Tag Archives: mutua

Tutti i movimenti della Terra

27 Giu

Proprio ieri, una nostra cara lettrice ci ha fatto una domanda molto interessante nella sezione:

Hai domande o dubbi?

Come potete leggere, si chiede se esiste una correlazione tra i moti della Terra e l’insorgere di ere di glaciazione sul nostro pianeta. Rispondendo a questa domanda, mi sono reso conto come, molto spesso, e non è certamente il caso della nostra lettrice, le persone conoscano solo i moti principali di rotazione e rivoluzione. A questo punto, credo sia interessante capire meglio tutti i movimenti che il nostro pianeta compie nel tempo anche per avere un quadro più completo del moto dei pianeti nel Sistema Solare. Questa risposta, ovviamente, ci permetterà di rispondere, anche in questa sede, alla domanda iniziale che è stata posta.

Dunque, andiamo con ordine, come è noto la Terra si muove intorno al Sole su un’orbita ellittica in cui il Sole occupa uno dei due fuochi. Questo non sono io a dirlo, bensì questa frase rappresenta quella che è nota come I legge di Keplero. Non starò qui ad annoiarvi con tutte le leggi, ma ci basta sapere che Keplero fu il primo a descrivere cinematicamente il moto dei pianeti intorno ad un corpo più massivo. Cosa significa “cinematicamente”? Semplice, si tratta di una descrizione completa del moto senza prendere in considerazione il perché il moto avviene. Come sapete, l’orbita è ellittica perché è la legge di Gravitazione Universale a spiegare la tipologia e l’intensità delle forze che avvengono. Bene, detto molto semplicemente, Keplero ci spiega l’orbita e come il moto si evolverà nel tempo, Newton attraverso la sua legge di gravitazione ci dice il perché il fenomeno avviene in questo modo (spiegazione dinamica).

Detto questo, se nel nostro Sistema Solare ci fossero soltanto il Sole e la Terra, quest’ultima si limiterebbe a percorrere la sua orbita ellittica intorno al Sole, moto di rivoluzione, mentre gira contemporaneamente intorno al suo asse, moto di rotazione. Come sappiamo bene, il primo moto è responsabile dell’alternanza delle stagioni, mentre la rotazione è responsabile del ciclo giorno-notte.

Purtroppo, ed è un eufemismo, la Terra non è l’unico pianeta a ruotare intorno al Sole ma ce ne sono altri, vicini, lontani e più o meno massivi, oltre ovviamente alla Luna, che per quanto piccola è molto vicina alla Terra, che “disturbano” questo moto molto ordinato.

Perche questo? Semplice, come anticipato, e come noto, due masse poste ad una certa distanza, esercitano mutamente una forza di attrazione, detta appunto gravitazionale, direttamente proporzionale al prodotto delle masse dei corpi e inversamente proporzionale al quadrato della loro distanza. In altri termini, più i corpi sono massivi, maggiore è la loro attrazione. Più i corpi sono distanti, minore sarà la forza che tende ad avvicinarli. Ora, questo è vero ovviamente per il sistema Terra-Sole ma è altresì vero per ogni coppia di corpi nel nostro Sistema Solare. Se Terra e Sole si attraggono, lo stesso fanno la Terra con la Luna, Marte con Giove, Giove con il Sole, e via dicendo. Come è facile capire, la componente principale delle forze è quella offerta dal Sole sul pianeta, ma tutte queste altre “spintarelle” danno dei contributi minori che influenzano “in qualche modo” il moto di qualsiasi corpo. Bene, questo “in qualche modo” è proprio l’argomento che stiamo affrontando ora, cioè i moti minori, ad esempio, della Terra nel tempo.

