Tag Archives: risolutivo

Cosa posso vedere con il mio telescopio?

10 Feb

Diverse volte sono stato contattato da persone che vorrebbero affacciarsi al mondo dell’astronomia. Molti hanno una passione del genere e un desiderio innato di poter osservare il cielo ingrandendo via via dettagli sempre piu’ piccoli. Inutile dire quanti di noi restano a bocca aperta guardando una foto spaziale scattata in giro per il cosmo e desiderano a loro volta osservare con i loro occhi la bellezza della natura.

Ora pero’, queste passioni spesso si scontrano un po’ con il problema economico ma, soprattutto, con la grande confusione che la scelta di un telescopio “domestico” puo’ portare. Siete mai entrati in un negozio dove si vendono telescopi? Avete visto quante tipologie di strumenti ci sono? Molto spesso, le persone restano spaventate da una tale scelta e non sanno cosa prendere.

Per superare questo blocco, dovete prima di tutto capire “cosa volete guardare”!

Ovviamente, si potrebbe fare il pensiero facile e dire quello che costa di piu’ e’ il piu’ “potente” o quello piu’ grande e’ sicuramente migliore. Purtroppo, non sempre e’ cosi’.

Visto che molte persone mi hanno contattato per chiedermi cosa distingue un telescopio da un altro, ho deciso di scrivere un breve articolo per spiegare non le diverse tipologie di telescopio, bensi’ la cosiddetta “risoluzione angolare” di questi strumenti.

Immaginiamo di avere un telescopio con lenti circolari. Quello che vogliamo capire e’ “qual e’ la minima distanza che posso osservare?”. Per rispondere dobbiamo introdurre la cosiddetta “risoluzione angolare”, cioe’ la minima distanza angolare tra due oggetti che possono essere distinti con il vostro telescopio:

R=1,22 L/D

Quando siete di fronte a sistemi ottici, quella che comanda e’ la diffrazione che, senza entrare in troppi tecnicismi, fa si che sotto un certo valore, due oggetti vengano confusi come uno solo perche’ assolutamnete indistinguibili tra loro. Nella formula della risoluzione angolare, compare ovviamente il diametro della lente, D, e la lunghezza d’onda, L, che dobbiamo osservare.

Detto tra noi, questa formula e’ poco manegevole per cui possiamo prima di tutto dimenticarci della dipendenza dalla lunghezza d’onda e prendere un valore medio per lo spettro visibile che, in fondo, e’ quello che vogliamo osservare. Inoltre, la risoluzione angolare che abbiamo introdotto e’ misurata in radianti, unita’ abbastanza scomoda in questo contesto. Per semplicita’, possiamo utilizzare una misura in arcosecondi dove 3600 arcsec equivalgono ad un grado. Facendo queste considerazioni, possiamo riscrivere la formula come:

R = 11.6 / D

Supponiamo dunque di acquistare un bel telescopio con lente da 30 cm, la nostra risoluzione angolare sara’:

R = 11.6/30 = 0,39 arcsec

Se ora con questo oggetto volessi guardare la luna, quale sarebbe la minima distanza che riuscirei a distinguere?

Per rispondere a questa domanda, e’ necessario introdurre un’ulteriore formula. Come potete immaginare, in questo caso dobbiamo convertire, in base alla distanza, l’apertura angolare con una distanza in metri. Tralasciando dipendenze di questa formula da parametri di poco interesse per il nostro caso, possiamo scrivere la distanza distinguibile come:

Dm = (R/206265) x Dl

Dove Dm e’ ovviamente la distanza minima osservabile e Dl e’, nel nostro caso, la distanza Terra-Luna. Supponendo una distanza media di 400000 Km, da portare in metri per inserirla nella formula, abbiamo, riprendendo la risoluzione del telescopio da 30 cm dell’esempio:

Dm = (0.39/206265) x 400000000 = 750 metri

Cioe’ la minima distanza che possiamo percepire e’ di 750 metri. Detto in altre parole, riuscite a distinguere dettagli separati tra loro da una distanza di almeno 750 metri. Anche se questo numero puo’ sembrare enorme vi permette di poter osservare dettagli impressonanti della Luna. Vi ricordo che un telescopio da 30 cm, e’ un bellissimo strumento che necessita di attenzioni particolari. Non abbiamo preso uno strumento completamente amatoriale o entry level per questo calcolo esemplificativo.

