, mentre a destra troviamo il coefficiente di ritorno per l’Italia calcolato in base all’investimento fatto. Tenete conto che in quesgli anni, la media del giusto ritorno calcolato dal CERN era di 0.97.

Guardando i numeri, non possiamo certo lamentarci o dire che ci abbiano trattato male. La conclusione di questo ragionamento e’ dunque che un investimento nella ricerca scientifica di qualita’, permette un ritorno economico con un indotto non indifferente per le aziende del paese. Ogni giorno sentiamo parlare di rilancio delle industrie, di creazione di posti di lavoro, di rimessa in moto dell’economia, mi sembra che LHC sia stato un ottimo volano per tutti questi aspetti.

Ultima considerazione scientifico-industriale. Le innovazioni apportate facendo ricerca scientifica, non muoiono dopo la realizzazione degli esperimenti. Soluzioni tecnologiche e migliorie entrano poi nel bagaglio industriale delle aziende che le utilizzano per i loro prodotti di punta. Molte aziende vengono create come spin-off di laboratori, finanziate in grossa parte dalla ricerca e poi divengono delle realta’ industriali di prim’ordine. L’innovazione inoltra porta brevetti che a loro volta creano un ritorno economico futuro non quantificabile inizialmente.

Concludendo, anche dal punto di vista economico, fare ricerca non significa fare finanziamenti a fondo perduto o fallimentari. Questo sicuramente comporta un ritorno economico tangibile immediato. Inoltre, il ritorno in termini tecnologici e di innovazione non e’ quantificabile. Fare ricerca in un determinato campo puo’ portare, immediatamente o a distanza di anni, soluzioni che poi diventeranno di uso comune o che miglioreranno settori anche vitali per tutti.

Vi lascio con una considerazione. Non per portare acqua al mulino della ricerca, ma vorrei farvi riflettere su una cosa. In questi anni di crisi, molti paesi anche europei, ma non l’Italia, hanno aumentato i fondi dati alla ricerca scientifica. A fronte di quanto visto, forse non e’ proprio uno sperpero di soldi.

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Perche’ la ricerca: scienza e tecnologia

4 Gen

Molte volte, parlando di scienza e di ricerca scientifica, mi viene fatta una domanda apparentemente banale, ma che in realta’ nasconde un vero e proprio mondo: Perche’ fare ricerca?

Ovviamente in questo caso non parlo del senso letterale della domanda. E’ noto a tutti che la ricerca scientifica ci permette di aumentare la nostra conoscenza del mondo, dei meccanimi della natura e ci consente di dare un piccolo contributo al dilemma: da dove veniamo e dove andiamo?

In questo post e nel successivo, vorrei cercare di parlare proprio del senso piu’ pratico di questa domanda. Al giorno d’oggi, con la crisi che imperversa, molti si chiedono che senso abbia “sperperare” soldi nella ricerca scientifica invece di utilizzarli per fini piu’ pratici e tangibili per la societa’.

In questo primo post vorrei parlare delle motivazioni scientifiche e tenologiche della ricerca scientifica, mentre nel prossimo post mi vorrei concentrare sugli aspetti piu’ prettamente economici.

Premesso questo, cerchiamo di capire quali sono le implicazioni e le migliorie scientifiche apportate dall’attivita’ di ricerca.

Molti di voi sapranno gia’ che diverse tecniche di diagnostica medica, come la radiografia, la TAC, la PET, provengono e sono state pensate nell’ambito della ricerca scientifica ed in particolare per la costruzione di rivelatori per le particelle. Questi sono discorsi abbastanza noti e per principio non vi faro’ la solita storiella con date e introduzione negli ospedali di queste tecniche.

Parliamo invece di cose meno note, ma forse ben piu’ importanti.

A costo di sembrare banale, vorrei proprio iniziare da LHC al CERN di Ginevra e dalla ricerca nella fisica delle alte energie. In questo caso, stiamo parlando del piu’ grande acceleratore in questo settore e ovviamente anche del piu’ costoso. Con i suoi 6 miliardi di euro, solo per l’acceleratore senza conteggiare gli esperimenti, parliamo di cifre che farebbero saltare sulla sedia molti non addetti ai lavori.

Che vantaggi abbiamo ottenuto a fronte di una spesa cosi grande?