Dunque, abbiamo già parlato dei notissimi moti di rotazione e di rivoluzione. Uno dei moti che invece è divenuto famoso grazie, o forse purtroppo, al 2012 è quello di precessione degli equinozi, di cui abbiamo già parlato in questo articolo:

Nexus 2012: bomba a orologeria

Come sapete, l’asse della Terra, cioè la linea immaginaria che congiunge i poli geografici ed intorno al quale avviene il moto di rotazione, è inclinato rispetto al piano dell’orbita. Nel tempo, questo asse non rimane fisso, ma descrive un doppio cono come mostrato in questa figura:

Moto di precessione degli equinozi e di nutazione

Moto di precessione degli equinozi e di nutazione

Il moto dell’asse è appunto detto di “precessione degli equinozi”. Si tratta di un moto a più lungo periodo dal momento che per compiere un intero giro occorrono circa 25800 anni. A cosa è dovuto il moto di precessione? In realtà, si tratta del risultato di un duplice effetto: l’attrazione gravitazionale da parte della Luna e il fatto che il nostro pianeta non è perfettamente sferico. Perché si chiama moto di precessione degli equinozi? Se prendiamo la linea degli equinozi, cioè quella linea immaginaria che congiunge i punti dell’orbita in cui avvengono i due equinozi, a causa di questo moto questa linea si sposterà in senso orario appunto facendo “precedere” anno dopo anno gli equinozi. Sempre a causa di questo moto, cambia la costellazione visibile il giorno degli equinozi e questo effetto ha portato alla speculazione delle “ere new age” e al famoso “inizio dell’era dell’acquario” di cui, sempre in ambito 2012, abbiamo già sentito parlare.

Sempre prendendo come riferimento la figura precedente, notiamo che c’è un altro moto visibile. Percorrendo il cono infatti, l’asse della Terra oscilla su e giù come in un moto sinusoidale. Questo è noto come moto di “nutazione”. Perché avviene questo moto? Oltre all’interazione della Luna, molto vicina alla Terra, anche il Sole gioca un ruolo importante in questo moto che proprio grazie alla variazione di posizione relativa del sistema Terra-Luna-Sole determina un moto di precessione non regolare nel tempo. In questo caso, il periodo della nutazione, cioè il tempo impiegato per per compiere un periodo di sinusoide, è di circa 18,6 anni.

Andando avanti, come accennato in precedenza, la presenza degli altri pianeti nel Sistema Solare apporta dei disturbi alla Terra, così come per gli altri pianeti, durante la sua orbita. Un altro moto da prendere in considerazione è la cosiddetta “precessione anomalistica”. Di cosa si tratta? Abbiamo detto che la Terra compie un’orbita ellittica intorno al Sole che occupa uno dei fuochi. In astronomia, si chiama “apside” il punto di massima o minima distanza del corpo che ruota da quello intorno al quale sta ruotando, nel nostro caso il Sole. Se ora immaginiamo di metterci nello spazio e di osservare nel tempo il moto della Terra, vedremo che la linea che congiunge gli apsidi non rimane ferma nel tempo ma a sua volta ruota. La figura seguente ci può aiutare meglio a visualizzare questo effetto:

Moto di precessione anomalistica

Moto di precessione anomalistica

Nel caso specifico di pianeti che ruotano intorno al Sole, questo moto è anche chiamato di “precessione del perielio”. Poiché il perielio rappresenta il punto di massimo avvicinamento di un corpo dal Sole, il perché di questo nome è evidente. A cosa è dovuta la precessioni anomalistica? Come anticipato, questo moto è proprio causato dalle interazioni gravitazionali, sempre presenti anche se con minore intensità rispetto a quelle del Sole, dovute agli altri pianeti. Nel caso della Terra, ed in particolare del nostro Sistema Solare, la componente principale che da luogo alla precessione degli apsidi è l’attrazione gravitazionale provocata da Giove.

