Tag Archives: anni luce

La calamita piu’ potente e’ nella Via Lattea

16 Ago

In questi giorni di calura estiva, in cui la pletora di informazioni politiche ed economiche e’ ridotta all’osso, molti giornali si dedicano con lunghi articoli all’informazione scientifica. Questo non puo’ che essere un bene, anche se, molto spesso, la quantita’ di informazioni date viene allungata mettendo in mezzo un po’ di tutto e finendo per sparare qualche castroneria.

Fatto questo necessario preambolo, vi vorrei parlare di una notizia molto importante proprio di questi giorni. Come sicuramente avrete letto, un gruppo di scienziati, in larga parte composto da italiani e del nostro paese e’ anche il coordinatore, e’ riuscito per la prima volta a misurare il campo magnetico di una magnetar.

Di questa tipologia di stelle avevamo parlato in questo post:

Lampi radio dall’universo lontano

Come visto, il nome deriva dalla crasi delle parole magnetic star. Si tratta di uno stadio dell’evoluzione delle stelle, riservato a corpi con masse tra 10 e 25 volte quella del Sole, che possono trasformarsi in stelle di neutroni dotate di un notevole campo magnetico.

Quale scoperta sarebbe stata fatta?

Su alcuni giornali leggete che sono state scoperte per la prima volta le magnetar, oppure che si conoscevano in teoria ma non erano mai state viste, oppure che l’osservazione sarebbe un importante conferma piu’ precisa di qualcosa che si conosceva, ecc. Insomma, hanno scoperto o no qualcosa? Di cosa si tratterebbe?

Cerchiamo di fare un po’ di chiarezza.

Come visto nell’articolo gia’ citato, le magnetar sono state ossevate gia’ da diverso tempo nel nostro sistema solare. L’introduzione di questo particolare stadio di evoluzione stellare, risale addirittura al 1992. Fino ad oggi pero’, della caratteristica principale di queste stelle, cioe’ l’intenso campo magnetico, si avevano prove indirette osservando effetti intorno alle stelle. Attraverso la ricerca di cui stiamo parlando, e’ stato invece possibile misurare per la prima volta il campo magnetico generato, fino ad oggi solo ipotizzato. Come potete capire, si tratta di uno studio molto importante, tanto da essere pubblicato proprio in questi giorni sulla prestigiosa rivista Nature. Unica nota per i giornalisti, evitate di ridicolizzare con interventi inutili, non veri e fuorvianti una misura gia’ di per se estremamente importante nell’ambito dell’astrofisica.

Quanto e’ intenso il campo magnetico di una magnetar?

Come sicuramente avrete letto, si tratta del piu’ potente campo magnetico mai osservato prima, dell’ordine del milione di miliardi di Gauss. Ve bene, ma quanti sono un milione di miliardi di Gauss? Per capire questi numeri, e’ necessario avere un termine di confronto.

Pensate che il campo magnetico della nostra Terra e’ inferiore al Gauss. Il campo magnetico presente all’interno dell’esperimento ATLAS, il piu’ potente tra gli esperimenti del CERN, ha un’intensita’ di 20000 Gauss. Dati questi numeri, capite bene quanto immensamente piu’ alto sia il campo magnetico prodotto dalla magnetar.

Parlando invece di situzioni reali e conosciute da tutti, un campo magnetico di soli 10 Gauss a breve distanza e’ in grado di smagnetizzare qualsiasi supporto di archiviazione dei dati. Se andiamo a valori piu’ alti, il campo magnetico di una magnetar potrebbe essere letale a migliaia di kilometri di distanza. Un’intensita’ cosi’ alta, sarebbe infatti in grado di strappare letteralmente i tessuti del corpo umano, a causa delle proprieta’ magnetiche dell’acqua che li compone.

Come e’ stato misurato un campo cosi’ intenso?

Per prima cosa, la magnetar presa in esame e’ nota come SGR 0418+5729, distante da noi 6500 anni luce. Si tratta di una delle circa 20 magnetar identificate nella nostra Via Lattea. Per poter misurare il campo magnetico dela stella, ci si e’ basati sui dati raccolti durante il 2009 dal telescopio XMM-Newton dell’agenzia spaziale europea. I dati riguardavano l’emissione di raggi X dalla stella. La frequenza di queste particelle e’ infatti direttamente proporzionale all’intensita’ del campo magnetico che attraversano. In questo modo, si e’ potuti risalire ad una misura diretta del campo cercato.