Altro aspetto interessante che spesso viene citato dai complottisti: se siamo veramente stati sulla Luna, perche’, ad esempio, il telescopio Hubble non e’ in grado di osservare il punto di atterraggio con tutta le cose lasciate dall’equipaggio? La domanda e’ di principio ben posta, pensate che addirittura il modulo di discesa e’ rimasto sul punto perche’ impossibile da riportare indietro.

Cerchiamo di analizzare, sulla base dei calcoli gia’ fatti, se fosse possibile osservare questo modulo sfruttando la lente di Hubble. In questo caso, abbiamo una lente di 2.4 metri che vuole osservare la superficie lunare. Quale sarebbe la minima distanza che potrebbe essere osservata?

Ripetendo il calcolo trovate una minima distanza di circa 100 metri. Considerando che il modulo di discesa ha un diametro intorno ai 10 metri, capite bene come sia impossibile distinguere dall’orbita di Hubble questo reperto storico sulla superifcie della Luna. Spero che questo ragionamento, a prescindere dalle altre dimostrazioni di cui abbiamo gia’ parlato, sia sufficiente a capire, per chi ancora oggi crede che non siamo stati sulla Luna, come sia impossibile osservare dalla Terra il punto di atterraggio.

Concludendo, per comprendere il potere risolutivo di uno strumento ottico, e questo ragionamento vale sia per un telescopio che per un microscopio, e’ sufficiente conoscere un po’ di ottica e calcolare agevolmente la minima distanza osservabile Come visto, la grandezza della lente e’ uno dei parametri piu’ importanti da considerare. Tenete a mente questi risultati qualora decideste di acquistare un telescopio per dilettarvi in osservazioni spaziali. Ovviamente, come detto, prima di decidere la tipologia di telescopio, pensate sempre prima a cosa volete andare ad osservare e, dunque, a che distanza vi state approcciando.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Pubblicità

Previsioni Meteo: pioggia su Saturno

16 Apr

Fin da bambini, il pianeta del nostro sistema solare che attirava maggiormente l’attenzione, o che comunque rimaneva piu’ facilmente impresso, era senza dubbio Saturno. La caratteristica che ovviamente contraddistingue questo gigante gassoso e’  la presenza degli anelli.

Gli anelli di Saturno sono visibili da chiunque anche un telescopio di modesta entita’ ed infatti la loro prima osservazione risale al 1655 quando Huygens riusci’ a distinguerli chiaramente. Prima ancora, Galileo aveva notato delle protuberanze sulla superifice di Saturno, ma non era riuscito a distinguere bene gli anelli a causa del basso potere risolutivo del telescopio da lui stesso inventato.

Perche’ sto parlando di Saturno?

Proprio pochi giorni fa, e’ apparso un articolo sulla rivista Nature che dimostra un fenomeno molto curioso, cioe’ che su Saturno “piove”. Non sto parlando di una strana pioggia intesa come una caduta di particelle o di altre sostanze chimiche, ma proprio di acqua che cade sul pianeta.

Foto di Saturno in cui sono visibili le bande scure causate dalla pioggia

Foto di Saturno in cui sono visibili le bande scure causate dalla pioggia

Ovviamente, trattandosi di un gigante gassoso, la pioggia interessa gli strati piu’ alti dell’atmosfera di Saturno e cioe’ la sua ionosfera.

Come e’ stato possibile vedere questa pioggia? Nella figura riportata a lato, vedete una bellissima foto di Saturno scattata mediante il telescopio NIRSPEC dell’osservatorio KECK alle Hawaii. Vedete quelle bande piu’ scure presenti nell’atmosfera e che corrono parallele all’equatore del pianeta? Bene, questa bande di colore diverso sono proprio l’effetto della pioggia.

Detto questo, cerchiamo di capire meglio la ricerca.

L’atmosfera di Saturno, almeno nello strato che stiamo analizzando, e’ formata da elettroni liberi che quando vengono visualizzati all’infrarosso, come nel caso del telescopio NIRSPEC, appaiono molto luminosi dando un aspetto lucente alla ionosfera. La pioggia di cui stiamo parlando, e’ formata da particelle d’acqua caricate elettricamente che, interagendo con gli elettroni, li neutralizzano. Dato il meccanismo, capite dunque perche’ in corrispondenza delle precipitazioni la ionosfera appare piu’ scura.

La presenza di queste bande era stata gia’ osservata negli anni ’80 attraverso la sonda Voyager, ma le immagini catturate oggi, consentono prima di tutto di poter identificare con certezza l’origine di queste strutture, ma anche di osservare come circa il 40% del pianeta sia interessato dla fenomeno delle piogge.