Detto questo, per affrontare il prossimo moto millenario, torniamo a parlare di asse terrestre. Come visto studiando la precessione e la nutazione, l’asse terrestre descrive un cono nel tempo (precessione) oscillando (nutazione). A questo livello però, rispetto al piano dell’orbita, l’inclinazione dell’asse rimane costante nel tempo. Secondo voi, con tutte queste interazioni e questi effetti, l’inclinazione dell’asse potrebbe rimanere costante? Assolutamente no. Sempre a causa dell’interazione gravitazionale, Sole e Luna principalmente nel nostro caso, l’asse della Terra presenta una sorta di oscillazione variando da un massimo di 24.5 gradi ad un minimo di 22.1 gradi. Anche questo movimento avviene molto lentamente e ha un periodo di circa 41000 anni. Cosa comporta questo moto? Se ci pensiamo, proprio a causa dell’inclinazione dell’asse, durante il suo moto, uno degli emisferi della Terra sarà più vicino al Sole in un punto e più lontano nel punto opposto dell’orbita. Questo contribuisce notevolmente alle stagioni. L’emisfero più vicino avrà più ore di luce e meno di buio oltre ad avere un’inclinazione diversa per i raggi solari che lo colpiscono. Come è evidente, insieme alla distanza relativa della Terra dal Sole, la variazione dell’asse contribuisce in modo determinante all’alternanza estate-inverno. La variazione dell’angolo di inclinazione dell’asse può dunque, con periodi lunghi, influire sull’intensità delle stagioni.

Finito qui? Non ancora. Come detto e ridetto, la Terra si muove su un orbita ellittica intorno al Sole. Uno dei parametri matematici che si usa per descrivere un’ellisse è l’eccentricità, cioè una stima, detto molto semplicemente, dello schiacciamento dell’ellisse rispetto alla circonferenza. Che significa? Senza richiamare formule, e per non appesantire il discorso, immaginate di avere una circonferenza. Se adesso “stirate” la circonferenza prendendo due punti simmetrici ottenete un’ellisse. Bene, l’eccentricità rappresenta proprio una stima di quanto avete tirato la circonferenza. Ovviamente, eccentricità zero significa avere una circonferenza. Più è alta l’eccentricità, maggiore sarà l’allungamento dell’ellisse.

Tornando alla Terra, poiché l’orbita è un’ellisse, possiamo descrivere la sua forma utilizzando l’eccentricità. Questo valore però non è costante nel tempo, ma oscilla tra un massimo e un minimo che, per essere precisi, valgono 0,0018 e 0,06. Semplificando molto il discorso, nel tempo l’orbita della Terra oscilla tra qualcosa più o meno simile ad una circonferenza. Anche in questo caso, si tratta di moti millenari a lungo periodo ed infatti il moto di variazione dell’eccentricità (massimo-minimo-massimo) avviene in circa 92000 anni. Cosa comporta questo? Beh, se teniamo conto che il Sole occupa uno dei fuochi e questi coincidono nella circonferenza con il centro, ci rendiamo subito conto che a causa di questa variazione, la distanza Terra-Sole, e dunque l’irraggiamento, varia nel tempo seguendo questo movimento.

A questo punto, abbiamo analizzato tutti i movimenti principali che la Terra compie nel tempo. Per affrontare questo discorso, siamo partiti dalla domanda iniziale che riguardava l’ipotetica connessione tra periodi di glaciazione sulla Terra e i moti a lungo periodo. Come sappiamo, nel corso delle ere geologiche si sono susseguiti diversi periodi di glaciazione sul nostro pianeta, che hanno portato allo scioglimento dei ghiacci perenni e all’innalzamento del livello dei mari. Studiando i reperti e la quantità di CO2 negli strati di ghiaccio, si può notare una certa regolarità dei periodi di glaciazione, indicati anche nella pagina specifica di wikipedia:

Wiki, cronologia delle glaciazioni

Come è facile pensare, molto probabilmente ci sarà una correlazione tra i diversi movimenti della Terra e l’arrivo di periodi di glaciazione più o meno intensi, effetto noto come “Cicli di Milanković”. Perché dico “probabilmente”? Come visto nell’articolo, i movimenti in questione sono diversi e con periodi più o meno lunghi. In questo contesto, è difficile identificare con precisione il singolo contributo ma quello che si osserva è una sovrapposizione degli effetti che producono eventi più o meno intensi.

