Tag Archives: direzione

17 equazioni che hanno cambiato il mondo

26 Ago

Nel 2013 Ian Stewart, professore emerito di matematica presso l’università di Warwick, ha pubblicato un libro molto interessante e che consiglio a tutti di leggere, almeno per chi non ha problemi con l’inglese. Come da titolo di questo articolo, il libro si intitola “Alla ricerca dello sconosciuto: 17 equazioni che hanno cambiato il mondo”.

Perchè ho deciso di dedicare un articolo a questo libro?

In realtà, il mio articolo, anche se, ripeto, è un testo che consiglio, non vuole essere una vetrina pubblicitaria a questo testo, ma l’inizio di una riflessione molto importante. Queste famose 17 equazioni che, secondo l’autore, hanno contribuito a cambiare il mondo che oggi conosciamo, rappresentano un ottimo punto di inizio per discutere su alcune importanti relazioni scritte recentemente o, anche, molti secoli fa.

Come spesso ripetiamo, il ruolo della fisica è quello di descrivere il mondo, o meglio la natura, che ci circonda. Quando i fisici fanno questo, riescono a comprendere perchè avviene un determinato fenomeno e sono altresì in grado di “predirre” come un determinato sistema evolverà nel tempo. Come è possibile questo? Come è noto, la natura ci parla attraverso il linguaggio della matematica. Modellizare un sistema significa trovare una o più equazioni che  prendono in considerazione i parametri del sistema e trovano una relazione tra questi fattori per determinare, appunto, l’evoluzione temporale del sistema stesso.

Ora, credo che sia utile partire da queste 17 equzioni proprio per riflettere su alcuni importanti risultati di cui, purtroppo, molti ignorano anche l’esistenza. D’altro canto, come vedremo, ci sono altre equazioni estremanete importanti, se non altro per le loro conseguenze, che vengono studiate a scuola senza però comprendere la potenza o le implicazioni che tali risultati hanno sulla natura.

Senza ulteriori inutili giri di parole, vi presento le 17 equazioni, ripeto secondo Stewart, che hanno cambiato il mondo:

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Le 17 equazioni che hanno cambiato il mondo secondo Ian Stewart

Sicuramente, ognuno di noi, in base alla propria preparazione, ne avrà riconosciute alcune.

Passiamo attraverso questa lista per descrivere, anche solo brevemente, il significato e le implicazioni di questi importanti risultati.

Teorema di Pitagora

Tutti a scuola abbiamo appreso questa nozione: la somma dell’area dei quadrati costruiti sui cateti, è pari all’area del quadrato costruito sull’ipotenusa. Definizione semplicissima, il più delle volte insegnata come semplice regoletta da tenere a mente per risolvere esercizi. Questo risultato è invece estremamente importante e rappresenta uno dei maggiori assunti della geometria Euclidea, cioè quella che tutti conoscono e che è relativa al piano. Oltre alla tantissime implicazioni nello spazio piano, la validità del teorema di Pitagora rappresenta una prova indiscutibile della differenza tra spazi euclidei e non. Per fare un esempio, questo risultato non è più vero su uno spazio curvo. Analogamente, proprio sfruttando il teorema di Pitagora, si possono fare misurazioni sul nostro universo, parlando proprio di spazio euclideo o meno.

 

Logaritmo del prodotto

Anche qui, come riminescenza scolastica, tutti abbiamo studiato i logaritmi. Diciamoci la verità, per molti questo rappresentava un argomento abbastanza ostico e anche molto noioso. La proprietà inserita in questa tabella però non è affatto banale e ha avuto delle importanti applicazioni prima dello sviluppo del calcolo informatizzato. Perchè? Prima dei moderni calcolatori, la trasformazione tra logaritmo del prodotto e somma dei logaritmi, ha consentito, soprattutto in astronomia, di calcolare il prodotto tra numeri molto grandi ricorrendo a più semplici espedienti di calcolo. Senza questa proprietà, molti risultati che ancora oggi rappresentano basi scientifiche sarebbero arrivati con notevole ritardo.

 

Limite del rapporto incrementale

Matematicamente, la derivata di una funzione rappresenta il limite del rapporto incrementale. Interessante! Cosa ci facciamo? La derivata di una funzione rispetto a qualcosa, ci da un’indicazione di quanto quella funzione cambi rispetto a quel qualcosa. Un esempio pratico è la velocità, che altro non è che la derivata dello spazio rispetto al tempo. Tanto più velocemente cambia la nostra posizione, tanto maggiore sarà la nostra velocità. Questo è solo un semplice esempio ma l’operazione di derivata è uno dei pilastri del linguaggio matematico utilizzato dalla natura, appunto mai statica.

 

Legge di Gravitazione Universale

Quante volte su questo blog abbiamo citato questa legge. Come visto, questa importante relazione formulata da Newton ci dice che la forza agente tra due masse è direttamente proporzionale al prodotto delle masse stesse e inversamente proporzionale al quadrato della loro distanza. A cosa serve? Tutti i corpi del nostro universo si attraggono reciprocamente secondo questa legge. Se il nostro Sistema Solare si muove come lo vediamo noi, è proprio per il risultato delle mutue forze agenti sui corpi, tra le quali quella del Sole è la componente dominante. Senza ombra di dubbio, questo è uno dei capisaldi della fisica.

 

Radice quadrata di -1

Questo è uno di quei concetti che a scuola veniva solo accennato ma che poi, andando avanti negli studi, apriva un mondo del tutto nuovo. Dapprima, siamo stati abituati a pensare ai numeri naturali, agli interi, poi alle frazioni infine ai numeri irrazionali. A volte però comparivano nei nostri esercizi le radici quadrate di numeri negativi e semplicemente il tutto si concludeva con una soluzione che “non esiste nei reali”. Dove esiste allora? Quei numeri non esistono nei reali perchè vivono nei “complessi”, cioè in quei numeri che arrivano, appunto, da radici con indice pari di numeri negativi. Lo studio dei numeri complessi rappresenta un importante aspetto di diversi settori della conoscenza: la matematica, l’informatica, la fisica teorica e, soprattutto, nella scienza delle telecomunicazioni.

 

Formula di Eulero per i poliedri

Questa relazione determina una correlazione tra facce, spigoli e vertici di un poliedro cioè, in parole semplici, della versione in uno spazio tridimensionale dei poligoni. Questa apparentemente semplice relazione, ha rappresentato la base per lo sviluppo della “topologia” e degli invarianti topologici, concetti fondamentali nello studio della fisica moderna.

 

Distribuzione normale

Il ruolo della distribuzione normale, o gaussiana, è indiscutibile nello sviluppo e per la comprensione dell’intera statistica. Questo genere di curva ha la classica forma a campana centrata intorno al valore di maggior aspettazione e la cui larghezza fornisce ulteriori informazioni sul campione che stiamo analizzando. Nell’analisi statistica di qualsiasi fenomeno in cui il campione raccolto sia statisticamente significativo e indipendente, la distribuzione normale ci fornisce dati oggettivi per comprendere tutti i vari trend. Le applicazioni di questo concetto sono praticametne infinite e pari a tutte quelle situazioni in cui si chiama in causa la statistica per descrivere un qualsiasi fenomeno.

 

Equazione delle Onde

Questa è un’equazione differenziale che descrive l’andamento nel tempo e nello spazio di un qualsiasi sistema vibrante o, più in generale, di un’onda. Questa equazione può essere utilizzata per descrivere tantissimi fenomeni fisici, tra cui anche la stessa luce. Storicamente poi, vista la sua importanza, gli studi condotti per la risoluzione di questa equazione differenziale hanno rappresentato un ottimo punto di partenza che ha permesso la risoluzione di tante altre equazioni differenziali.

 

Trasformata di Fourier

Se nell’equazione precedente abbiamo parlato di qualcosa in grado di descrivere le variazioni spazio-temporali di un’onda, con la trasformata di Fourier entriamo invece nel vivo dell’analisi di un’onda stessa. Molte volte, queste onde sono prodotte dalla sovrapposizione di tantissime componenti che si sommano a loro modo dando poi un risultato finale che noi percepiamo. Bene, la trasformata di Fourier consente proprio di scomporre, passatemi il termine, un fenomeno fisico ondulatorio, come ad esempio la nostra voce, in tante componenti essenziali più semplici. La trasformata di Fourier è alla base della moderna teoria dei segnali e della compressione dei dati nei moderni cacolatori.

 

Equazioni di Navier-Stokes

Prendiamo un caso molto semplice: accendiamo una sigaretta, lo so, fumare fa male, ma qui lo facciamo per scienza. Vedete il fumo che esce e che lentamente sale verso l’alto. Come è noto, il fumo segue un percorso molto particolare dovuto ad una dinamica estremamente complessa prodotta dalla sovrapposizione di un numero quasi infinito di collissioni tra molecole. Bene, le equazioni differenziali di Navier-Stokes descrivono l’evoluzione nel tempo di un sistema fluidodinamico. Provate solo a pensare a quanti sistemi fisici includono il moto di un fluido. Bene, ad oggi abbiamo solo delle soluzioni approssimate delle equazioni di Navier-Stokes che ci consentono di simulare con una precisione più o meno accettabile, in base al caso specifico, l’evoluzione nel tempo. Approssimazioni ovviamente fondamentali per descrivere un sistema fluidodinamico attraverso simulazioni al calcolatore. Piccolo inciso, c’è un premio di 1 milione di dollari per chi riuscisse a risolvere esattamente le equazioni di Navier-Stokes.

 

Equazioni di Maxwell

Anche di queste abbiamo più volte parlato in diversi articoli. Come noto, le equazioni di Maxwell racchiudono al loro interno i più importanti risultati dell’elettromagnetismo. Queste quattro equazioni desrivono infatti completamente le fondamentali proprietà del campo elettrico e magnetico. Inoltre, come nel caso di campi variabili nel tempo, è proprio da queste equazioni che si evince l’esistenza di un campo elettromagnetico e della fondamentale relazione tra questi concetti. Molte volte, alcuni soggetti dimenticano di studiare queste equazioni e sparano cavolate enormi su campi elettrici e magnetici parlando di energia infinita e proprietà che fanno rabbrividire.

 

La seconda legge della Termodinamica

La versione riportata su questa tabella è, anche a mio avviso, la più affascinante in assoluto. In soldoni, la legge dice che in un sistema termodinamico chiuso, l’entropia può solo aumentare o rimanere costante. Spesso, questo che è noto come “principio di aumento dell’entropia dell’universo”, è soggetto a speculazioni filosofiche relative al concetto di caos. Niente di più sbagliato. L’entropia è una funzione di stato fondamentale nella termodinamica e il suo aumento nei sistemi chiusi impone, senza mezzi termini, un verso allo scorrere del tempo. Capite bene quali e quante implicazioni questa legge ha avuto non solo nella termodinamica ma nella fisica in generale, tra cui anche nella teoria della Relatività Generale di Einstein.