Next: il primo server WWW del CERN

Next: il primo server WWW del CERN

Partiamo dalle cose conosciute. Solo per darvi un esempio, il “world wide web” e’ nato proprio al CERN di Ginevra, dove e’ stato sviluppato per creare un modo semplice e veloce per lo scambio di dati tra gli scienziati. Ad essere sinceri, un prototipo del WWW era gia’ stato sviluppato per ambiti militari, ma l’ottimizzazione e la resa “civile” di questo mezzo si deve a due ricercartori proprio del CERN:

CERN, were the web was born

Restando sempre in ambito tecnlogico, anche l’introduzione del touchscreen e’ stata sviluppata al CERN e sempre nell’ambito della preparazione di rivelatori di particelle. A distanza di quasi 20 anni, questi sistemi sono ormai di uso collettivo e vengono utilizzati in molti degli elettrodomestici e dei gadget a cui siamo abituati.

Uno dei primi sistemi touch introdotti al CERN

Uno dei primi sistemi touch introdotti al CERN

Pensandoci bene, tutto questo e’ normale. Rendiamoci conto che costruire un acceleratore o un esperimento sempre piu’ preciso, impone delle sfide tecnologiche senza precedenti. Laser, sistemi di controllo ad alta frequenza, magneti, rivelatori sono solo alcuni esempi dei sistemi che ogni volta e’ necessario migliorare e studiare per poter costruire una nuova macchina acceleratrice.

Anche in ambito informatico, la ricerca in fisica delle alte energie impone dei miglioramenti che rappresentano delle vere e proprie sfide tecnologiche. Un esperimento di questo tipo, produce un’enorme quantita’ di dati che devono essere processati e analizzati in tempi brevissimi. Sotto questo punto di vista, la tecnologia di connessione ad altissima velocita’, le realizzazione di sistemi di contenimento dei dati sempre piu’ capienti e lo sviluppo di macchine in grado di fare sempre piu’ operazioni contemporaneamente, sono solo alcuni degli aspetti su cui la ricerca scientifica per prima si trova a lavorare.

Saltando i discorsi della diagnostica per immagini di cui tutti parlano, molte delle soluzioni per la cura di tumori vengono proprio dai settori della fisica delle alte energia. Basta pensare alle nuove cure adroterapiche in cui vengono utilizzati fasci di particelle accelerati in piccoli sistemi per colpire e distruggere tumori senza intaccare tessuti sani. Secondo voi, dove sono nate queste tecniche? Negli acceleratori vengono accelerate particelle sempre piu’ velocemente pensando sistemi sempre piu’ tecnologici. La ricerca in questi settori e’ l’unico campo che puo’ permettere di sviluppare sistemi via via piu’ precisi e che possono consentire di colpire agglomerati di cellule tumorali di dimensioni sempre minori.

Detto questo, vorrei cambiare settore per non rimanere solo nel campo della fisica delle alte energie.

In Francia si sta per realizzare il primo reattore a fusione per scopi di ricerca scientifica. Questo progetto, chiamato ITER, e’ ovviamente una collaborazione internazionale che si prefigge di studiare la possibile realizzazione di centrali necleari a fusione in luogo di quelle a fissione. Parlare di centrali nucleari e’ un discorso sempre molto delicato. Non voglio parlare in questa sede di pericolosita’ o meno di centrali nucleari, ma il passaggio della fissione alla fusione permetterebbe di eliminare molti degli svantaggi delle normali centrali: scorie, fusione totale, ecc. Capite dunque che un investimento di questo tipo, parliamo anche in questo caso di 10 miliardi di euro investiti, potrebbe portare un’innovazione nel campo della produzione energetica senza eguali. Se non investiamo in queste ricerche, non potremmo mai sperare di cambiare i metodi di produzione dell’energia, bene primario nella nostra attuale societa’.

La sonda Curiosity della NASA

La sonda Curiosity della NASA

Passando da un discorso all’altro, in realta’ solo per cercare di fare un quadro variegato della situazione, pensiamo ad un altro settore sempre molto discusso, quello delle missioni spaziali. Se c’e’ la crisi, che senso ha mandare Curiosity su Marte? Perche’ continuiamo ad esplorare l’universo?

