Tag Archives: moka

Il processo di decaffeinizzazione

8 Ago

Nella sezione:

Hai domande o dubbi?

una nostra cara lettrice ci chiede di parlare del “caffe’ decaffeinato”. Credo che questo argomento sia molto interessante perche’ molto spesso si sentono tantissime leggende su questa soluzione. Tutti noi, almeno una volta, avremo sentito dire: “fa bene”, “fa male”, “e’ cancerogeno”, “e’ buono”, “fa schifo”, ecc. Come al solito, tante opinioni in disaccordo tra loro. Cerchiamo dunque di capire meglio come viene realizzato questo caffe’, cioe’ quali sono le tecniche maggiormente utilizzate per la decaffeinizzazione e, soprattutto, che genere di risultato si ottiene.

Qualche tempo fa, avevamo gia’ parlato della cosiddetta “fisica del caffe'”, parlando del principio di funzionamento della moka, spesso ignorato da molti, anche tra gli addetti ai lavori:

La fisica del caffe’

A questo punto, non resta che parlare invece della materia prima necessaria!

Come sapete bene, la caffeina, il cui nome chimico e’ 1,3,7-trimetilxantina, fu isolata per la prima volta nel 1820 ed e’ contenuta in almeno 60 varieta’ di piante, tra cui, ovviamente, caffe’, the, guarana’, cacao, ecc. La caffeina e’ un potente stimolante ed interagisce sul nostro umore aumentando i livelli di dopamina e bloccando i recettori dell’adenosina. Per inciso, quando i livelli di quest’ultima raggiungono una certa soglia, avvertiamo la sensazione di sonno.

Queste caratteristiche sono purtroppo sia il pro che il contro della caffeina. L’assunzione di questa sostanza puo’ infatti avere effetti dannosi in persone ansiose, con problemi di sonnoloenza, tachicardia, ecc. Come anticipato, l’effetto della caffeina e’ tutt’altro che blando, a livello biologico, questa molecola e’ un vero e proprio veleno, che risulta letale sopra una certa soglia, ovviamente non raggiungibile assumendo tazzine di caffe’.

Ora pero’, molte persone, tra cui il sottoscritto, adorano il caffe’ anche solo per il suo sapore o per la ritualita’ dell’assunzione. Proprio per questo motivo, si sono affinate diverse tecniche per eliminare la caffeina dai chicchi di caffe’, ottenendo una bevanda non stimolante, appunto il caffe’ decaffeinato.

Il decaffeinato fu inventato a Brema nel 1905 dal tedesco Ludwig Roselius, figlio di un assaggiatore di caffè, per conto della azienda “Kaffee Handels Aktien Gesellschaft”. Proprio in onore del nome dell’azienda, questo tipo di caffe’ venne chiamato prendendo le iniziali e dunque commercializzato come Caffe’ HAG. Per ottenere questo risultato, i chicchi di caffe’ venivano cotti a vapore con una salamoia di acqua e benzene. Quest’ultimo era il solvente in grado di estrarre la caffeina dal chicco.

Successivamente, questo metodo venne abbandonato trovando soluzioni alternative da utilizzare prima della tostatura, cioe’ quando il fagiolo e’ ancora verde. La tecnica maggiormente utilizzata fino a pochi anni fa, era quella che prevedeva l’utilizzo di diclorometano per estrarre la caffeina. Successivamente a questo trattamento, il caffe’ veniva lavato a vapore per eliminare il diclorometano, che ha un punto di ebollizione di circa 40 gradi. A questo punto, si passava alla essiccatura e tostatura dei chicchi a 200 gradi.

Questo metodo presentava purtroppo alcuni problemi, che poi sono quelli che spingono ancora oggi le leggende di cui parlavamo all’inizio.

Il diclorometano e’ una sostanza cancerogena per l’essere umano. Come anticipato, successivamente al suo utilizzo, il caffe’ passava per altri due processi con temperature notevolmente superiori al punto di ebollizione del diclorometano. Questo trattamento assicurava la completa evaporazione del potenziale cancerogeno sui chicchi.

Perche’ allora e’ stata abbandonata la tecnica?

Il problema reale di questa tecnica di decaffeinizzazione e’ che durante il trattamento con diclorometano, oltre alla caffeina, venivano estratte altre sostanze chimiche dai chicchi che contribuiscono al sapore della bevanda finale. In tal senso, il decaffeinato ottenuto con questa soluzione, aveva un sapore molto diverso da quello originale. Inoltre, anche altre sostanze benefiche per l’organismo venivano estratte dal caffe’ mentre venivano prodotti oli contenenti molecole da alcuni ritenute dannose per l’uomo.