 

Relatività

Quella riportata nella tabella, se vogliamo, è solo la punta di un iceberg scientifico rappresentato dalla teoria della Relatività, sia speciale che generale. La relazione E=mc^2 è nota a tutti ed, in particolare, mette in relazione due parametri fisici che, in linea di principio, potrebbero essere del tutto indipendenti tra loro: massa ed energia. Su questa legge si fonda la moderna fisica degli acceleratori. In questi sistemi, di cui abbiamo parlato diverse volte, quello che facciamo è proprio far scontrare ad energie sempre più alte le particelle per produrne di nuove e sconosciute. Esempio classico e sui cui trovate diversi articoli sul blog è appunto quello del Bosone di Higgs.

 

Equazione di Schrodinger

Senza mezzi termini, questa equazione rappresenta il maggior risultato della meccanica quantistica. Se la relatività di Einstein ci spiega come il nostro universo funziona su larga scala, questa equazione ci illustra invece quanto avviene a distanze molto molto piccole, in cui la meccanica quantistica diviene la teoria dominante. In particolare, tutta la nostra moderna scienza su atomi e particelle subatomiche si fonda su questa equazione e su quella che viene definita funzione d’onda. E nella vita di tutti i giorni? Su questa equazione si fondano, e funzionano, importanti applicazioni come i laser, i semiconduttori, la fisica nucleare e, in un futuro prossimo, quello che indichiamo come computer quantistico.

 

Teorema di Shannon o dell’informazione

Per fare un paragone, il teorema di Shannon sta ai segnali così come l’entropia è alla termodinamica. Se quest’ultima rappresenta, come visto, la capicità di un sistema di fornire lavoro, il teorema di Shannon ci dice quanta informazione è contenuta in un determinato segnale. Per una migliore comprensione del concetto, conviene utilizzare un esempio. Come noto, ci sono programmi in grado di comprimere i file del nostro pc, immaginiamo una immagine jpeg. Bene, se prima questa occupava X Kb, perchè ora ne occupa meno e io la vedo sempre uguale? Semplice, grazie a questo risultato, siamo in grado di sapere quanto possiamo comprimere un qualsiasi segnale senza perdere informazione. Anche per il teorema di Shannon, le applicazioni sono tantissime e vanno dall’informatica alla trasmissione dei segnali. Si tratta di un risultato che ha dato una spinta inimmaginabile ai moderni sistemi di comunicazione appunto per snellire i segnali senza perdere informazione.

 

Teoria del Caos o Mappa di May

Questo risultato descrive l’evoluzione temporale di un qualsiasi sistema nel tempo. Come vedete, questa evoluzione tra gli stati dipende da K. Bene, ci spossono essere degli stati di partenza che mplicano un’evoluzione ordinata per passi certi e altri, anche molto prossimi agli altri, per cui il sistema si evolve in modo del tutto caotico. A cosa serve? Pensate ad un sistema caotico in cui una minima variazione di un parametro può completamente modificare l’evoluzione nel tempo dell’intero sistema. Un esempio? Il meteo! Noto a tutti è il cosiddetto effetto farfalla: basta modificare di una quantità infinitesima un parametro per avere un’evoluzione completamente diversa. Bene, questi sistemi sono appunto descritti da questo risultato.

 

Equazione di Black-Scholes

Altra equazione differenziale, proprio ad indicarci di come tantissimi fenomeni naturali e non possono essere descritti. A cosa serve questa equazione? A differenza degli altri risultati, qui entriamo in un campo diverso e più orientato all’uomo. L’equazione di Black-Scholes serve a determinare il prezzo delle opzioni in borsa partendo dalla valutazione di parametri oggettivi. Si tratta di uno strumento molto potente e che, come avrete capito, determina fortemente l’andamento dei prezzi in borsa e dunque, in ultima analisi, dell’economia.

 

Bene, queste sono le 17 equazioni che secondo Stewart hanno cambiato il mondo. Ora, ognuno di noi, me compreso, può averne altre che avrebbe voluto in questa lista e che reputa di fondamentale importanza. Sicuramente questo è vero sempre ma, lasciatemi dire, questa lista ci ha permesso di passare attraverso alcuni dei più importanti risultati storici che, a loro volta, hanno spinto la conoscenza in diversi settori. Inoltre, come visto, questo articolo ci ha permesso di rivalutare alcuni concetti che troppo spesso vengono fatti passare come semplici regolette non mostrando la loro vera potenza e le implicazioni che hanno nella vita di tutti i giorni e per l’evoluzione stessa della scienza.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Flusso oscuro e grandi attrattori

28 Feb

Nella ormai celebre sezione:

Hai domande o dubbi?

in cui sono usciti fuori davvero gli argomenti piu’ disparati ma sempre contraddistinti da curiosita’ e voglia di discutere, una nostra cara lettrice ci ha chiesto maggiori lumi sul cosiddetto “dark flow” o flusso oscuro. Una richiesta del genere non puo’ che farci piacere, dal momento che ci permette di parlare nuovamente di scienza e, in particolare, di universo.

Prima di poterci addentrare in questo argomento scientifico ma, anche a livello di ricerca, poco conosciuto, e’ necessario fare una piccolissima premessa iniziale che serve per riprendere in mano concetti sicuramente conosciuti ma su cui spesso non si riflette abbastanza.

Per iniziare la discussione, voglio mostrarvi una foto:

sir-isaac-newtons-philosophic3a6-naturalis-principia-mathematica

Quello che vedete non e’ un semplice libro, ma uno dei tre volumi che compongono il Philosophiae Naturalis Principia Mathematica o, tradotto in italiano, “I principi naturali della filosofia naturale”. Quest’opera e’ stata pubblicata il 5 luglio 1687 da Isaac Newton.

Perche’ e’ cosi’ importante questa opera?

Questi tre volumi sono considerati l trattato piu’ importante del pensiero scientifico. Prima di tutto, contengono la dinamica formulata da Newton che per primo ha posto le basi per lo studio delle cause del moto ma, soprattutto, perche’ contengono quella che oggi e’ nota come “Teoria della Gravitazione Universale”.

Sicuramente, tutti avrete sentito parlare della gravitazione di Newton riferita al famoso episodio della mela che si stacco’ dall’albero e cadde sulla testa del celebre scienziato. Come racconta la leggenda, da questo insignificante episodio, Newton capi’ l’esistenza della forza di gravita’ e da qui la sua estensione all’universo. Se vogliamo pero’ essere precisi, Newton non venne folgorato sulla via di Damasco dalla mela che cadeva, ma questo episodio fu quello che fece scattare la molla nella testa di un Newton che gia’ da tempo studiava questo tipo di interazioni.

Volendo essere brevi, la teoria della gravitazione di Newton afferma che nello spazio ogni punto materiale attrae ogni altro punto materiale con una forza che e’ proporzionale al prodotto delle loro masse e inversamente proporzionale al quadrato della loro distanza. In soldoni, esiste una forza solo attrattiva che si esercita tra ogni coppia di corpi dotati di massa e questa interazione e’ tanto maggiore quanto piu’ grandi sono le masse e diminuisce con il quadrato della loro distanza.

Semplice? Direi proprio di si, sia dal punto di vista fisico che matematico. Perche’ allora chiamare questa legge addirittura con l’aggettivo “universale”?

Se prendete la male di Newton che cade dall’albero, la Luna che ruota intorno alla Terra, la Terra che ruota intorno al Sole, il sistema solare che ruota intorno al centro della Galassia, tutti questi fenomeni, che avvengono su scale completamente diverse, avvengono proprio grazie unicamente alla forza di gravita’. Credo che questo assunto sia sufficiente a far capire l’universalita’ di questa legge.

Bene, sulla base di questo, l’interazione che regola l’equilibrio delle masse nell’universo e’ dunque la forza di gravita’. Tutto quello che vediamo e’ solo una conseguenza della sovrapposizione delle singole forze che avvengono su ciascuna coppia di masse.

Detto questo, torniamo all’argomento principale del post. Cosa sarebbe il “flusso oscuro”? Detto molto semplicemente, si tratta del movimento a grande velocita’ di alcune galassie in una direzione ben precisa, situata tra le costellazioni del Centauro e della Vela. Questo movimento direzionale avviene con velocita’ dell’ordine di 900 Km al secondo e sembrerebbe tirare le galassie in un punto ben preciso al di fuori di quello che definiamo universo osservabile.

Aspettate, che significa che qualcosa tira le galassie fuori dall’universo osservabile?

Per prima cosa, dobbiamo definire cosa significa “universo osservabile”. Come sappiamo, l’universo si sta espandendo e se lo osserviamo da Terra siamo in grado di vedere le immagini che arrivano a noi grazie al moto dei fotoni che, anche se si muovono alla velocita’ della luce, si spostano impiegando un certo tempo per percorrere delle distanze precise. Se sommiamo questi due effetti, dalla nostra posizione di osservazione, cioe’ la Terra, possiamo vedere solo quello che e’ contenuto entro una sfera con un raggio di 93 miliardi anni luce. Come potete capire, l’effetto dell’espansione provoca un aumento di quello che possiamo osservare. Se l’universo ha 14.7 miliardi di anni, ci si potrebbe aspettare di poter vedere dalla terra la luce partita 14.7 miliardi di anni fa, cioe’ fino ad una distanza di 14.7 miliardi di anni luce. In realta’, come detto, il fatto che l’universo sia in continua espansione fa si che quello che vediamo oggi non si trova piu’ in quella posizione, ma si e’ spostato a causa dell’espansione. Altro aspetto importante, la definizione di sfera osservabile e’ vera per ogni punto dell’universo, non solo per quella sfera centrata sulla Terra che rappresenta cquello che noi possiamo vedere.

Bene, dunque si sarebbe osservato un flusso di alcune galassie verso un punto preciso fuori dall’universo osservabile. Proprio dal fatto che questo flusso e’ all’esterno del nostro universo osservabile, si e’ chiamato questo movimento con l’aggettivo oscuro.

Aspettate un attimo pero’, se le galassie sono tirate verso un punto ben preciso, cos’e’ che provoca questo movimento? Riprendendo l’introduzione sulla forza di gravitazione, se le galassie, che sono oggetti massivi, sono tirate verso un punto, significa che c’e’ una massa che sta esercitando una forza. Poiche’ la forza di gravitazione si esercita mutuamente tra i corpi, questo qualcosa deve anche essere molto massivo.