Se confrontiamo i moti appena studiati con l’alternanza delle glaciazioni, otteniamo un grafico di questo tipo:

Relazione tra i periodi dei movimenti della Terra e le glaciazioni conosciute

Relazione tra i periodi dei movimenti della Terra e le glaciazioni conosciute

Come si vede, è possibile identificare una certa regolarità negli eventi ma, quando sovrapponiamo effetti con periodi molto lunghi e diversi, otteniamo sistematicamente qualcosa con periodo ancora più lungo. Effetto dovuto proprio alle diverse configurazioni temporali che si possono ottenere. Ora, cercare di trovare un modello matematico che prenda nell’insieme tutti i moti e li correli con le variazioni climatiche non è cosa banale e, anche se sembra strano da pensare, gli eventi che abbiamo non rappresentano un campione significativo sul quale ragionare statisticamente. Detto questo, e per rispondere alla domanda iniziale, c’è una relazione tra i movimenti della Terra e le variazioni climatiche ma un modello preciso che tenga conto di ogni causa e la pesi in modo adeguato in relazione alle altre, non è ancora stato definito. Questo ovviamente non esclude in futuro di poter avere una teoria formalizzata basata anche su future osservazioni e sull’incremento della precisione di quello che già conosciamo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

La luna si allontana dalla Terra?

13 Set

In una delle tante discussioni del forum:

Psicosi 2012, forum

e’ sorta la domanda: e’ vero che la Luna si sta allontanando dalla Terra? Se si, con che velocita’? E’ vero che questo meccanismo e’ inspiegabile dalla scienza?

Piu’ volte qui sul blog ci siamo fermati a parlare di Luna. Il perche’ di questo e’ facilmente comprensibile, data la sua vicinanza, la Luna ha da sempre rappresentato un laboratorio spaziale a portata di mano. A distanza di oltre 40 anni dal primo allunaggio, anche se le missioni di esplorazione sulla superficie sono ormai considerate inutili e troppo dispendiose, la Luna permette ancora importanti studi, primo tra tutti la verifica della teoria della relativita’ generale mediante misure di distanza.

Detto questo, le risposte alle domande poste inizialmente sono, in linea di principio, molto semplici: la Luna si sta allontanando dalla Terra, ma con una velocita’ bassissima. Questo meccanismo, come vederemo a breve, non solo e’ comprensibile scientificamente, ma e’ anche dimostrabile utilizzando le semplici leggi della fisica classica.

A questo punto, come nostra abitudine, non ci resta che verificare queste affermazioni, chiamando proprio in causa la scienza.

Come ricorderete, in questo articolo:

Le forze di marea

abbiamo visto come l’attrazione mutua tra Terra e Luna sia la repsonsabile dei movimenti delle acque, cioe’ delle cosiddette maree. Bene, proprio in questo effetto possiamo trovare la chiave per spiegare anche questa nuova domanda.

Ragioniamo insieme, se la Luna, mediante la sua attrazione, provoca l’alta marea, questo sisgnifica che sulla Terra, nella direzione rivolta verso la Luna, si formera’ una protuberanza. Ovviamente questo effetto, a causa della minore resistenza meccanica, e’ molto marcato sulle acque.

Bene, ora pero’, dobbiamo tener conto del moto dei due corpi. Mentre la Terra impiega 24 ore per girare intorno al suo asse, la Luna gira intorno alla Terra in 28 giorni. Questo significa che la velocita’ della Terra e’ maggiore di quella della Luna. In questo caso, la protuberanza sulla Terra dovuta all’attrazione si trovera’ piu’ avanti della linea immaginaria che unisce Terra e Luna. Detto in altri termini, la Luna provoca la protuberanza ma, a causa della minor velocita’, si trovera’ sempre ad inseguire questa protuberanza.