Altra caratteristica importante che si e’ osservata e’ che l’intensita’ del campo sulla superficie della stella non e’ uniforme. Si sono infatti identificate zone con campi magnetici piu’ o meno intensi. Questa caratteristica era attesa e non fa che confermare i dati analizzati. Differenze superficiali sulla magnetar, potrebbero essere le cause delle emissioni cosmiche osservata in passato e del tutto simili a quelle del nostro Sole.

Concludendo, la ricerca pubblicata in questi giorni, riguarda la prima misura diretta del campo magnetico delle magnetar. lo studio di questi corpi celesti, ci potrebbe consentire di capire meglio l’origine e l’evoluzione del nostro universo. Si suppone infatti che possano esistere o siano esistite nell’universo magnetar con campo ancora piu’ intensi. Inoltre, si sospetta che proprio queste stelle siano responsabili delle violente esplosioni cosmiche, simili a quelle del nostro sole, che ogni tanto investono anche la Terra e possono, in taluni casi, portare disturbi alle telecomunicazioni.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

La nebulosa che muore

17 Lug

In questi giorni, molti giornali e siti internet stanno pubblicando delle foto, lasciatemi dire spettacolari, scattate dalle sonde Chandra e Hubble. Le immagini sono relative ad una cosiddetta “nebulosa planetaria”, chiamata NGC2392, distante da noi circa 4200 anni luce.

Cosa ha dispeciale questa nebulosa?

La particolarita’ di questo oggetto e’ che la nebulosa e’ ormai giunta vicino al termine della sua vita. Anche se il nome potrebbe confondere, questi corpi non hanno nulla a che fare con i pianeti. L’origine del nome viene inizialmente dal fatto che le nebuose planetarie erano visibili come dischi compatti, cosi’ come appaiono i pianeti. In seguito poi, il nome venne lasciato perche’ si pensava che il disco formante la nebulosa fosse simile al disco di accrescimento da cui vengono originati i pianeti.

Studiare l’evoluzione di questa nebulosa e’ importante prima di tutto per ragioni scientifiche e per studiare in dettaglio gli stadi di evoluzione delle stelle. Oltre a questo, il comportamento della NGC2392 ci fa capire quello che potrebbe accadere al nostro Sole quando, esaurito il combustibile nucleare che brucia, si espandera’ fino a sovrapporsi a diversi pianeti del Sistema Solare centrale. Tranquilli, il mio non vuole assolutamente essere un messaggio profetico ne tantomeno catastrofista. Questo momento non avverra’ prima di 5 miliardi di anni.

Se osservata con un telescopio di modeste dimensioi, la NGC2392 appare come un disco compatto circondato da un anello piu’ chiaro. Proprio per questo motivo, questo oggetto e’ anche noto con il nome di Nebulosa dell’Eschimese, dall’inglese Eskimo Nebula.

Come anticipato, il corpo si trova a piu’ di 4000 anni luce da noi ed e’ molto ben visibile dal nostro emisfero. Per poter vedere la sua particolare forma ad eschimese, non e’ assolutamente necessario un telescopio molto costoso. Proprio per questo motivo, la NGC2392 e’ uno dei corpi maggiormente osservati dagli astrofili di tutto il mondo.

Cosa hanno di tanto speciale le foto che girano su internet?

Utilizzando telescopi di dimensioni maggiori e dunque con potere risolutivo piu’ spinto, e’ possibile osservare come in realta’ sia il centro che l’anello della nebulosa presentino delle strutture molto particolari e affascinanti. La differenza principale tra Chandra e Hubble e’ che il primo osserva il cielo nel visibile, mentre la seconda sonda e’ in grado di osservare lo spazio nello spettro dei raggi X.

Prima di continuare nella descrizione, vi mostro le immagini di cui vi sto parlando.

Questa e’ la foto nel visibile scattata da Hubble:

La NGC2392 ripresa da Hubble

La NGC2392 ripresa da Hubble

Mentre questa e’ quella nei raggi X di Chandra:

La NGC2392 ripresa da Chandra

La NGC2392 ripresa da Chandra

Osservate la bellezza di queste immagini. I diversi colori che compaiono sono ovviamente spceifici delle emissioni nei vari spettri della nebulosa.

Perche’ troviamo questo aspetto?

Mentre nella parte centrale il nucleo molto caldo della stella morente espelle particelle ad altissima velocita’, nella parte esterna troviamo flussi con velocita’ molto ridotta.

La colorazione della parte centrale e’ dunque dovuta a quella che possiamo vedere come l’emissione primaria ad alta velocita’ di particelle verso l’esterno. Quando queste particelle si trovano nella parte esterna, lo scontro con i flussi piu’ lenti forma il guscio che vediamo. La fuoriuscita di particelle verso l’esterno e’ facilitata ai poli della nebulosa dove infatti si notano delle strutture piu’ compatte con dei filamenti che arrivano fino all’esterno.