Prima di capire di cosa potrebbe trattarsi, e’ importante spiegare come questo flusso oscuro e’ stato individuato.

Secondo le teorie cosmologiche riconosciute, e come spesso si dice, l’universo sarebbe omogeneo e isotropo cioe’ sarebbe uguale in media in qualsiasi direzione lo guardiamo. Detto in altri termini, non esiste una direzione privilegiata, almeno su grandi scale, in cui ci sarebbero effetti diversi. Sempre su grandi scale, non esisterebbe neanche un movimento preciso verso una direzione ma l’isotropia produrrebbe moti casuali in tutte le direzioni.

Gia’ nel 1973 pero’, si osservo’ un movimento particolare di alcune galassie in una direzione precisa. In altri termini, un’anomalia nell’espansione uniforme dell’universo. In questo caso, il punto di attrazione e’ all’interno del nostro universo osservabile e localizzato in prossimita’ del cosiddetto “ammasso del Regolo”, una zona di spazio dominata da un’alta concentrazione di galassie vecchie e massive. Questa prima anomalia gravitazionale viene chiamata “Grande Attrattore”. In questa immagine si vede appunto una porzione di universo osservabile da Terra ed in basso a destra trovate l’indicazione del Grande Attrattore:

800px-2MASS_LSS_chart-NEW_Nasa

Questa prima anomalia dell’espansione venne osservata tramite quello che e’ definito lo spostamento verso il rosso. Cosa significa? Se osservate un oggetto che e’ in movimento, o meglio se esiste un movimento relativo tra l’osservatore e il bersaglio, la luce che arriva subisce uno spostamento della lunghezza d’onda dovuto al movimento stesso. Questo e’ dovuto all’effetto Doppler valido, ad esempio, anche per le onde sonore e di cui ci accorgiamo facilmente ascoltando il diverso suono di una sirena quando questa si avvicina o si allontana da noi.

220px-Redshift_blueshift.svg

Bene, tornando alle onde luminose, se la sorgente si allontana, si osserva uno spostamento verso lunghezze d’onda piu’ alte, redshift, se si avvicina la lunghezza d’onda diminuisce, blueshift. Mediate questo semplice effetto, si sono potuti osservare molti aspetti del nostro universo e soprattutto i movimenti che avvengono.

Tornando al grnde attrattore, questa zona massiva verso cui si osserva un moto coerente delle galassie del gruppo e’ localizzato a circa 250 milioni di anni luce da noi nella direzione delle costellazioni dell’Hydra e del Centauro e avrebbe una massa di circa 5×10^15 masse solari, cioe’ 5 milioni di miliardi di volte il nostro Sole. Questa, come anticipato, e’ soltanto una anomalia dell’espansione dell’universo che ha creato una zona piu’ massiva in cui c’e’ una concentrazione di galassie che, sempre grazie alla gravita’, attraggono quello che hanno intorno.

Discorso diverso e’ invece quello del Dark Flow. Perche’? Prima di tutto, come detto, questo centro di massa si trova talmente lontano da essere al di fuori del nostro universo osservabile. Visto da Terra poi, la zona di spazio che crea il flusso oscuro si trova piu’ o meno nella stessa direzione del Grande Attrattore, ma molto piu’ lontana. Se per il Grande Attrattore possiamo ipotizzare, detto in modo improprio, un grumo di massa nell’universo omogeneo, il flusso oscuro sembrerebbe generato da una massa molto piu’ grande ed in grado anche di attrarre a se lo stesso Grande Attrattore.

Il flusso oscuro venne osservato per la prima volta nel 2000 e descritto poi a partire dal 2008 mediante misure di precisione su galassie lontane. In questo caso, l’identificazione del flusso e’ stata possibile sfruttando il cosiddetto effetto Sunyaev-Zel’dovich cioe’ la modificazione della temperatura dei fotoni della radiazione cosmica di fondo provocata dai raggi X emessi dalle galassie che si spostano. Sembra complicato, ma non lo e’.

Di radiazione di fondo, o CMB, abbiamo parlato in questi articoli:

Il primo vagito dell’universo

E parliamo di questo Big Bang

Come visto, si tratta di una radiazione presente in tutto l’universo residuo del Big Bang iniziale. Bene, lo spostamento coerente delle galassie produce raggi X, questi raggi X disturbano i fotoni della radiazione di fondo e noi da terra osservando queste variazioni ricostruiamo mappe dei movimenti delle Galassie. Proprio grazie a queste misure, a partire dal 2000, e’ stato osservato per la prima volta questo movimento coerente verso un punto al di fuori dell’universo osservabile.

Cosa potrebbe provocare il Flusso Oscuro? Bella domanda, la risposta non la sappiamo proprio perche’ questo punto, se esiste, come discuteremo tra un po’, e’ al di fuori del nostro universo osservabile. Di ipotesi a riguardo ne sono ovviamente state fatte una miriade a partire gia’ dalle prime osservazioni.

Inizialmente si era ipotizzato che il movimento potrebbe essere causato da un ammasso di materia oscura o energia oscura. Concetti di cui abbiamo parlato in questi post:

La materia oscura

Materia oscura intorno alla Terra?

Se il vuoto non e’ vuoto

Universo: foto da piccolo

Queste ipotesi sono pero’ state rigettate perche’ non si osserva la presenza di materia oscura nella direzione del Dark Flow e, come gia’ discusso, per l’energia oscura il modello prevede una distribuzione uniforme in tutto l’universo.

Cosi’ come per il Grande Attrattore, si potrebbe trattare di un qualche ammasso molto massivo in una zona non osservabile da Terra. Sulla base di questo, qualcuno, non tra gli scienziati, aveva ipotizzato che questo effetto fosse dovuto ad un altro universo confinante con il nostro e che provoca l’attrazione. Questa ipotesi non e’ realistica perche’ prima di tutto, la gravitazione e’ frutto dello spazio tempo proprio del nostro universo. Se anche prendessimo in considerazione la teoria dei Multiversi, cioe’ universi confinanti, l’evoluzione di questi sarebbe completamente diversa. Il flusso oscuro provoca effetti gravitazionali propri del nostro universo e dovuti all’attrazione gravitazionale. Il fatto che sia fuori dalla nostra sfera osservabile e’ solo dovuto ai concetti citati in precedenza figli dell’accelerazione dell’espansione.

Prima di tutto pero’, siamo cosi’ sicuri che questo Flusso Oscuro esista veramente?

Come anticipato, non c’e’ assolutamente la certezza e gli scienziati sono ancora fortemente divisi non solo sulle ipotesi, ma sull’esistenza stessa del Flusso Oscuro.

Per farvi capire la diatriba in corso, questo e’ il link all’articolo originale con cui si ipotizzava l’esistenza del Flusso Oscuro:

Dark Flow

Subito dopo pero’, e’ stato pubblicato un altro articolo che criticava questo sostenendo che i metodi di misura applicati non erano corretti:

Wright risposta al Dark Flow

Dopo di che, una lunga serie di articoli, conferme e smentite, sono stati pubblicati da tantissimi cosmologi. Questo per mostrare quanto controversa sia l’esistenza o meno di questo flusso oscuro di Galassie verso un determinato punto dell’universo.

Venendo ai giorni nostri, nel 2013 e’ stato pubblicato un articolo di analisi degli ultimi dati raccolti dal telescopio Planck. In questo paper viene nuovamente smentita l’esistenza del dark flow sulla base delle misure delle velocita’ effettuate nella regione di spazio in esame:

Planck, 2013

Dunque? Dark Flow definitivamente archiviato? Neanche per sogno. Un altro gruppo di cosmologi ha pubblicato questo ulteriore articolo:

Smentita alla smentita

in cui attacca i metodi statistici utilizzati nel primo articolo e propone un’analisi diversa dei dati da cui si mostra l’assoluta compatibilita’ di questi dati con quelli di un altro satellite, WMAP, da cui venne evidenziata l’esistenza del dark flow.

Credo che a questo punto, sia chiaro a tutti la forte discussione ancora in corso sull’esistenza o meno di questo Dark Flow. Come potete capire, e’ importante prima di tutto continuare le analisi dei dati e determinare se questo flusso sia o meno una realta’ del nostro universo. Fatto questo, e se il movimento venisse confermato, allora potremmo fare delle ipotesi sulla natura di questo punto di attrazione molto massivo e cercare di capire di cosa potrebbe trattarsi. Ovviamente, sempre che venisse confermata la sua esistenza, stiamo ragionando su qualcosa talmente lontano da noi da essere al di fuori della nostra sfera osservabile. Trattare questo argomento ci ha permesso prima di tutto di aprire una finestra scientifica su un argomento di forte e continua attualita’ per la comunita’ scientifica. Come sappiamo, trattando argomenti di questo tipo, non troviamo risposte certe perche’ gli studi sono ancora in corso e, cosi’ come deve avvenire, ci sono discussioni tra gli scienziati che propongono ipotesi, le smentiscono, ne discutono, ecc, come la vera scienza deve essere. Qualora ci fossero ulteriori novita’ a riguardo, ne parleremo in un futuro articolo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

La portatrice di sventura e’ arrivata!

19 Nov

Per mesi siamo stati qui a discutere della cometa ISON, di quali sventure avrebbe portato e, a suon di articoli, a smentire di volta in volta tutte quelle voci che volevano far credere a particolari segnali inviati da questa cometa. Questi sono solo alcuni degli articoli scritti su questa cometa:

Rapido aggiornamento sulla ISON

2013 o ancora piu’ oltre?

E se ci salvassimo?

Che la ISON abbia pieta’ di noi!

– Se la Ison non e’ cometa, allora e’ …

Ison: cometa in technicolor

Poi? Mentre la rete e’ ancora indaffarata ad interrogarsi su ipotetiche variazioni di luminosita’, cambi di colore o accelerazioni sospette, zitta zitta, la nostra bella cometa si e’ avvicinata al Sole al punto di diventare visibile.

Nella sezione:

Hai domande o dubbi?

un nostro caro lettore ci ha appunto chiesto di fare chiarezza sulla visibilta’ della ISON e di cercare di capire come poterla osservare ad occhio nudo.

Come discusso piu’ volte, man mano che la ISON si avvicinava al Sole e mostrava meglio la sua struttura e composizione, ci si e’ resi conto che le potenzialita’ di questo oggetto celeste dovevano notevolmente essere corrette al ribasso. Quando venne scoperta, molti iniziarono a parlare di “cometa del secolo”, in grado non solo di essere visibile ad occhio nudo, ma chiaramente osservabile anche in pieno giorno. Si parlava addirittura di luminosita’ piu’ alte di quelle della Luna.