Anche in questo caso, saltero’ le cose ovvie cioe’ il fatto che questo genere di missioni ci consente di capire come il nostro universo e’ nato e come si e’ sviluppato, ma parlero’ di innovazione tecnologica. Una missione spaziale richiede l’utilizzo di sistemi elettronici che operano in ambienti molto difficili e su cui, una volta in orbita, non potete certo pensare di mettere mano in caso di guasto. L’affidabilita’ di molte soluzioni tecnologiche attuali, viene proprio da studi condotti per le missioni spaziali. Esperimenti di questo tipo comportano ovviamente la ricerca di soluzioni sempre piu’ avanzate, ad esempio, per i sistemi di alimentazione. L’introduzione di batterie a lunghissima durata viene proprio da studi condotti dalle agenzie spaziali per le proprie missioni. Anche la tecnologia di trasmissione di dati a distanza, ha visto un salto senza precedenti proprio grazie a questo tipo di ricerca. Pensate semplicemente al fatto che Curiosity ogni istante invia dati sulla Terra per essere analizzati. Se ci ragionate capite bene come queste missioni comportino lo sviluppo di sistemi di trasferimento dei dati sempre piu’ affidabili e precise per lunghissime distanze. Ovviamente tutti questi sviluppi hanno ricadute molto rapide nella vita di tutti i giorni ed in settori completamente diversi da quelli della ricerca scientifica.

Concludendo, spero di aver dato un quadro, che non sara’ mai completo e totale, di alcune delle innovazioni portate nella vita di tutti i giorni dalla ricerca scientifica. Come abbiamo visto, affrontare e risolvere sfide tecnologiche nuove e sempre piu’ impegnativa consente di trovare soluzioni che poi troveranno applicazione in campi completamente diversi e da cui tutti noi potremmo trarre beneficio.

Ovviamente, ci tengo a sottolineare che la conoscenza apportata dai diversi ambiti di ricerca non e’ assolutamente un bene quantificabile. Se vogliamo, questo potrebbe essere il discorso piu’ criticabile in tempi di crisi, ma assolutamente e’ la miglioria della nostra consapevolezza che ci offre uno stimolo sempre nuovo e crea sempre piu’ domande che risposte.

Post successivo sul discorso economico: Perche’ la ricerca: economia

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Terremoti, Pollino, Giuliani, Radon, L’Aquila …

27 Ott

In questi giorni, ho ricevuto diverse mail di lettori del blog, che chiedono maggiori informazioni sullo sciame del Pollino e sulla sua evoluzione. Alla luce dell’ultima scossa di M5 registrata a Mormanno, credo sia necessario fare un punto della situazione.

Epicentro della scossa del 26 Ottobre nel Pollino

Abbiamo parlato dello sciame del Pollino in questo post:

La sequenza del Pollino

A differenza di quanto affermato da qualcuno, le conclusioni non erano affatto una rassicurazione per gli abitanti della zona, dal momento che l’evoluzione di questi sciami, come riportato nel testo, non sono affatto univoche. Per completezza, vi riporto esattamente le conclusioni di questo post:

Storicamente, le evoluzioni di sciami di questo tipo non sono affatto univoche. Ci sono moltissimi esempi in cui lo sciame, dopo vari periodi di attivita’, ha smesso senza un evento di grande intensita’. In questo caso, l’energia accumulata nelle faglie e’ stata dissipata mediante piccole e medie scosse senza causare danni. Al contrario, vi sono esempi di sciami che sono culminati con eventi di grande intensita’, come nel caso dell’Abruzzo nel 2009.

Come potete leggere, uno sciame prolungato di questo tipo puo’ esaurirsi senza presentare scosse di magnitudo elevata o, come nel caso dell’Aquila del 2009, terminare con una scossa di grande intensita’.

Ovviamente non siamo qui a fare le bucce su chi ha detto cosa, ma vogliamo analizzare meglio la possibile evoluzione di questo sciame.

Proprio in queste ore, e’ arrivata la notizia che Giampaolo Giuliani avrebbe dichiarato che, dalle misurazioni del Radon nella zona, ci sara’ una nuova forte scosse nel Pollino nel giro di 24/48 ore da oggi.

L’annuncio e’ molto importante ed estremamente grave. Sulla rete si sta diffondendo nuovamente il panico e molti utenti si chiedono cosa aspetti il governo, la protezione civile o chi di dovere ad evacuare tutti i paesi interessati.

Prima di scendere nel catastrofismo, cerchiamo di analizzare in maniera scientifica non solo questo caso, ma la ricerca del radon come precursore sismico.