Come anticipato, questo spettacolo cosmico sara’ del tutto equivalente a quello che spettera’ al nostro Sole nel giro di 5 miliardi di anni. Purtroppo, non ci sara’ nessuno spettatore in grado di poterlo osservare da Terra.

Concludendo, ad un’osservazione migliore, quello che potrebbe sembrare un semplice disco compatto circondato da uno strato esterno, mnostra tutta la sua affascinante bellezza. La NGC2392, anche nota come Nebulosa Eschimese e’ una nebulosa planetaria ormai giunta alla fine del suo stadio vitale. Questo momento della stella offre uno spettacolo davvero interessante e che ci fa capire, oltre all’evoluzione delle stelle, quello che accadra’ al nostro Sole quando l’idrogeno al suo interno sara’ stato completamente bruciato.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Lampi Radio dall’universo lontano

8 Lug

Come sapete bene, scopo principale di questo blog e’ quello di divulgare la scienza. A questo proposito, diverse volte ci siamo trovati a parlare di recentissime scoperte di cui, al momento, non si sa ancora nulla. Scopo della ricerca e’ anche questo. Molto spesso, i modelli teorici formulati danno indicazioni precise dove cercare cose nuove. Molte altre volte invece, magari per caso, ci si trava di fronte a scoperte del tutto inattese e che richiedono un notevole sforzo perche’ vanno a minare le conoscenze o le supposizioni fatte fino a quel momento.

Perche’ faccio questa introduzione?

Solo pochi giorni fa, e’ stato pubblicato un articolo su Science molto interessante, riguardante il nostro universo. Come sappiamo bene, le nostre attuali conoscenze sono ancora molto lontane dall’essere complete. Questo e’ del tutto normale se pensiamo che stiamo osservando l’universo principalmente dalla nostra Terra basandoci su osservazioni indirette o comunuque molto lontane dalle sorgenti.

La ricerca di cui sto parlando, a cui hanno partecipato anche diversi ricercatori italiani, riguarda l’osservazione, del tutto inattesa, di segnali radio provenienti da distanze cosmologiche. Questi eventi sono gia’ stati ribattezzati FRB, cioe’ “fast radio burst”, tradotto “lampi radio veloci”.

Di cosa si tratta?

Parlando come sempre di teorie catastrofiste, solo poche settimane fa avevamo parlato della WR104, sfruttando in realta’ questa notizia per parlare di Gamma Ray Burst, cioe’ Lampi di Raggi Gamma:

WR104, un fucile puntato verso di noi

Mentre in questo caso si parlava di lampi di radiazione gamma, gli FRB sono invece lampi a frequenza nelle onde radio. Come anticipato, si tratta di segnali la cui origine e’ stata approssimativamente indicata a distanze cosmologiche. Ad oggi, sono stati osservati solo 4 FRB la cui emissione e’ avvenuta tra 5.5 e 10 miliardi di anni luce da noi. Considerando che il nostro universo ha un’eta’ stiamata di circa 14 miliardi di anni, questi lampi sono stati emessi in media quando l’universo aveva all’incirca la meta’ della sua attuale eta’.

Come e’ avvenuta questa scoperta?

Come e’ facile immaginare, il primo FRB e’ stato osservato qualche anno fa e inizialmente si pensava fosse dovuto ad un errore strumentale. Successivamente poi, utilizzando il radiotelescopio australiano CSIRO Parkes da 64 metri, si e’ riusciti ad identificare altri tre eventi.

Perche’ e’ cosi’ difficile registrare gli FRB?

Il problema principale di questi eventi e’, come dice il nome stesso, il segnale molto corto, dell’ordine dei millisecondi. Si tratta dunque di eventi estremamente potenti ma che vengono emessi in tempi molto corti, proprio come un’esplosione che avviene ad onde radio. In realta’, come stimato da calcoli teorici, gli FRB dovrebbero essere tutt’altro che rari nel nostro universo. I 4 eventi osservati sono stati visti in una porzione estremamente ridotta di cielo. Facendo un calcolo statistico, si e’ visto che in realta’ ci dovrebbe essere un evento di questo tipo da qualche parte ogni 10 secondi. Dunque, con una frequenza molto elevata. Il fatto di averli osservati solo ora, se vogliamo, dipende da una questione di fortuna. Trattandosi di eventi cosi’ rapidi, e’ necessario che il radiotelescopio sia puntato proprio nella direzione della sorgente per poter osservare il segnale.