Purtroppo, osservato meglio il suo diametro e la scia, ci si e’ accorti che queste anticipazioni erano molto esagerate. Anche se non sara’ la cometa del secolo, ogni passaggio di cometa visibile da Terra e’ sempre uno spettacolo molto bello da vedere.

Inoltre, negli ultimi giorni, avvicinandosi al Sole, la ISON ha aumentato in parte la sua luminosita’ ricorreggendo nuovamente, questa volta al rialzo se pur di poco, le attese:

Aumento della luminosita' della ISON negli ultimi giorni

Aumento della luminosita’ della ISON negli ultimi giorni

Al contrario di quanto si pensava fino a pochi giorni fa, la cometa e’ divenuta visibile anche ad occhio nudo, anche se ancora molto debolmente.

Bene, cerchiamo dunque di rispondere alla domanda iniziale da cui siamo partiti: come vedere questa cometa?

Piccola premessa, durante queste mattine di novembre, ci sono, come annunciato in altri articoli, ben quattro comete visibili nei nostri cieli e, per nostra fortuna, tutte visibili dall’emisfero boreale e tutte nella stessa direzione. Per poterle osservare bene, e’ consigliabile munirsi anche solo di un semplice binocolo con sufficiente ingrandimento, in modo da poter distinguere molto bene chioma e coda, ad esempio, per la ISON.

Per poter osservare le comete, e’ necessario guardare verso EST poco prima delle 5 del mattino, cioe’ prima dell’alba. Ecco una mappa che vi mostra il cielo e la posizione della cometa:

Punti di visibilita' della ISON a novembre. Fonte: Coelum Astronomia

Punti di visibilita’ della ISON a novembre. Fonte: Coelum Astronomia

Ecco invece il cielo di Novembre con le quattro comete visibili:

Comete visibili nel cielo di Novembre. Fonte: Astroperinaldo.

Comete visibili nel cielo di Novembre. Fonte: Astroperinaldo.

Ricapitolando, per osservare la ISON, dobbiamo guardare veso EST prima dell’alba ed in direzione della stella SPICA. Fate attenzione, poiche’ la luminosita’ della ISON e’ ancora molto bassa, +5.5, dovete trovarvi un un luogo abbastanza scuro e quindi privo di fonti di inquinamento luminoso.

Verso la fine di novembre, la ISON non sara’ piu’ facilmente visibile perche’ la sua posizione sara’ bassa all’orizzonte e sara’ investita dalla luce del Sole che sorge.

Dai primi giorni di Dicembre pero’, la cometa tornera’ di nuovo visibile ad occhio nudo al tramonto del Sole.

In questi giorni, il tempo soprattutto in Italia non ci sta consentendo di vedere molto facilmente la cometa, ma visto il fitto calendario di giorni in cui questa sara’ visibile ad occhio nudo, sicuramente non manchera’ occasione di poter gustare questo fantastico spettacolo naturale.

Certo, se diamo retta ai tanti catastrofisti della domenica, chissa’ anche quali sventure portera’ questa cometa!

 

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Aerei: come fanno a volare e sicurezza

13 Nov

Attraverso i commenti del  blog, un nostro caro lettore ci ha fatto una domanda, a suo dire, apparentemente molto semplice ma che, come potete verificare molto facilmente, genera tantissima confusione. In sintesi la domanda e’ questa: perche’ si dice che volare in aereo e’ cosi sicuro?

Per poter rispondere a questa domanda, si devono ovviamente scartabellare i numeri ufficiali degli incidenti aerei. Questo ci consente di poter verificare la probabilita’ di un incidente aereo rapportato, ad esempio, a quelli ben piu’ noti automobilistici. Partendo da questa domanda, mi sono pero’ chiesto qualcosa in piu’: sappiamo veramente perche’ gli aerei riescono a volare? Anche questa potrebbe sembrare una domanda molto semplice. Si tratta di una tecnologia conosciuta da diversi decenni eppure, incredibile ma vero, non tutti sanno perche’ questi enormi oggetti riescono a stare in aria. Facendo un giro su internet, ho scoperto come anche molti siti di divulgazione della scienza fanno delle omissioni o dicono cose formalmente sbagliate.

Detto questo, credo sia interessante affrontare un discorso piu’ ampio prima di poter arrivare a rispondere alla domanda sugli incidenti aerei.

Partiamo dalle basi, come sapete ruolo fondamentale nel volo aereo e’ quello delle ali. Mentre il motore spinge in avanti l’apparecchio, le ali hanno la funzione di far volare l’aereo. Ora, per poter restare in quota, o meglio per salire, senza dover parlare di fisica avanzata, c’e’ bisogno di una forza che spinga l’aereo verso l’alto e che sia maggiore, o al limite uguale per rimanere alle stessa altezza, del peso dell’aereo stesso.

Come fanno le ali ad offrire questa spinta verso l’alto?

Forze agenti sull'ala durante il volo

Forze agenti sull’ala durante il volo

Tutto il gioco sta nel considerare l’aria che scorre intorno all’ala. Vediamo la figura a lato per capire meglio. L’aria arriva con una certa velocita’ sull’ala, attenzione questo non significa che c’e’ vento con questa velocita’ ma, pensando al moto relativo dell’aereo rispetto al suolo, questa e’ in prima approssimazione la velocita’ stessa con cui si sta spostando l’aereo. Abbiamo poi il peso dell’aereo che ovviamente e’ rappresentato da una forza che spinge verso il basso. D e’ invece la resistenza offerta dall’ala. Vettorialmente, si stabilisce una forza L, detta “portanza”, che spinge l’aereo verso l’alto.

Perche’ si ha questa forza?

Come anticipato, il segreto e’ nell’ala, per la precisione nel profilo che viene adottato per questa parte dell’aereo. Se provate a leggere la maggiorparte dei siti divulgativi, troverete scritto che la forza di portanza e’ dovuta al teorema di Bernoulli e alla differenza di velocita’ tra l’aria che scorre sopra e sotto l’ala. Che significa? Semplicemente, l’ala ha una forma diversa nella parte superiore, convessa, e inferiore, quasi piatta. Mentre l’aereo si sposta taglia, come si suole dire, l’aria che verra’ spinta sopra e sotto. La differenza di forma fa si che l’aria scorra piu’ velocemente sopra che sotto. Questo implica una pressione maggiore nella parte inferiore e dunque una spinta verso l’alto. Per farvi capire meglio, vi mostro questa immagine:

Percorso dell'aria lungo il profilo alare

Percorso dell’aria lungo il profilo alare

Come trovate scritto in molti siti, l’aria si divide a causa del passaggio dell’aereo in due parti. Vista la differenza di percorso tra sopra e sotto, affinche’ l’aria possa ricongiungersi alla fine dell’ala, il fluido che scorre nella parte superiore avra’ una velocita’ maggiore. Questo crea, per il teorema di Bernoulli, la differenza di pressione e quindi la forza verso l’alto che fa salire l’aereo.

Spiegazione elegante, semplice, comprensibile ma, purtroppo, fortemente incompleta.

Perche’ dico questo?

Proviamo a ragionare. Tutti sappiamo come vola un aereo. Ora, anche se gli aerei di linea non lo fanno per ovvi motivi, esistono apparecchi acrobatici che possono volare a testa in giu’. Se fosse vero il discorso fatto, il profilo dell’ala in questo caso fornirebbe una spinta verso il basso e sarebbe impossibile rimanere in aria.

Cosa c’e’ di sbagliato?

In realta’ non e’ giusto parlare di spiegazione sbagliata ma piuttosto bisogna dire che quella data e’ fortemente semplificata e presenta, molto banalmente come visto, controesempi in cui non e’ applicabile.

Ripensiamo a quanto detto: l’aria scorre sopra e sotto a velocita’ diversa e crea la differenza di pressione. Chi ci dice pero’ che l’aria passi cosi’ linearmente lungo l’ala? Ma, soprattutto, perche’ l’aria dovrebbe rimanere incollata all’ala lungo tutto il percorso?

La risposta a queste domande ci porta alla reale spiegazione del volo aereo.

L'effetto Coanda sperimentato con un cucchiaino

L’effetto Coanda sperimentato con un cucchiaino

Prima di tutto, per capire perche’ l’aria rimane attaccata si deve considerare il profilo aerodinamico e il cosiddetto effetto Coanda. Senza entrare troppo nella fisica, questo effetto puo’ semplicemente essere visualizzato mettendo un cucchiaino sotto un lieve flusso d’acqua. Come sappiamo bene, si verifica quello che e’ riportato in figura. L’acqua, che cosi’ come l’aria e’ un fluido, scorre fino ad un certo punto lungo il profilo del metallo per poi uscirne. Questo e’ l’effetto Coanda ed e’ quello che fa si che l’aria scorra lungo il profilo alare. Questo pero’ non e’ ancora sufficiente.

Nella spiegazione del volo utilizzando il teorema di Bernoulli, si suppone che il moto dell’aria lungo l’ala sia laminare, cioe’, detto in modo improprio, “lineare” lungo l’ala. In realta’ questo non e’ vero, anzi, un moto turbolento, soprattutto nella parte superiore, consente all’aria di rimanere maggiormente attaccata evitando cosi’ lo stallo, cioe’ il distaccamento e la successiva diminuzione della spinta di portanza verso l’alto.

In realta’, quello che avviene e’ che il moto dell’aria lungo il profilo compie una traiettoria estremamente complicata e che puo’ essere descritta attraverso le cosiddette equazioni di Navier-Stokes. Bene, allora scriviamo queste equazioni, risolviamole e capiamo come si determina la portanza. Semplice a dire, quasi impossibile da fare in molti sistemi.

Cosa significa?

Le equazioni di Navier-Stokes, che determinano il moto dei fluidi, sono estremamente complicate e nella maggior parte dei casi non risolvibili esattamente. Aspettate un attimo, abbiamo appena affermato che un aereo vola grazie a delle equazioni che non sappiamo risolvere? Allora ha ragione il lettore nel chiedere se e’ veramente sicuro viaggiare in aereo, praticamente stiamo dicendo che vola ma non sappiamo il perche’!

Ovviamente le cose non stanno cosi’, se non in parte. Dal punto di vista matematico e’ impossibile risolvere “esattamente” le equazioni di Navier-Stokes ma possiamo fare delle semplificazioni aiutandoci con la pratica. Per poter risolvere anche in modo approssimato queste equazioni e’ necessario disporre di computer molto potenti in grado di implementare approssimazioni successive. Un grande aiuto viene dalla sperimentazione che ci consente di determinare parametri e semplificare cosi’ la trattazione matematica. Proprio in virtu’ di questo, diviene fondamentale la galleria del vento in cui vengono provati i diversi profili alari. Senza queste prove sperimentali, sarebbe impossibile determinare matematicamente il moto dell’aria intorno al profilo scelto.