A questo punto pero’, la domanda spontanea che possiamo porci e’: da dove viene questa pioggia?

La risposta e’ molto semplice: dagli anelli. Praticamente, gli anelli di Saturno si comportano come delle nubi intoro al pianeta, da cui vengono strappate alcune molecole di acqua che non cadono verticalmente, ma seguono il percorso mostrato nella foto precedente, dovuto al campo magnetico di Saturno.

Come forse saprete, gli anelli del pianeta sono composti principalmente da ghiaccio raggruppato in strutture che vanno del millesimo di millimetro, fino anche a qualche metro. Gli anelli sono praticamente piatti, con uno spessore medio dell’ordine dei 10 metri.

L’effetto della radiazione solare carica elettricamente le molecole d’acqua degli anelli che, a causa del forte campo magnetico di Saturno,  vengono letteralmente strappate e portate verso la superficie. Risultato di questo fenomeno e’  una vera e propria pioggia sul pianeta.

L’osservazione di questo fenomeno non e’ ovviamente fine a se stessa, ma potrebbe consentire di raccogliere molte informazioni sugli anelli e forse potrebbe aiutare a spiegare meglio l’origine di queste affascinanti strutture che circondano il pianeta.

Oggi, infatti, rimane ancora un mistero l’origine degli anelli di Saturno. Esistono ovviamente alcune ipotesi verosimili proposte, ma ancora mancano importanti tasselli per capire quale di queste ipotesi sia quella giusta.

La prima ipotesi, vorrebbe gli anelli come un residuo di un grande satellite di Saturno, distrutto dall’impatto di un asteroide o di un altro pianeta. In questo caso, i resti di questo presunto corpo, sarebbero rimasti in orbita intorno al pianeta, catturati ovviamente dalla forza di gravita’.

La seconda ipotesi vedrebbe invece gli anelli come il resto del materiale da cui si formo’ Saturno. La teoria accettata vede infatti i pianeti come formati dal raggruppamento di materiale spaziale. Nel caso di Saturno, non tutto il materiale a disposizione sarebbe stato utilizzato, ma una parte di questo sarebbe rimasto libero e cattturato in orbita dalla forza di Gravita’.

Come visto attraverso le tante osservazioni, sia da Terra che in orbita, gli anelli di Saturno presentano diversi strati man mano che ci allontaniamo dal pianeta, intervallati in alcuni casi anche da zone vuote dette “divisioni”. Ecco una foto molto dettagliata con l’indicazione di alcune strutture principali:

Struttura degli anelli di Saturno

Struttura degli anelli di Saturno

Gli anelli iniziano ad un’altezza di circa 6600 Km dalla superficie del pianeta e si estendono per oltre 120000 Km nello spazio. Come visto in precedenza, si tratta di strutture praticamente piatte e formate da blocchi piu’ o meno grandi di ghiaccio.

Lo studio dettagliato della pioggia di Saturno, puo’ aiutarci a comprendere anche l’evoluzione degli anelli. Oltre alle ipotesi viste circa la loro origine, e dimostrato il fatto che del materiale viene continuamente strappato dagli anelli per essere portato sul pianeta, gli anelli di Saturno dovrebbero avere una vita media piu’ o meno lunga in base ai presunti meccanismi di rifornimento di materiale, ma anche in base all’eta’ stessa di queste formazioni. Molto probabilmente, se gli anelli sono, come si pensa, piu’ giovani del pianeta, in un tempo piu’ o meno breve, dovrebbero scomparire a cuasa dell’erosione portata dal campo magnetico.

Crioeruzione su Encelado

Crioeruzione su Encelado

Per dirla tutta, ad oggi, solo dell’anello E, cioe’ il piu’ esterno, si sa l’origine certa ed i meccanismi di rifornimento di materiale. Il ghiaccio che compone questa struttura viene continuamente fornito dal satellite Encelado in cui sono presenti, come osservato direttamente, notevoli fenomeni di criovulcanismo. Con questo termine si intendono eruzioni di acqua, metano e ammoniaca generalmente allo stato liquido (criomagma) che non appena eruttati fondono a causa delle basse temperature. L’immagine riportata mostra proprio una foto scattata dalla soda Cassini nel 2005 della superficie di Encelado mentre e’ in corso una crioeruzione. Fenomeni di questo tipo sono stati osservati anche su alte lune del Sistema Solare e si sospetta siano presenti anche per alcuni corpi della fascia di Kuiper.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.