Come si e’ identificato il punto di origine?

In realta’, come anticipato, le distanze sono da considerarsi come una stima. Le onde radio, propagandosi nell’universo, subiscono modificazioni dovute al passaggio attraverso la materia. Detto questo, e’ possibile stimare una distanza di origine appunto osservando in dettaglio lo spettro dei segnali.

Per capire questo concetto, si deve pensare che quando queste onde si propagano verso la Terra dal punto in cui sono emesse, passano nel mezzo intergalattico, cioe’ in quelle regioni di gas e polveri che separano tra loro due Galassie. Bene, attrevarsando queste regioni, principalmente popolate di elettroni, le onde radio ne escono di volta in volta sparpagliate. Osservando lo spettro che arriva a Terra, in particolare proprio questo sparpagliamento, e’ possibile capire quanto mezzo intergalattico e’ stato attraversato e duqnue la distanza della Terra dall’origine del lampo radio. Perche’ diciamo che la distanza e’ solo una stima? Come intuibile, in questa tecnica si fa una stima delle particelle del mezzo intergalattico. Ovviamente non si tratta di supposizioni a caso, ma sono numeri basati su osservazioni dirette e indirette. In questo caso pero’, l’incertezza sulla distanza e’ proprio dovuta all’incertezza con cui si conosce il mezzo intergalattico. Molto piu’ preciso e’ invece il metodo per misurare distanza e velocita’ di una stella classica, come visto in questo post:

Come misurare distanza e velocita’ di una stella

Chi ha prodotto gli FRB?

Come anticpato, e come e’ facile immaginare, questa e’ la domanda a cui si dovra’ dare una risposta. Quando abbiamo parlato di GRB, lo abbiamo fatto partendo da una stella Wolf Rayet che sappiamo essere in grado di produrre questi eventi. Per quando riguarda invece gli FRB, essendo tra l’altro del tutto inaspettati, non e’ ancora stato possibile capire la loro origine. Ovviamente, esistono delle ipotesi fatte per spiegare questi eventi. Alcuni astronomi puntano il dito contro le magnetar, cioe’ stelle di neutroni con campi magnetici molto elevati, in grado di emettere violenti lampi elettromagnetici di raggi X e gamma. Solo pochi giorni fa, e’ stato pubblicato un altro articolo che tenta invece di spiegare gli FRB analizzando il comportamento teorico delle stelle di neutroni supermassive. Questo e’ il link all’articolo per chi volesse approfondire:

FRB, Super Massive Neutron Stars

Ovviamente, si tratta di tutte ipotesi che chiamano in causa corpi astronomici in cui la materia si trova in condizioni molto particolari, perche’ sottoposta a pressione gravitazionale intensa, rapida rotazione o campi magnetici molto elevati. In condizioni normali, non ci sarebbero emissioni di onde radio.

Ovviamente, non potevano certo mancare le ipotesi fantascientifiche circa l’origine di questi segnali. Sulla falsa riga del segnale WOW!:

Il segnale WOW!

c’e chi ha proposto che l’origine del segnale radio sia una lontana civilta’ intelligente che sta cercando di comunicare con noi o anche che siano segnali di avvertimento provenienti da altri mondi su qualcosa che potrebbe accadere. Senza commentare ulteriormente su queste ipotesi, lasciatemi solo fare un’osservazione. I 4 segnali evidenziati finora provengono da punti distanti ben 5 miliardi di anni luce tra loro. Detto questo, mi sembra assurdo pensare che ci sia un popolo che si diverte a spostarsi cosi’ tanto nel nostro universo. Ovviamente, queste ipotesi nascono sulla rete, sono divertenti da leggere, ma non apportano nessuna informazione utili ai fini della ricerca sugli FRB.

A questo punto, non resta dunque che continuare a studiare il fenomeno per cercare di accumulare maggiore statistica, cioe’ nuovi eventi. Questa e’ ovviamente una condizione necessaria per poter verificare le ipotesi fatte o anche per formularne di nuove. Come visto nelle teorie attuali, per alcuni casi, le onde radio dovrebbero essere accompagnate da emissioni di raggi X e gamma. In tal senso, lo studio congiunto dei segnali utilizzando radiotelescopi e strumenti sensibili a queste radiazioni consentirebbe proprio di poter osservare l’emissione congiunta di questi eventi. In questa nuova caccia che si e’ aperta, il radiotelescopio italiano Sardinia, dal punto di vista costruttivo gemello di quello australiano, e che sta entrando nella fase operativa in questo periodo, potra’ dare un notevole contributo.