In soldoni, e senza entrare nella trattazione formale, quello che avviene e’ il cosiddetto “downwash” dell’aria. Quando il fluido passa sotto l’ala, viene spinto verso il basso determinando una forza verso l’alto dell’aereo. Se volete, questo e’ esattamente lo stesso effetto che consente agli elicotteri di volare. In quest’ultimo caso pero’, il downwash e’ determinato direttamente dal moto dell’elica.

Detto questo, abbiamo capito come un aereo riesce a volare. Come visto, il profilo dell’ala e’ un parametro molto importante e, ovviamente, non viene scelto in base ai gusti personali, ma in base ai parametri fisici del velivolo e del tipo di volo da effettuare. In particolare, per poter mordere meglio l’aria, piccoli velivoli lenti hanno ali perfettamente ortogonali alla fusoliera. Aerei di linea piu’ grandi hanno ali con angoli maggiori. Al contrario, come sappiamo bene, esistono caccia militari pensati per il volo supersonico che possono variare l’angolo dell’ala. Il motivo di questo e’ semplice, durante il decollo, l’atterraggio o a velocita’ minori, un’ala ortogonale offre meno resitenza. Al contrario, in prossimita’ della velocita’ del suono, avere ali piu’ angolate consente di ridurre al minimo l’attrito viscoso del fluido.

Ultimo appunto, i flap e le altre variazioni di superficie dell’ala servono proprio ad aumentare, diminuire o modificare intensita’ e direzione della portanza dell’aereo. Come sappiamo, e come e’ facile immaginare alla luce della spiegazione data, molto importante e’ il ruolo di questi dispositivi nelle fasi di decollo, atterraggio o cambio quota di un aereo.

In soldoni dunque, e senza entrare in inutili quanto disarmanti dettagli matematici, queste sono le basi del volo.

Detto questo, cerchiamo di capire quanto e’ sicuro volare. Sicuramente, e come anticipato all’inizio dell’articolo, avrete gia’ sentito molte volte dire: l’aereo e’ piu’ sicuro della macchina. Questo e’ ovviamente vero, se consideriamo il numero di incidenti aerei all’anno questo e’ infinitamente minore di quello degli incidenti automobilistici. Ovviamente, nel secondo caso mi sto riferendo solo ai casi mortali.

Cerchiamo di dare qualche numero. In questo caso ci viene in aiuto wikipedia con una pagina dedicata proprio alle statistiche degli incidenti aerei:

Wiki, incidenti aerei

Come potete leggere, in media negli ultimi anni ci sono stati circa 25 incidenti aerei all’anno, che corrispondono approssimativamente ad un migliaio di vittime. Questo numero puo’ oscillare anche del 50%, come nel caso del 2005 in cui ci sono state 1454 vittime o nel 2001 in cui gli attentati delle torri gemelle hanno fatto salire il numero. La maggiorparte degli incidenti aerei sono avvenuti in condizioni di meteo molto particolari o in fase di atterraggio. Nel 75% degli incidenti avvenuti in questa fase, gli aerei coinvolti non erano dotati di un sistema GPWS, cioe’ di un sistema di controllo elettronico di prossimita’ al suolo. Cosa significa? Un normale GPS fornisce la posizione in funzione di latitudine e longitudine. Poiche’ siamo nello spazio, manca dunque una coordinata, cioe’ la quota a cui l’oggetto monitorato si trova. Il compito del GPWS e’ proprio quello di fornire un sistema di allarme se la distanza dal suolo scende sotto un certo valore. La statistica del 75% e’ relativa agli incidenti avvenuti tra il 1988 e il 1994. Oggi, la maggior parte degli aerei civili e’ dotato di questo sistema.

Solo per concludere, sempre in termini statistici, e’ interessante ragionare, in caso di incidente, quali siano i posti lungo la fusoliera piu’ sicuri. Attenzione, prendete ovviamente questi numeri con le pinze. Se pensiamo ad un aereo che esplode in volo o che precipita da alta quota, e’ quasi assurdo pensare a posti “piu’ sicuri”. Detto questo, le statistiche sugli incidenti offrono anche una distribuzione delle probabilita’ di sopravvivenza per i vari posti dell’aereo.

Guardiamo questa immagine:

Statistiche della probabilita' di sopravvivenza in caso di incidente aereo

Statistiche della probabilita’ di sopravvivenza in caso di incidente aereo

Come vedete, i posti piu’ sicuri sono quelli a prua, cioe’ quelli piu’ vicini alla cabina di pilotaggio ma esiste anche una distribuzione con picco di sicurezza nelle file centrali vicino alle uscite di emergenza. Dal momento che, ovviamente in modo grottesco, i posti a prua sono quelli della prima classe, il fatto di avere posti sicuri anche dietro consente di offrire una minima ancora di salvataggio anche ad i passeggeri della classe economica.

Concudendo, abbiamo visto come un aereo riesce a volare. Parlare solo ed esclusivamente di Bernoulli e’ molto riduttivo anche se consente di capire intuitivamente il principio del volo. Questa assunzione pero’, presenta dei casi molto comuni in cui non e’ applicabile. Per quanto riguarda le statistiche degli incidenti, l’aereo resta uno dei mezzi piu’ sicuri soprattutto se viene confrontato con l’automobile. Come visto, ci sono poi dei posti che, per via della struttura ingegneristica dell’aereo, risultano statisticamente piu’ sicuri con una maggiore probabilita’ di sopravvivena in caso di incidente.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Nube assassina dallo spazio

6 Nov

Nella solita sezione dedicata a queste proposte:

Hai domande o dubbi

un nostro caro lettore ci ha chiesto informazioni riguardo ad una notizia che, soprattutto negli ultimi giorni, sta facendo molto discutere sul web e ha fornito nuova linfa ai tanti siti catastrofisti che, diciamocela tutta, dopo il 21 dicembre 2012 sono rimasti un po’ a corto di idee.

Di cosa si tratta?

Cerchero’ di farvela molto breve. Anche se sul web girano molte versioni, con dettagli piu’ o meno fantasiosi, il succo e’ pressapoco questo: una massiccia nube di “qualcosa” si sarebbe staccata dal centro della nostra galassia, la Via Lattea, e starebbe per raggiungere ad altissima velocita’ il nostro pianeta. Su cosa sia questo “qualcosa” ognuno ci mette del suo: antimateria, una soluzione acida, antiparticelle. Nonostante questo, il risultato e’ sempre lo stesso: quando la nube raggiungera’ la Terra, e manca ovviamente molto poco, il nostro mondo verra’ spazzato via. Anzi, per dirvela con le stesse parole, l’effetto del passaggio di questa nube sara’ come l’acqua buttata su un foglio scritto con inchiostro, tutto si dissolvera’ a causa dell’interazione tra la materia che costituisce il nostro pianeta e quel qualcosa che forma la nube.

Quanto tempo resta? Ovviamente molto poco, qualcuno parla di giorni, altri di mesi, ma l’ora e’ comunque prossima. Possibile che non se ne sia accorto nessuno? Ma dai, possibile che nessuno se ne sia accorto? Ovviamente qualcuno c’e’, indovinate chi? Ma ovvio, la NASA! Come al solito pero’, i tecnici dell’ente spaziale americano hanno scoperto questa nube e la stanno continuamente monitornando. Purtroppo, per evitare problemi di ordine pubblico, che cuore nobile che hanno, evitano di dirlo ai comuni mortali che tanto sarebbero destinati lo stesso a morire.

Per fortuna, come nei migliori film di fantascienza americani, c’e’ il solito eroe, il buono del film, che si accorge di tutto e cerca di avvisare gli abitanti della Terra. Questo qualcuno e’ uno scienziato, l’astrofisico inglese Albert Shervinsky. Avete capito bene, mica uno qualsiasi, addirittura un astrofisico. Sapete dove lavora il buono del nostro film? All’universita’ di Cambridge, quindi non un’istituzione da quattro soldi.

Cosa dire, c’e’ un buco nero che butta una nube di qualcosa di distruttivo, la nube sta arrivando sulla Terra e un astrofisico di un’importante universita’ se ne accorge. Detto questo, non resta altro da fare che pregare prima che la fine giunga sotto forma di nube spaziale.

Attenzione, forse, e dico forse, prima di pregare o lasciarsi prendere dal panico e’ il caso di leggere meglio la storia che gira sul web e che tanto sta facendo discutere.

Siamo proprio sicuri che questa storia sia verosimile?

Come potete immaginare, anche dal mio tono goliardico utilizzato fino a questo punto, la storia e’ una vera e propria bufala, tra l’altro anche orchestrata in modo pessimo.

Torniamo di nuovo seri e ragioniamo su quanto detto fino a questo punto.

Prima di tutto, c’e’ una nube esplusa da un buco nero o meglio dal buco nero al centro della nostra galassia. Di questo buco nero, anche noto come Sagitarius A, abbiamo parlato in dettaglio in questo articolo:

Nexus 2012: bomba a orologeria

A parte che e’ un buco nero supermassivo e occupa la parte centrale della nostra Galassia, questo buco nero e’ solo un buco nero. Con questo intendo dire che il suo comportamento e’ molto ben descritto da quello che sappiamo su questa classe di oggetti celesti. Come visto in questo articolo:

I buchi neri che … evaporano

secondo la teoria di Hawking i buchi neri possono evaporare, cioe’ emettere particelle verso l’esterno diminuendo nel corso del tempo la loro massa. Questo e’ un meccanismo noto e di cui abbiamo gia’ parlato in dettaglio. L’evaporazione e’ l’unico modo in cui una parte di materia esce all’esterno del buco nero, per definizione spazio in cui la materia viene assorbita a causa dell’elevatissima gravita’.

Perche’ dico questo?

Anche se fosse, un buco nero puo’ emettere radiazione all’esterno attraverso l’evaporazione, ma sempre di particelle ordinarie si tratta. Se anche, per assurdo, pensassimo che un qualcosa venisse emesso dal buco nero, sarebbe sempre qualcosa di materia ordinaria. E’ completamente assurdo pensare che questo qualcosa, ripeto fatto di materia ordinaria, se incontrasse la Terra la dissolverebbe nel nulla. Per tentare di giustificare questa affermazione, alcuni siti, come visto, inventano che questo qualcosa emesso dal buco nero sia antimateria. Come visto nell’articolo precedente sull’evaporazione, questa affermazione e’ assolutamente non giustificata.