In questo blog, abbiamo gia’ parlato della possibilita’ di prevedere terremoti mediante lo studio di particolari eventi identificati come precursori sismici:

Allineamenti, terremoti e … Bendandi

Riassunto sui terremoti

Come abbiamo visto, ad oggi non esiste un precursore sismico sicuro, cioe’ che sia univocamente correlato con l’insorgenza di eventi sismici. Nonostante questo, molte analisi statistiche possono essere fatte per studiare l’evoluzione dei terremoti, ma non per prevedere esattamente la data, il luogo e l’intensita’ di nuovi eventi:

Analisi statistica dei terremoti

Dati falsi sui terremoti

Terremoti, basta chiacchiere. Parliamo di numeri.

Terremoti: nuove analisi statistiche

Fatta questa doverosa premessa, torniamo al Radon. La prima cosa che dobbiamo chiederci e’: chi e’ Giampaolo Giuliani?

Giuliani e’ un tecnico del settore scientifico, che ha collaborato con diversi esperimenti, dapprima per l’Istituto Nazionale di Astrofisica (INAF) poi per l’Istituto Nazionale di Fisica Nucleare (INFN). E’ di origine aquilana e lavora attualmente presso i Laboratori Nazionali del Gran Sasso sempre dell’INFN.

Solo per completezza di informazione, come detto in precedenza si tratta di un tecnico diplomato, non di un ricercatore come spesso viene scritto sui giornali o su diversi siti internet. Faccio questa premessa non per un discorso classista, ma semplicemente per anticipare che le ricerche condotte da Giuliani sul Radon non vengono effettuate per conto dell’Istituto di Fisica, ma a puro titolo personale fuori dall’orario di lavoro.

Arrivando al Radon, prima ancora di Giuliani, e questa volta in ambito di ricerca INFN e universitaria, vennero condotti molti studi sulla correlazione tra emissione di Radon e deformazioni delle rocce del sottosuolo. Gia’ nel 1998, i ricercatori dell’Universita’ di Roma 3, raccolsero molti dati che sembravano evidenziare uan relazione tra il radon emesso e la sismicita’ locale. Ricerche continuate poi dall’ENI insieme all’Universita’ di Bologna, ma che non evidenziarono una correlazione sempre ripetibile tra gli eventi. Sempre in quegli anni, l’esperimento ERMES dell’INFN studiava la relazione del radon con la deformazione delle rocce, utile sempre in ambito geofisico ma anche per lo studio della spettrometria nucleare negli ambienti del laboratorio stesso che, come tutti sanno, e’ all’interno della montagna.

A seguito di queste ricerche a cui collaboro’, Giuliani si appassiono’ a questi studi continuando autonomamente la ricerca della relazione possibile tra Radon ed eventi sismici. I primi dati vennero raccolti in concomitanza del terremoto del 2000 in Turchia, senza pero’ mostrare evidenze tra emissioni di gas e terremoti.

Successivamente il gruppo di ricerca formato dallo stesso Giuliani creo’ una prima rete di monitoraggio del radon, studiando statisticamente anche l’insorgenza temporale di terremoti e, nel 2006, giunse ad una prima conclusione:

Abbiamo notato che la maggior parte dei terremoti si verificano durante i mesi invernali, o meglio, quando il sistema terra-luna è nel perielio, quindi più vicino al sole. In inverno, quando la terra subisce uno stress gravitazionale maggiore, si registrano più eventi sismici (60-70%) che in estate. La percentuale si mantiene ancora più alta quando c’è la luna nuova. Il magma che scorre sotto la crosta terrestre risente delle attrazioni gravitazionali, come accade per gli oceani.

Raccogliando i dati sul radon, Giuliani registro’ molti sismi e li analizzo’ statisticamente arrivando a questa conclusione. Questa pero’ e’ totalmente in contrasto con i dati che e’ possibile consultare liberamente dal sito del USGS. Analizzando infatti i dati di questo database, di cui abbiamo parlato anche nei precedenti post, non si evidenzia nessuna correlazione di questo tipo, ne’ tra terremoti e stagione dell’anno, ne’ tantomeno tra terremoti e fasi lunari.

Andando avanti nel tempo, Giuliani balzo’ nuovamente alle cronache nel marzo 2009 a seguito della previsione di Sulmona. Il 29 Marzo, Giuliani telefono’ al sindaco di Sulmona per avvertirlo che, da li a pochissime ore, un forte sisma sarebbe avvenuto in citta’. La notizia si sparse velocemente creando il panico ta le popolazioni del posto, ma il sisma non avvenne mai. A seguito di questo, Giuliani fu denunciato per procurato allarme ma poi assolto dal GIP per aver agito in buona fede, come vedremo meglio in seguito.