La situazione e’ facilmente illustrata da questa immagine:

Protuberanza sulla Terra dovuta all'attrazione lunare

Protuberanza sulla Terra dovuta all’attrazione lunare

Benissimo, ora ragioniamo sempre in termini di attrazione gravitazionale. Questa protuberanza sulla Terra esercitera’ a sua volta un’attrazione sulla Luna. Questa componente della forza, fate sempre riferimento alla figura precedente, tendera’ a tirare in avanti la Luna. Cosa significa? A causa della protuberanza, e’ come se la Luna venisse trascinata in avanti con una conseguente accelerazione.

Cosa c’entra l’accelerazione con la distanza?

Per poter rispondere a questa domanda, dobbiamo chiamare in causa le leggi di Keplero. Come sapete, queste leggi, che possiamo definire puramente meccaniche, descrivono il moto dei pianeti dal punto di vista gravitazionale, prevedendo i parametri di rotazione e di orbita dei corpi.

Per le leggi di Keplero, se la velocita’ del satellite aumenta, allora deve aumentare il raggio della sua orbita, cioe’ il pianeta stesso tendera’ ad allontanarsi durante il moto. Detto in altri termini, a causa della sua stessa attrazione, che provoca effetti di marea, la Luna tende ad allontanarsi dalla Terra.

Di quanto si allontana?

Se state pensando che da un giorno all’altro la Luna si perdera’ nello spazio, siete fuori strada. Ad oggi, l’allontanamento della Luna dalla Terra e’ di circa 4 cm all’anno. Questo significa che ci vorranno milioni di anni prima di perdere il nostro satellite.

Prima di concludere, vorrei aprire due parentesi. La prima e’: come misuriamo l’allontanamento della Luna? La risposta la sappiamo gia’, mediante il cosiddetto Lunar Laser Ranging, cioe’ si spara da Terra un laser sulla Luna, si aspetta che la luce torni indietro e, misurando il tempo, si ricava la distanza. Questo e’ possibile grazie alla matrice di specchi montata sulla Luna dalle missioni Apollo.

Di questo abbiamo parlato in questo post:

Ecco perche’ Curiosity non trova gli alieni!

Vi ricordo che questa e’ una prova diretta del fatto che siamo stati sulla Luna. Se non ci fossero le matrici di CCR, misure di questo tipo, che vengono condotte anche in laboratori italiani, non sarebbero possibili. Questo giusto per smontare l’assurda teoria complottista dell’allunaggio.

Altra parentesi e’ invece: cosa comporta la presenza della Luna? La risposta in questo caso e’ molto complessa perche’ riguarda tantissimi aspetti legati al nostro pianeta. Prima di tutto, la presenza della Luna, cioe’ la formazione di un sistema legato gravitazionalmente con la Terra, riesce a stabilizzare le oscillazioni del nostro asse. Come potete facilmente immaginare, questo stabilizza la durata della stagioni, la durata del giorno e, dunque, il clima del nostro pianeta che, senza Luna, sarebbe stato molto diverso e, forse, inadatto ad ospitare la vita. Inoltre, la rotazione della Terra intorno al proprio asse e’ determinata dalla presenza della Luna. Questo consente di avere una durata del giorno, e dunque dell’alternanza sole-buio, come quella che vediamo, cioe’ in grado di assicurare escursioni termiche non troppo elevate.

Per ultimo, l’effetto indiretto della Luna, cioe’ le maree, permettono un rimescolamento delle acque molto importante per il nostro ecosistema. Secondo alcune teorie, senza questi meccanismi, sarebbe stato molto difficile formare la vita sulla Terra.

Come vedete, oltre ad ispirare poesie e romanticismo, e serve anche questo, la Luna ha un importante influenza sulla Terra sia dal punto di vista orbitale che dell’ecosistema a cui anche noi apparteniamo.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.