Altra considerazione non da poco, il nostro Sagitarius A si trova ad una distanza stimata di circa 26000 anni luce dalla Terra. Ora, se un qualcosa venisse emesso dal buco nero in direzione della Terra, supponendo che questo qualcosa viaggi alla velocita’ della luce, allora servirebbero 26000 anni prima di arrivare a colpirci. Con 26000 anni di tempo, non credo sia il caso di preoccuparci.

Da dove nasce questa storia cosi’ assurda?

E’ interessante rispondere a questa domanda se non altro per capire come vengono create queste bufale che ormai quotidianamente ci offrono divertenti storielle da leggere online.

La bufale della nube emessa dal centro galattico verso la nostra Terra e’ in realta’ una storia vecchia gia’ di qualche anno. In rete si trova infatti un articolo del 2005 che parlava dell’osservazione di questa nube:

Pravda.ru, nube dal centro galattico

Per chi non lo conoscesse, questo sito e’ assolutamente affidabile o meglio offre sempre una certezza: se leggete una notizia in rete e non sapete se sia vera o meno, controllate Pravda. ru. Se la stessa notizia la trovate anche qui, allora potete essere sicuri che si tratta di una bufala!

Perche’ proprio ora e’ stata ritirata fuori?

Anche per questo c’e’ una spiegazione. Gia’ da questa estate, si parlava dell’osservazione di una nube di gas che e’ passata in prossimita’ di Sagitarius A. Attenzione, qui parliamo di misure reali fatte da osservatori in orbita. A causa della fortissima gravita’ vicino al centro, la nube aveva mostrato dinamiche molto particolari che avevano permesso agli studiosi di poter capire alcuni importanti parametri del buco nero super massivo. Su youtube si trova anche un video pubblicato dall’INAF in cui si parla di questa osservazione:

Il diffondersi di questa notizia aveva ovviamente creato la distorsione di cui stiamo parlando, alimentata anche dal vecchio articolo bufala che gia’ girava in rete.

Prima di chiudere, proprio per non lasciare niente al caso, c’e’ ancora un altro punto  di cui parlare. Come visto, anche se ci sono varie vesioni della storia, tutte sono concordi sull’eroe buono pronto a diffondere la notizia al popolo, l’astrofisico Albert Shervinsky dell’universita’ di Cambridge.

Chi e’ costui?

Come nella migliore tradizione delle bufale, non esiste nessun astrofisico con questo nome, tantomeno all’universita’ di Cambridge.

Come verificare questo?

Semplice, andiamo a vedere nel sito dell’universita’ citata. Ci sono due dipartimenti papabili in cui potrebbe lavorare un astrofisico, uno e’ quello di fisica, l’altro e’ il dipartimento di astronomia. Bene, andiamo alle pagine corrispondenti in cui troviamo tutti i membri affiliati:

Cambridge, dipartimento di Fisica

Cambridge, dipartimento di Astronomia

Come mostrato, non esiste nessun astrofisico in questa universita’ con il nome citato nella notizia.

Concludendo, anche in questo caso si tratta della solita bufala o meglio del soito tentativo vano dei siti catastrofisti alla disperata ricerca di un qualcosa utile per sostituire l’ormai tramontato 21 Dicembre 2012. Come visto, la notizia di una nube sparata dal centro della galassia verso la Terra e’ solo la riproposizione di una vecchia bufala del 2005, ritirata fuori dopo le osservazioni in orbita su Sagitarius A. A parte queste osservazioni, tutto cio’ che e’ contenuto nella notizia e’ una libera produzione della fantasia di qualche buontempone.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Autostrade nei cieli cinesi?

4 Ago

Alcuni utenti mi hanno contatto via mail per mostrarmi una foto scattata in Cina, precisamente nella cittadina di Boao nella provincia di Hainan. Prima di qualsiasi cosa, credo sia interessante mostrarvi la foto:

Immagine scattata a Boao in Cina

Immagine scattata a Boao in Cina

Quando questa immagine e’ stata pubblicata su internet, si sono scatenate moltissime voci per cercare di spiegare l’origine di questa strana conformazione. In alcuni casi, si e’ fatto riferimento a questo feomeno come le “autostrade del cielo” per indicare il solco netto piu’ scuro che si vede nella foto.

Ovviamente, non sono mancate le ipotesi catastrofiste e complottiste sul fenomeno. C’e’ chi ha parlato di segno lasciato dal passaggio di navi aliene, chi parla di fenomeni di geoingegneria legati alle scie chimiche e anche chi fa riferimento a misteriosi fenomeni ottici dovuti a qualche nuova forma di inquinamento.

Come usanza del caso, molti siti concordano sul fatto che il fenomeno e’ del tutto nuovo, mai osservato e, soprattutto, non esiste una spiegazione scientifica.

Chi frequenta il blog da tempo sa bene che questo e’ lo scenario classico in cui siamo abituati a discutere. Ogni qual volta c’e’ un fenomeno non usale, e questo non significa raro, le voci che si rincorrono sono sempre piu’ o meno le stesse.

Ora, data la premessa, avrete gia’ capito che lo strano fenomeno apparso in Cina e’: conosciuto, spiegato e gia’ accaduto innumerevoli altre volte.

Non mi dilunghero’ molto nella spiegazione, perche’ in realta’ di fenomeni del genere ne abbiamo gia’ parlato in un’altra occasione. Ecco il post:

Questo deve essere un segno premonitore!

In questo articolo, parlavamo di un fenomeno molto simile a questo ed, in particolare, mostravamo anche tante altre immagini prese dalla rete con cieli nella stessa conformazione.

Cosi’ come avvenuto in Brasile, anche per il caso cinese dobbiamo appellarci ai raggi crepuscolari. Per essere precisi, nell’articolo precedente eravano di fronte a raggi anticrepuscolari, questa volta invece sono crepuscolari. Come visto, questi fenomeni si possono evidenziare in particolari condizioni quando il Sole e’ basso all’orizzonte, appunto durante il tramonto.

Ora pero’, la differenza sostanziale e’ che nel caso di raggi crepuscolari, le striature che si vedono sono molto luminose. Nel caso cinese, vediamo invece nell’immagine dei segni molto netti ma piu’ scuri rispetto al resto. La cosa non e’ affatto sorprendente ed e’ dovuta alla particolare conformazione atmosferica al momento dello scatto.

Come riportato da molte fonti, la foto e’ stata scattata al tramonto, ma erano presenti nubi negli strati alti dell’atmosfera ad una quota compresa tra 8000 e 12000 metri. In questo caso, i raggi crepuscolari vanno ad illuminare queste formazioni che pero’ proiettano verso il basso la loro ombra. Bene, le strisce piu’ scure che si vedono nella foto sono proprio dovute alle ombre delle nubi filamentose negli strati alti.

Data questa spiegazione, non c’e’ assolutamente nulla di straordinario nel fenomeno, se non l’impatto visivo. Come visto, si tratta d un fenomeno gia’ affrontato sul blog e la cui spiegazione scientifica e’ molto ben conosciuta e documentata. Se vogliamo, unica differenza rispetto al solito e’ la presenza di nubi negli strati alti che proiettano la loro ombra veso il basso. In questo caso, invece di avere strisce luminose abbiamo zone piu’ scure in cielo. Cosi’ come avviene per la zone cangianti in presenza di raggi crepuscolari, anche in questo caso, le strisce appaiono con contorni ben delimitati e proettive verso l’esterno.

Concludendo, non  c’e’ assolutamente nulla di sorprendente nel fenomeno apparso a Boao. La spiegazione e’ da ricercarsi nel fenomeno dei raggi crepuscolari, molto ben documentati e perfettamente compresi a livello scientifico.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

 

Se si rompe la sonda?

17 Mag

Solo poche settimane fa, avevamo parlato della scoperta di molti esopianeti al di fuori del nostro sistema solare:

A caccia di vita sugli Esopianeti

Nuovi esopianeti. Questa volta ci siamo?

Come visto, la ricerca di questi corpi e’ di fondamentale importanza, in primis, dal punto di vista scientifico per lo studio e la comprensione dell’origine del nostro universo, ma anche per la ricerca di pianeti nella cosiddetta “fascia di abitabiita’”. Con questo si intendono quei pianeti che, ruotando intorno ad una stella centrale, occupano una distanza tale da poter sviluppare la vita.

Di pianeti di questo tipo, ne sono stati individuati diversi, come visto nei precedenti post. Oltre ai tanti sostenitori dell’esistenza aliena, l’individuazione di questi corpi ha acceso la fantasia anche di molti astronomi e di persone interessate al cosmo. Quando parliamo di “possibilita’ di vita”, non intendiamo certo che ci sia la certezza di questo, ma solo che a quelle distanze potrebbe eeserci acqua in forma liquida, una delle condizioni piu’ facili per l’inizio della vita sul pianeta.

Immagine artistica del telescopio Kepler

Immagine artistica del telescopio Kepler

Parlando di questi concetti, abbiamo presentato anche la sonda Kepler della NASA, un potente telescopio in orbita, autore proprio delle ultime scoperte. Questo strumento, grazie alla sua notevole precisione, ha consentito l’individuazione di diversi esopianeti dando una notevole spinta alla ricerca in questo settore.

In particolare, parlando proprio egli ultimi esopianeti trovati in fascia abitabile, Kepler-62e e Kepler-62f, ci eravamo lasciati fantasticando sul futuro della missione e sul numero elevato di esopianeti che la sonda avrebbe potuto individuare con le prossime osservazioni.

Invece?

Notizia proprio delle ultime ore, sembrerebbe che il telescopio Kepler abbia un serio problema, tale da compromettere la continuazione della missione.

Di cosa si tratta?

Come evidenziato dai tecnici della NASA, sembrerebbe che il giroscopio della missione abbia smesso di funzionare. Questo sistema e’ di fondamentale importanza per il puntamento di precisione del telescopio verso lo spazio esterno. Come visto negli articoli precedenti, l’individuazione degli esopianti viene fatta sfruttando il metodo dei transiti. Osservando per lungo tempo stelle lontane, Kepler e’ in grado di misurare le minime variazioni di luminosita’ dovute al passaggio di pianeti di fronte alla stella.

Come potete facilmente capire, affinche’ questo metodo sia applicabile, e’ necessario puntare in una direzione ben precisa per diverso tempo, aspettando appunto il transito dell’esopianeta. Oltre a questo, come vuole il metodo scientifico, la misura deve essere ripetibile anche a distanza di tempo. Per questo, il corretto puntamento, sia assoluto in una direzione che relativo rispetto ad un’altra, deve essere estremamente preciso.

Compito dei giroscopi e’ proprio quello di garantire il corretto puntamento.