Detto questo, capite bene dove nascono le leggende da cui siamo partiti, circa il sapore del decaffeinato e la pericolosita’ del suo utilizzo.

Oggi, la tecnica con diclorometano e’ quasi completamente abbandonata a favore dell’utilizzo della CO2 supercritica. Con questo termine si intende solo una stato con pressioni e temperature tali da renderla una via di mezzo tra un gas e un fluido. Nel processo di decaffeinizzazione, i chicchi di caffe’ vengono prima inumiditi con vapore per rigonfiarli ed aumentare la percentuale di acqua. Questo sempre con fagioli verdi, cioe’ prima della tostatura. A questo punto, i chicchi passano in colonne di estrattori insieme alla CO2 ad una tempratura tra 40 e 80 gradi ed una pressione intorno alle 150 atmosfere. Questo passaggio permette all’anidride carbonica di portare via la caffeina, toccando in minima parte le altre sostanze contenute nel caffe’. A seguito di questo passaggio, si procede ovviamente alla tostatura.

Quali sono i vantaggi di questa tecnica rispetto alla precedente?

Prima di tutto, si utilizza solo CO2, cioe’ una sostanza non pericolosa per l’essere umano. Il processo consente di estrarre gran parte della caffeina contenuta nel caffe’. Per legge, un caffe’ decaffeinato non deve avere piu’ del 0,1% di caffeina. Non intaccando, se non in minima parte, le altre sostanze, il sapore del caffe’ rimane quasi invariato, e quindi e’ molto piu’ simile all’analogo con caffeina.

Oltre a questi aspetti, la CO2 in uscita dal processo e’ ovviamente ricca di caffeina. Questa sostanza e’ notevolmente utilizzata in diversi settori tra cui la medicina, la farmacologia, la botanica, ecc. Proprio per questo motivo, in virtu’ del processo utilizzato, e’ possibile estrarre caffeina pura dall’anidride carbonica mediante un abbassamento di temperatura o utilizzando carboni attivi.

Lo stesso processo viene utilizzato anche su altre piante, oltre che per l’estrazione del colosterolo dal burro o dell’essenza dai fiori di luppolo, utilizzata nella produzione della birra.

Concludendo, molte delle leggende intorno al decaffeinato nascono in virtu’ del precedente metodo utilizzato per l’estrazione della caffeina dai chicchi. Oggi, l’utilizzo di CO2 supercritica consente di estrarre la maggior parte della caffeina, che oltre tutto puo’ essere recuperata e utilizzata in altri settori, lasciando quasi del tutto inalterate le altre sostanze che contribuiscono la sapore di questa ottima bevanda.

 

”Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Pubblicità

Il sale prima o dopo?

13 Mag

Qualche tempo fa, avevamo scritto un post un po’ particolare, diverso da quelli a cui siamo abituati:

La fisica del caffe’

eravamo andati a vedere come funziona la moka, o meglio, qual e’ la fisica dietro la preparazione del caffe’. In quell’occasione avevamo visto come tanti pensino cosa sbagliate soprattutto sull’ebollizione dell’acqua all’interno della caldaia.

Sempre in termini di acqua che bolle, in questo post, vorrei invece rispondere al quesito su cui tante persone di sovente hanno una concezione diversa: “mettendo il sale nell’acqua, bolle prima o dopo?”

Questa e’ una domanda che, soprattutto noi italiani amanti della pasta, ci saremo fatti decine di volte. Purtroppo, anche in questo caso, molte persone pensano la cosa sbagliata.

Secondo voi bolle prima o dopo?

Cerchiamo di capire la risposta parlando un po’ di scienza.

Come tutti sanno l’acqua bolle a 100 gradi centigradi. Sicuri? Questa affermazione non e’ completa. L’acqua bolle a 100 gradi centigradi al livello del mare, cioe’ alla pressione di 1 atmosfera. Poiche’ la pressione altro non e’ che il peso della colonna d’aria che ci sovrasta, salendo di quota la pressione diminuisce e dunque l’acqua bollira’ prima. Per darvi qualche numero, la temperatura di ebollizione dell’acqua diminuisce circa di un grado ogni 300 metri di altitudine. Se, ad esempio, vi trovate in un rifugio di montagna a 2100 metri di altitudine, l’acqua bollira’ a 93 gradi centigradi.

Anche sui 100 gradi nominali, ci sarebbe da controbattere. In realta’, questa e’ la temperatura di ebollizione dell’acqua pura, che non e’ assolutamente quella che utilizziamo per cucinare in cui sono disciolti sempre dei sali.

Cosa dire invece dell’aggiunta di sale?