Facciamo il punto della situazione. Siamo a Marzo 2009, l’Aquila (e la zona circostante) e’ interessata da uno sciame sismico di cui, come oggi nel Pollino, non si conosce la possibile evoluzione. Il 29 Marzo, Giuliani annuncia un terremoto a Sulmona che non avviene. Come sappiamo, il 6 Aprile ci sara’ la forte scosse dell’Aquila. Ma torniamo indietro di qualche giorno rispetto al 29 Marzo e al caso di Sulmona e andiamo al 25 Marzo. In questa data, Giuliani rilascia un’intervista al giornale “Il capoluogo d’Abruzzo” in cui afferma, a proposito dello sciame in corso nella regione:

Quest’anno questo sciame sismico è stato più intenso e con delle scosse più forti, che sono state rilevate dalla popolazione. Lo sciame non è un fenomeno preparatorio ad un evento sismico più rilevante, né ha correlazione con grandi piogge o nevicate, come ho sentito dire da molti. È un fenomeno normale per una zona come quella aquilana.

e ancora:

Mi sento di poter tranquillizzare i miei concittadini, in quanto lo sciame sismico andrà scemando con la fine di marzo.

Vi ricordo che siamo al 25 Marzo 2012. A riprova di quanto affermato, vi riporto anche il link con il riassunto dell’intervista, riportato nel sito Abruzzo24ore e pubblicato proprio il 6 Aprile dopo la forte scossa dell’Aquila:

Abruzzo24ore intervista Giuliani

Al 25 Marzo, il signor Giuliani tranquillizzava i propri cittadini che lo sciame sarebbe terminato nel giro di una settimana, mentre, come sappiamo bene, nel giro di 2 settimane arrivo’ un terremoto di M6.3 e con le conseguenze che conosciamo bene.

Nei giorni successivi a questa scossa principale, Giuliani affermo’ di aver visto quella notte un forte aumento nell’emissione di Radon dal sottosuolo, ma di non aver avvertito nessuno per la paura a seguito della denuncia di Sulmona.

Cerchiamo dunque di fare il punto della situazione. Dal punto di vista scientifico, non vi e’ nessuna evidente correlazione tra aumento delle emissioni di radon nel sottosuolo e terremoti. Per meglio dire, possono esserci aumenti di emissioni prima, durante o dopo un terremoto, come possono avvenire forti terremoti senza aumenti significativi di questo gas. Inoltre, possono avvenire aumenti di emissione di radon dal sottosuolo, senza che poi ci sia un terremoto in quelle zone. In particolare, il caso di Sulmona rientra in quest’ultima categoria a dimostrazione del fatto che Giuliani abbia agito in buona fede il 29 Marzo.

Cosa significa questo?

Semplicemete, la sola analisi delle emissioni di radon non costituisce un precursore sismico. Non stiamo qui a giudicare Giuliani, ma e’ stato piu’ volte dimostrato dalla scienza ufficiale come queste correlazioni non permettano di prevedere terremoti.

Ora, cosa possiamo dire riguardo al Pollino? Alla luce di quanto affermato, non siamo a tutt’oggi in grado di poter prevedere con sicurezza un terremoto. Parlare con certezza di un evento distruttivo che avverra’ nelle prossime ore, serve solo ad incrementare la polemica su questi argomenti, come visto in questo post:

Terrorismo psicologico

Nessuno puo’ dirvi con certezza cosa potrebbe accadere nelle prossime ore nel Pollino. Non stiamo facendo una scommessa a chi indovina l’evoluzione. Dal nostro canto, alla luce di quanto detto, rimane valida la conclusione dell’articolo precedente. Sciami di questo tipo possono esaurirsi gradualmente nel tempo attraverso scosse di piccola intensita’ oppure dar luogo ad eventi di elevata magnitudo.

Siamo sempre convinti che la politica dovrebbe occuparsi di mettere in sicurezza gli edifici della nostra penisola. Siamo un paese sismico e su questo non possiamo farci nulla. Fare prevenzione, attuare norme sismiche, non solo per le nuove costruzioni, ma anche mettendo in sicurezza gli edifici piu’ vecchi e’ l’unico modo per arginare in modo sostanziale i terremoti che potrebbero esserci nel futuro.

Per continuare ad analizzare tutte le profezie sul 2012, ma soprattutto per affrontare in modo scientifico argomenti troppo spesso tralasciati dalla scienza ufficiale, non perdete in libreria “Psicosi 2012. Le risposte della scienza”.