Bene, anzi male, nelle ultime ore, una delle ruote dei giroscopi di Kepler non sta rispondendo ai comandi e sembra girare in modo continuo. Per un corretto funzionamento del sistema, sono necessari 3 giroscopi. Se uno di questi non risponde, il sistema di puntamento non sara’ assolutamente ne’ corretto ne’ stabile.

Possibile che non abbia un giroscopio di riserva?

Qualsiasi missione spaziale ha sempre dei sistemi di recupero da utilizzare in caso di guasto. In questa ottica, Kepler era dotato di tre rotelle per i giroscopi, piu’ una di riserva. Perche’ non utilizziamo quella di scorta? Semplice, era gia’ stata utilizzata per sostituire uno dei giroscopi che si era danneggiato a luglio del 2012.

Sfortuna? Legge di Murphy? Chiamatela come volete, ma la situazione attuale non e’ assolutamente rosea. Attualmente, dei 4 sistemi inseriti nel telescopio, 2 sono danneggiati e 2 sono funzionanti. Peccato che, per un corretto puntamento, siano richieste 3 rotelle di puntamento.

Trovandosi la missione a circa 65 milioni di kilometri da noi, capite bene che organizzare una spedizione di riparazione e’ assolutamente non fattibile.

Dunque? Cosa fare?

Per il momento, i tecnici della NASA hanno messo Kepler in modalita’ “safe”, cioe’ per il massimo risparmio di carburante. Ovviamente, in queste ore si sta cercando di valutare quanto sia possibile recuperare il sistema o comunque continuare ad utilizzare Kepler. Come detto, con un sistema di puntamento non affidabile e non ripetibile, e’ assolutamente impensabile continuare ad utilizzare Kepler per la ricerca di esopianeti fuori dal nostro sistema solare.

Purtroppo, quando si progettano sistemi di questo tipo, si cerca sempre, nei limiti degli ingombri e del funzionamento, di prevedere diverse soluzioni alternative in caso di guasto. Per quanto puo’ essere minimizzata, la probabilita’ di guasto non e’ assolutamente nulla.

Concludendo, il guasto registrato in queste ore su Kepler, lo rende probabilmente del tutto inutilizzabile per la ricerca di esopianeti al di fuori del nostro sistema solare. Purtroppo, questo comporterebbe uno stop ad una missione che stava portando ottimi risultati e che lasciava intravedere un futuro molto importante dal punto di vista della ricerca.

L’eventuale messa fuori servizio di Kepler, lascerebbe una lacuna in questo settore della ricerca. Lato NASA e’ infatti previsto per il 2017 il lancio di una nuova missione migliorata rispetto a Kepler, cosi’ come l’ESA pensa di poter lanciare nel giro di qualche anno una sua missione per la ricerca di esopianeti abitabili.

Concludendo, dopo le fantastiche prime osservazioni, Kepler era stato in grado di individuare diversi esopianeti, aluni dei quali anche nella fascia abitabile della propria stella. Purtroppo, a causa di un guasto, difficilmente sara’ possibile continuare ad utilizzare questa missione. Ovviamente, i tecnici sono al lavoro e speriamo possano riuscire a risolvere il problema prolungando ancora per diversi anni questa missione.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Troppa antimateria nello spazio

5 Apr

Uno dei misteri che da sempre affascina i non addetti ai lavori e che spinge avanti la ricerca scientifica di base e’ la comprensione del nostro universo. In particolare, come sapete, ad oggi sappiamo veramente molto poco su cosa costituisce il nostro universo. Cosa significa questo? Dalle misure affettuate, solo una piccola frazione, intorno al 5%, e’ composta da materia barionica, cioe’ di quella stessa materia che compone il nostro corpo e tutti gli oggetti che ci circondano. La restante frazione e’ composta da quelli che spesso sentiamo chiamare contributi oscuri, materia oscura ed energia oscura. Mentre sulla materia oscura ci sono delle ipotesi, anche se ancora da verificare, sull’energia oscura, responsanbile dell’espansione dell’universo, sappiamo ancora molto poco.

Detto questo, la comprensione di questi contributi e’ una sfida tutt’ora aperta ed estremamente interessante per la ricerca scientifica.

Di questi argomenti, abbiamo parlato in dettaglio in questo post:

La materia oscura

Perche’ torno nuovamente su questo argomento? Solo un paio di giorni fa, e’ stata fatta una conferenza al CERN di Ginevra nella quale sono stati presentati i dati preliminari dell’esperimento AMS-02. I dati di questo rivelatore, realizzato con un’ampia collaborazione italiana, sono veramente eccezionali e potrebbero dare una spinta in avanti molto importante nella comprensione della materia oscura.

Andiamo con ordine.

Cosa sarebbe AMS-02?

AMS installato sulla Stazione Spaziale

AMS installato sulla Stazione Spaziale

AMS sta per Alpha Magnetic Spectrometer, ed e’ un rivelatore installato sulla Stazione Spaziale Internazionale. Compito di AMS-02 e’ quello di rivelare con estrema precisione le particelle dei raggi cosmici per cercare di distinguere prima di tutto la natura delle particelle ma anche per mettere in relazione queste ultime con la materia ordinaria, la materia oscura, la materia strana, ecc.

In particolare, lo spettrometro di AMS e’ estremamente preciso nel distinguere particelle di materia da quelle di antimateria e soprattutto elettroni da positroni, cioe’ elettroni dalle rispettive antiparticelle.

Vi ricordo che di modello standard, di antimateria e di materia strana abbiamo parlato in dettaglio in questi post:

Piccolo approfondimento sulla materia strana

Due parole sull’antimateria

Antimateria sulla notra testa!

Bosone di Higgs … ma che sarebbe?

Bene, fin qui tutto chiaro. Ora, cosa hanno di particolarmente speciale i dati di AMS-02?

Numero di positroni misurato da AMS verso energia

Numero di positroni misurato da AMS verso energia

Utilizzando i dati raccolti nei primi 18 mesi di vita, si e’ evidenziato un eccesso di positroni ad alta energia. Detto in parole semplici, dai modelli per la materia ordinaria, il numero di queste particelle dovrebbe diminuire all’aumentare della loro energia. Al contrario, come vedete nel grafico riportato, dai dati di AMS-02 il numero di positroni aumenta ad alta energia fino a raggiungere una livello costante.

Cosa significa questo? Perche’ e’  cosi’ importante?

Come detto, dai modelli della fisica ci si aspettarebbe che il numero di positroni diminuisse, invece si trova un aumento all’aumentare dell’energia. Poiche’ i modelli ordinari sono corretti, significa che ci deve essere qualche ulteriore sorgente di positroni che ne aumenta il numero rivelato da AMS-02.

Quali potrebbero essere queste sorgenti non considerate?

La prima ipotesi e’ che ci sia una qualche pulsar relativamente in prossimita’. Questi corpi possono emettere antiparticelle “sballando” di fatto il conteggio del rivelatore. Questa ipotesi sembrerebbe pero’ non veritiera dal momento che l’aumento di positroni e’ stato rivelato in qualsiasi direzione. Cerchiamo di capire meglio. Se ci fosse una pulsar che produce positroni, allora dovremmo avere delle direzioni spaziali in cui si vede l’aumento (quando puntiamo il rivelatore in direzione della pulsar) ed altre in cui invece, seguendo i modelli tradizionali, il numero diminuisce all’aumentare dell’energia. Come detto, l’aumento del numero di positroni si osserva in tutte le direzioni dello spazio.

Quale potrebbe essere allora la spiegazione?

Come potete immaginare, una delle ipotesi piu’ gettonate e’ quella della materia oscura. Come anticipato, esistono diverse ipotesi circa la natua di questa materia. Tra queste, alcune teorie vorrebbero la materia oscura come composta da particelle debolmente interagenti tra loro e con la materia ordinaria ma dotate di una massa. In questo scenario, particelle di materia oscura potrebbero interagire tra loro producendo nello scontro materia ordinaria, anche sotto forma di antimateria, dunque di positroni.

In questo scenario, i positroni in eccesso rivelati da AMS-02 sarebbero proprio prodotti dell’annichilazione, per dirlo in termini fisici, di materia oscura. Capite dunque che questi dati e la loro comprensione potrebbero farci comprendere maggiormente la vera natura della materia oscura e fissare i paletti su un ulteriore 20% della materia che costituisce il nostro universo.

Dal momento che la materia oscura permea tutto l’universo, questa ipotesi sarebbe anche compatibile con l’aumento dei positroni in tutte le direzioni.

Ora, come anticipato, siamo di fronte ai dati dei primi 18 mesi di missione. Ovviamente, sara’ necessario acquisire ancora molti altri dati per disporre di un campione maggiore e fare tutte le analisi necessarie per meglio comprendere questa evidenza. In particolare, i precisi rivelatori di AMS-02 consentiranno di identificare o meno una sorgente localizzata per i positroni in eccesso, confermando o escludendo la presenza di pulsar a discapito dell’ipotesi materia oscura.

Per completezza, spendiamo ancora qualche parola su questo tipo di ricerca e sull’importanza di questi risultati.

Come detto in precedenza, per poter confermare le ipotesi fatte, sara’ necessario prendere ancora molti dati. Ad oggi, AMS-02 potra’ raccogliere dati ancora per almeno 10 anni. Come anticipato, questo strumento e’ installato sulla Stazione Spaziale Internazionale. Questa scelta, piuttosto che quella di metterlo in orbita su un satellite dedicato, nasce proprio dall’idea di raccogliere dati per lungo tempo. La potenza richiesta per far funzionare AMS-02 consentirebbe un funzionamento di soli 3 anni su un satellite, mentre sulla ISS il periodo di raccolta dati puo’ arrivare anche a 10-15 anni.

AMS-02 e’ stato lanciato nel 2010 sullo Shuttle dopo diversi anni di conferme e ripensamenti, principalmente dovuti agli alti costi del progetto e alla politica degli Stati Uniti per le missioni spaziali.

Perche’ si chiama AMS-02? Il 02 indica semplicemente che prima c’e’ stato un AMS-01. In questo caso, si e’ trattato di una versione semplificata del rivelatore che ha volato nello spazio a bordo dello shuttle Discovery. Questo breve viaggio ha consentito prima di tutto di capire la funzionalita’ del rivelatore nello spazio e di dare poi la conferma definitiva, almeno dal punto di vista scientifico, alla missione.