Sciogliendo un sale nell’acqua, in realta’ un qualsiasi soluto in un solvente, si vanno a modificare quelle che ci chiamano “proprieta’ colligative” del solvente. Tra queste, vi e’ il cosiddetto aumento “ebullioscopico”. Cosa significa? La presenza del solvente nel soluto, aumenta il punto di ebollizione.

Se ci riferiamo al caso dell’acqua, si ha un aumento ebullioscopico di 1 grado, per un litro di solvente, ogni 58 grammi di sale. Ovviamente, la quantita’ di sale che mettiamo nell’acqua e’ nettamente inferiore a 58 grammi, per cui in realta’, si ha un innalzamento del punto di ebollizione, ma parliamo di variazioni minime. Nonostante questo, “aggiungendo il sale prima l’acqua bolle dopo”.

Interessante e’ invece il discorso “coperchio o non coperchio” mentre riscaldiamo l’acqua. In questo caso, anche se molti pensano il contrario, chiudere la pentola puo’ aiutare molto a far salire la temperatura dal momento che riduce la dispersione di calore all’esterno del sistema, con un notevole risparmio energetico. In rete ho trovato i risultati di un esperimento molto carino. Prendendo 4 litri di acqua, si sono misurati i tempi necessari a raggiungere l’ebollizione nelle due situazioni, e misurando anche le temperature intermedie con i relativi tempi:

T °C Minuti con coperchio Minuti senza coperchio
40 6:56 7:05
50 10:36 10:40
60 14:09 14:32
70 17:47 18:40
80 21:43 23:33
90 25:34 29:06
96 28:08 34:13

Come vedete, c’e’ un aumento di circa il 25% per arrivare a 96 gradi non utilizzando il coperchio. Ovviamente, l’esperimento e’ stato fatto a parita’ di condizioni per cui, per fa bollire una comune pentola d’acqua da 4 litri, dovrete tenere il fuoco acceso per 6 minuti in piu’ ogni volta.

Spesso, parlando con le persone, mi viene detto che aggiungendo il sale l’acqua bolle prima perche’ nel momento in cui lo mettete nella pentola si vede un incremento dell’ebollizione. Questo in realta’ e’ vero solo in parte. Fate questo esperimento molto semplice, con l’acqua in ebollizione, buttate il sale e vedrete ribollire piu’ vigorosamente. Questo risultato e’ spesso quello che porta fuori strada le persone.

A cosa e’ dovuto?

Le molecole di sale si comportano come centri di nucleazione all’interno dell’acqua. Detto in parole molto semplici, per potersi formare, le bolle hanno bisogno di un centro intorno al quale generarsi e salire in superficie. Il sale che mettete nell’acqua fa appunto da appiglio per le bolle che non aumentano la loro temperatura, ma trovano terreno fertile per la loro formazione.

Prima di chiudere, vorrei tornare un attimo sulle proprieta’ colligative. Oltre all’innalzamento ebullioscopico, scioglere un soluto in un solvente produce anche l’abbassamento crioscopico, cioe’ diminuisce il punto di fusione del liquido. Vi siete mai chiesti perche’ durante l’inverno si butta il sale sulle strade? Ovviamente tutti sanno che serve per non far formare il ghiaccio. Bene, anche in questo caso si parla di proprieta’ colligative. Aggiungere sale fa abbassare il punto di fusione dell’acqua che dunque non congelera’ piu’ a 0 gradi, ma a temperature piu’ basse. Detto questo, non impedite che si formi il ghiaccio, semplicemente, affinche’ avvenga la transizione di fase, e’ necessario scendere di piu’ con la temperatura.

Come vedete, sia il discorso ebollizione che quello fusione dell’acqua possono essere ricondotti alle stesse proprieta’ chimico-fisiche, dette appunto “proprieta’ colligative”.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

La fisica del caffe’

4 Mar

Forse leggendo il titolo di questo post avete pensato di aver sbagliato indirizzo internet oppure che io mi sia impazzito. In realta’ niente di tutto questo. In questo post vorrei aprire una piccola parentesi prettamente scientifica e parlare appunto della “fisica del caffe'” o meglio di come funziona una moka.

Ribadisco non sono impazzito, semplicemente oggi ho realizzato che tutti conoscono la moka, ma in realta’ pochi sanno veramente come funziona. Credo che in realta’, anche molti appassionati di scienza ignorino il vero funzionamento di questo oggetto presente in tutte le case di noi italiani. Per questo motivo ho deciso di scrivere questo semplice post per spiegare come funziona la “macchinetta del caffe'”. In fondo, siamo sempre su un blog di scienza, e proprio di questo vogliamo parlare.

Schema di una moka

Schema di una moka

Partiamo dalle cose ovvie, la moka e’ composta di 3 parti principali in alluminio: il bollitore, un filtro metallico a forma di imbuto e dal raccoglitore. Come sapete tutti, si mette l’acqua nel bollitore, il caffe’ macinato nel filtro,si mette la moka sul fuoco e nel raccoglitore esce il caffe’.