Confronto tra AMS e missioni precedenti

Confronto tra AMS e missioni precedenti

Il risultato mostrato da AMS-02 in realta’ conferma quello ottenuto anche da altre due importanti missioni nello spazio, PAMELA e FERMI. Anche in questi casi venne rivelato un eccesso di positroni nei raggi cosmici ma la minore precisione degli strumenti non consenti’ di affermare con sicurezza l’aumento a discapito di fluttuazioni statistiche dei dati. Nel grafico a lato, vedete il confronto tra i dati di AMS e quelli degli esperimento precedenti. Come vedete, le bande di errore, cioe’ l’incertezza sui punti misurati, e’ molto maggiore negli esperimenti precedenti. Detto in termini semplici, AMS-02 e’ in grado di affermare con sicurezza che c’e’ un eccesso di positroni, mentre negli altri casi l’effetto poteva essere dovuto ad incertezze sperimentali.

Concludendo, i risultati di AMS-02 sono davvero eccezionali e mostrano, con estrema precisione, un aumento di positroni ad alta energia rispetto ai modelli teorici attesi. Alla luce di quanto detto, questo eccesso potrebbe essere dovuto all’annichilazione di particelle di materia oscura nel nostro universo. Questi risultati potebbero dunque portare un balzo in avanti nella comprensione del nostro universo e sulla sua composizione. Non resta che attendere nuovi dati e vedere quali conferme e novita’ potra’ mostrare questo potente rivelatore costruito con ampio contributo italiano.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Siamo fuori dal sistema solare … o forse no?

26 Mar

Oggi come oggi, siamo abituati a vedere immagini provenienti dalle nostre sonde e dai nostri telescopi che riguardano corpi e porzioni di cielo sempre piu’ lontane. Grazie a questa tecnologia siamo abituati, sbagliando, a pensare di conoscere ormai tutto cio’ che ci circonda e ad avver ormai avviato un programma di conquista spaziale ben oltre i limiti che solo fino a pochi anni fa potevamo immaginare.

Ora proviamo a farci una domanda: qual’e’ la distanza massima a cui abbiamo mandato un oggetto prodotto da noi? Abituati a ragionare come visto sopra, magari qualcuno potrebbe pensare che le nostre sonde viaggiano tranquillamente verso l’universo profondo inviando immagini. In relta’ non e’ cosi’.

Perche’ dico questo?

Qualche giorno fa, c’e’ stato un comunicato dell’American Geophysical Union che dava l’annuncio che la sonda Voyager 1 era finalmente uscita dal nostro Sistema Solare. Si tratterebbe in realta’ del primo oggetto terrestre che ha attraversato il confine del Sistema Solare.

Peccato che questo annuncio ha richiesto la smentita ufficiale della NASA.

La sonda Voyager 1

La sonda Voyager 1

L’equivoco e’ nato da un interpretazione sbagliata di questo articolo pubblicato dalla NASA:

NASA Intensity change

in cui si parla di variazione dei parametri osservati dalla sonda e dunque , secondo alcune interpretazioni, dell’attraversamento del limite ultimo del Sistema Solare.

Ecco la smentita della NASA, sotto forma di aggiornamento della posizione della Voyager:

NASA Voyager update

Ad oggi, la sonda si trova a circa 18 miliardi di kilometri dal Sole, ben oltre l’orbita dei pianeti del Sistema Solare, ma ancora all’interno di quest’ultimo.

Perche’ e’ nato questo sbaglio?

In realta’, tutto dipende da cosa intendiamo per confine del Sistema Solare. Ovviamente, non possiamo certo pensare che ci sia una linea di demarcazione netta o un cartello con la scritta “Sistema Solare” sbarrata.

Qual’e’ dunque il confine del Sistema Solare? Cosa c’e’ oltre i pianeti piu’ esterni?

Come possiamo immaginare, anche la definizione di questo parametro dipende ovviamente dal Sole e dalla sua influenza nello spazio che lo circonda. In un precedente articolo, abbiamo parlato di una zona molto lontana dal Sole, la nube di Oort, al bordo del del Sistema Solare e definita come il punto di origine di molte comete:

Cos’e’ una cometa

Bene, per poter definire il confine del Sistema Solare e’ necessario considerare due parametri fondamentali: il vento solare e la gravitazione, cioe’ la forza di attrazione esercitata dal Sole. Il limite esterno tracciato dal vento solare, arriva a circa 4 volte la distanza di Plutone dalla nostra Stella. Se invece ragioniamo sulla forza gravitazionale, matematicamente questa forza avrebbe un raggio d’azione infinito, ma si definisce una “sfera di Hill” come lo spazio in cui l’interazione puo’ essere considerata non nulla. Nel caso del Sole, la sfera di Hill avrebbe un raggio circa 1000 volte maggiore della distanza Sole-Plutone.

Come vedete, la definizione di confine del Sistema Solare non e’ affatto univoca ne tantomeno ben determinata. Nonostante questo, si e’ soliti definire il passaggio tra il Sistema Solare e lo spazio interstellare come il punto in cui l’influenza magnetica del Sole non viene piu’ esercitata.

Secondo questa definizione operativa, la Voyager 1 non avrebbe ancora superato il confine del Sistema Solare. Come potete leggere nel comunicato stampa della NASA, la sonda si trova in una regione, definita “magnetic highway”, in cui le particelle cariche subiscono una brusca variazione del moto a causa della variazione dell’intensita’ del campo magnetico. Se c’e’ ancora un campo magnetico, siamo ancora nel sistema solare.

A conferma di questo, sempre nel comunicato NASA si legge: una variazione dell’orientazione del campo magnetico e’ l’ultimo indicatore che segna il passaggio nello spazio interstellare. Dunque, la Voyager 1 e’ ancora nel nostro sistema solare.

Se vogliamo, questa e’ una discussione di forma o di definizione di parametri. E’ comunque molto interessante ragionare su quello che dovrebbe essere il confine del nostro Sistema Solare.

Nonostane le definizioni, due parole vanno spese sulle sonde Voyager che sono state lanciate nel 1977 con lo scopo di misurare importanti parametri di Giove e Saturno. Dopo 36 anni di navigazione nello spazio, queste eccezionali sonde ci hanno permesso di studiare molti aspetti del sistema solare e di aumentare senza dubbio le nostre conoscenze dello spazio. Di questa eccezionale missione abbiamo parlato anche in questi altri post:

Storia astronomica di Nibiru

Il vaticano a caccia di Nibiru

Proprio il fatto che queste sonde abbiano attraversato l’orbita dei pianeti esterni ha portato molti a metterle in relazione con la scoperta di Nibiru. Come sappiamo bene, di questo corpo non c’e’ assolutamente traccia. Per chi lo avesse perso, nell’articolo riportato in precedenza sulla storia del pianeta, potete leggere come quella del Decimo Pianeta fu veramente un’ipotesi scientifica del passato, ma che oggi abbiamo potuto mettere da parte grazie all’aumentata conoscenza proprio del Sistema Solare.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

 

Tutto pronto per la Panstarrs

9 Mar

In diversi articoli abbiamo parlato di comete. Come sappiamo, il 2013 e’ gia’ stato soprannominato l’anno delle comete, proprio a causa dei numerosi eventi di questo tipo attesi per quest’anno.

Dal punto di vista catastrofista e profetico, quella che maggiormente ha fatto parlare di se e’ senza dubbio la cometa ISON, su cui anche noi abbiamo pubblicato diversi post, soprattutto per scongiurare l’assurdo allarme di impatto con la Terra di cui ancora oggi si continua a parlare.

Premesso questo, tra pochi giorni invece fara’ la sua comparsa nei nostri cielo la cometa Panstarrs, scientificamente chiamata C2011-L4. Di questa, cosi’ come della ISON, abbiamo parlato in questi post:

E se ci salvassimo?

2013 o ancora piu’ oltre?

Adesso e’ il turno di Marte

Come visto, la Panstarrs e’ una cometa non periodica, cioe’ a singolo passaggio nel sistema solare perche’ su orbita aperta, scoperta nel 2011 nell’ambito del progetto di ricerca dell’osservatorio delle Hawaii per asteroidi e comete. Il programma in questione e’ ovviamente chiamato Panstarrs, Panoramic Survey Telescope & Rapid Response System.  Alle prime osservazioni, si era attribuita a questa cometa una luminosita’ molto elevata, valore poi ridimensionato nei primi giorni del 2013 alla luce dei nuovi dati raccolti.

La Panstarrs fotografata a febbraio a Melbourne

La Panstarrs fotografata a febbraio a Melbourne

Tra gennaio e febbraio, questa cometa e’ stata visibile nell’emisfero australe mentre tra il 10 ed il 13 Marzo sara’ visibile anche in quello boreale. Proprio il 10 Marzo, la Panstarrs passera’ al suo perielio. In questo punto, la radiazione solare aumentera’ la sua coda e di conseguenza anche la sua luminosita’. Purtroppo, i fattori che determinano l’effettiva luminosita’ di una cometa, e dunque anche la sua visibilita’ ad occhio nudo, sono molteplici e difficilmente prevedibili.

I giorni comunque in cui sara’ meglio visibile la Panstarrs sono quelli compresi tra il 10 ed il 13 Marzo. Le migliori osservazioni potranno essere fatte al crepuscolo, intorno alle 19, guardando verso Ovest, poco sopra l’orizzonte.

Come detto all’inizio, la Panstarrs non sara’ l’unica cometa visibile nel 2013. Oltre alla Ison:

Che la ISON abbia pieta’ di noi!

altre due comete passeranno vicine alla Terra. In concomitanza con la Panstarrs passera’ anche la cometa Bressi. Questa pero’, difficilmente sara’ visibile ad occhio nudo a causa della sua magnitudo che la dovrebbe rendere invisibile agli occhi. Ad aprile poi, sara’ il turno della cometa Lemmon. In questo caso, la cometa dovrebbe essere visibile dai primi giorni di Aprile alle prime luci dell’alba anche alle nostre latitudini.

Come detto invece, per la fine del 2013 e’ attesa la cometa ISON. In questo caso, se le previsioni fossero mantenute, la cometa dovrebbe offrire uno spettacolo veramente indimenticabile. La sua magnitudo stimata dovrebbe rendere la ISON visibile non solo ad occhio nudo, ma anche in pieno giorno.

Concludendo, il 2013 e’ un anno ricco di eventi importanti dal punto di vista astronomico. Al di la della visibilita’ o meno di alcune comete, il loro passaggio offre sempre la possibilita’ agli astronomi di compiere importanti misurazioni ma anche ai tanti astrofili di scattare foto molto belle. Ovviamente, compresa l’assurdita’ della speculazione circa l’eventuale impatto con la Terra, non resta che tenere il naso verso il cielo e sparare di riuscire a vedere lo spettacolo sempre affascinante che il passaggio di una cometa ci riserva sempre.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.