Bene, se pensate che mettendo la moka sul fuoco portate l’acqua in ebollizione, il vapore passa nel filtro e condensa mentre risale verso l’alto, allora e’ il caso che continuiate a leggere il post. Questa risposta, comune alla maggior parte delle persone, e’ in realta’ sbagliata.

Dalla termodinamica, per una normale moka da tre tazzine, la pressione alla completa ebollizione dell’acqua nel bollitore  sarebbe circa di 1600-1700 atmosfere. In questo caso la moka sarebbe equivalente ad una bomba messa sul fornello.

Come funziona in realta’ la moka?

Quando riempiamo il bollitore, il livello dell’acqua arriva piu’ o meno a quello della valvola di sicurezza. Questo significa che quando chiudiamo, sopra all’acqua, e’ presente un certo volume di aria. Mettendo la macchinetta sul fuoco, solo una minima parte dell’acqua raggiunge l’evaporazione mentre l’aria, appunto riscaldandosi, aumenta la propria pressione cercando di espandersi in un volume ben delimitato.

L’espansione dell’aria, spinge verso il basso l’acqua che trova l’unica via di fuga nel beccuccio del filtro ed in questo modo risale verso la polvere di caffe’. L’alta pressione trasforma dunque l’acqua, nel suo passaggio attraverso l’imbuto, nella bevanda che tutti conosciamo. La continua spinta dal basso verso l’alto dell’ulteriore acqua, spinge il caffe’ verso il raccoglitore dove viene raccolto.

In questo caso quindi la pressione all’interno del bollitore e’ solo di poco superiore a quella atmosferica e, come detto, solo una minima parte dell’acqua arriva all’ebollizione.

Come verificare questo? Se ci fate caso, alla fine della preparazione si ha sempre uno sbuffo di vapore che fuoriesce dal raccoglitore. Questo indica semplicemente che il livello dell’acqua nel bollitore e’ arrivato sotto l’imbuto del filtro e quindi, sempre a cusa della spinta dovuta all’espansione, l’aria passa attraverso il condotto producendo la fuoriuscita di vapore.

A proposito, vi mostro un video molto interessante realizzato utilizzando imaging a neutroni su una moka in funzione. Come potete vedere, la spinta dell’aria spinge l’acqua calda attraverso il filtro fino al raccoglitore:

Questo e’ dunque il funzionamento della moka.

Notiamo prima di tutto una cosa. La lunghezza dell’imbuto del filtro non e’ casuale. Un imbuto troppo lungo farebbe uscire il caffe’ prima ma ad una pressione e ad una temperatura piu’ basse. In questo caso il sapore sarebbe meno forte a causa della ridotta pressione con cui l’acqua passa attraverso la polvere e mal miscelato a causa della bassa temperatura. In caso contrario, cioe’ un imbuto troppo corto, la quantita’ di caffe’ raccolto sarebbe troppo piccola e le pressioni richieste molto piu’ alte.

Anche la miscela di caffe’ utilizzata e’ molto importante. Come visto nel funzionamento, l’acqua passa attraverso la polvere una sola volta. Per questo motivo si cerca di macinare in modo molto sottile il caffe’ in modo da aumentare la superficie di contatto con l’acqua. Questo e’ importante per migliorare l’estrazione delle sostanze solubili presenti nel caffe’.

Per chi non lo sapesse, quello della moka e’ un brevetto completamente italiano. Questo strumento di piacere e’ infatti stato inventato da Alfonso Bialetti nel 1933.

La vera moka e’ infatti solo quella Bialetti. Non che io voglia fare pubblicita’, ma questa ditta e’ l’unica che puo’ sfruttare il brevetto originale. Questo infatti prevede una moka di forma ottagonale per aumentare la presa in caso di superficie bagnata. Marche diverse di moka prevedono forme diverse, rotonde o sempre poligonali, ma che non rispettano il brevetto originale.

Ultimissima curiosita’. Il nome moka deriva dalla citta’ Mokha in Yemen, una delle prime e piu’ famose zone di coltivazione del caffe’. Il nome espresso invece, che alcuni vorrebbero indicare la velocita’ di preparazione con questa tecnica, deriva in realta’ dalla crasi di due parole “extra” e “pressione” appunto per indicare la sovrapressione con cui l’aria spinge l’acqua attraverso il filtro ad imbuto.

Con questo chiudiamo questa breve parentesi. A questo punto fate un esperimento, provate a chiedere ad amici e conoscenti come funziona una moka. Vedrete quanti sono convinti di avere una bomba in casa.

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.