Studiare eventi di questo tipo ci consente prima di tutto di capire meglio come e’ fatto il nostro universo, evidenziando fenomeni che prima si ignoravano o comportamenti anomali di oggetti celesti conosciuti. Inoltre, alla luce di quanto detto sull’interazione delle onde radio con lo spazio attraversato, l’analisi degli FRB potrebbe consentirci di ottenere nuove informazioni sulla composizione del nostro universo, fornendo nuovo materiale sulle componenti oscure o di antimateria di cui abbiamo parlato in questi post:

La materia oscura

Due parole sull’antimateria

Antimateria sulla notra testa!

Universo: foto da piccolo

Troppa antimateria nello spazio

Concludendo, l’articolo pubblicato solo pochi giorni fa ha evidenziato un fenomeno del tutto inatteso e nuovo nel cosmo. Lo studio degli FRB e’ appena iniziato e vedra’ come protagonista anche un telescopio nostrano gestito dall’INAF. Le informazioni ricavate in questa ricerca potrebbero essere molto utili anche per capire meglio l’origine e la composzione del nostro universo. Come diciamo sempre, ci sono ancora tantissime cose da scoprire. Evidenze come questa ci fanno capire quanto lavoro c’e’ ancora da fare.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Esopianeti che non dovrebbero esserci

17 Giu

Nell’ambito della ricerca della vita fuori dal sistema solare, diverse volte abbiamo parlato di esopianeti:

A caccia di vita sugli Esopianeti

Nuovi esopianeti. Questa volta ci siamo?

Come visto, questi corpi, orbitanti intorno ad una stella centrale, cosi’ come avviene nel nostro Sistema Solare, sono molto studiati perche’ consentono di aprire una finestra nell’universo a noi vicino. Lo studio di questi corpi e la loro posizione, consente dunque di determinare quali e quanti pianeti potrebbero esserci in grado di ospitare la vita. Come sottolineato diverse volte, dire che un pianeta e’ in grado di ospitare la vita, non significa assolutamente affermare che questa si sia veramente formata. In questi casi, parliamo di “fascia di abitabilita’”, appunto per indicare la presenza di pianeti ad una distanza tale dalla loro stella, adatta a creare le condzioni minime per lo sviluppo della vita. Molto lavoro e’ in corso su questi esopianeti, prima di tutto per studiare la tipologia dei corpi, ma soprattutto perche’ questi sistemi planetari offrono un laboratorio eccezionale per capire l’origine del nostro stesso sistema Solare.

Immagine pittorica del sistema Hydrae

Immagine pittorica del sistema Hydrae

In tal senso, il sistema TW Hydrae, e’ uno dei principali, trovandosi ad appena 180 anni luce da noi ma soprattutto perche’ e’ un sistema molto giovane. Il sistema planetario e’ costituito da una nana rossa centrale, con una massa solo di poco inferiore a quella del nostro sole (circa il 70%). Come detto, si tratta di un sistema molto giovane che si e’ formato “appena” 8 milioni di anni fa e proprio per questo motivo, i processi di formazione e aggregazione di materia sono ancora in corso.

Solo pochi giorni fa, e’ stato pubblicato un importante articolo che riguarda l’osservazione di un piccolo pianeta nel sistema TW Hydrae con una massa compresa tra le 6 e le 28 masse terrestri. Cosa ha di tanto speciale questo pianeta? La particolarita’ e’ che questo pianeta orbita ad una distanza di circa 12 milioni di kilometri dalla stella centrale, cioe’ in una zona dove, secondo gli attuali modelli, questo pianeta non dovrebbe esistere.

Da dove nasce questa affermazione?

Prima di tutto, come discusso in altri articoli, i pianeti vengono formati per aggregazione di materia dal disco orbitante intorno alla stella centrale. Per circa 3 milioni di kilometri prima del piccolo pianeta, non c’e’ materiale utile per l’accrescimento del corpo. Inoltre, dai modelli conosciuti, un corpo del genere avrebbe impiegato un tempo lunghissimo, molto piu’ lungo dell’intera vita del sistema planetario, per formarsi.

Per fare un esempio, Giove si e’ formato in un tempo di circa 10 milioni di anni. Il piccolo pianeta avrebbe richiesto un periodo circa 200 volte piu’ lungo per aggregare il materiale, contro una stima dell’eta’ del sistema planetario di soli 8 milioni di anni.

Capite dunque l’importanza di questa osservazione. Ovviamente, il tutto dovra’ poi essere verificato con ulteriori misurazioni. Ad oggi, l’osservazione in questione e’ stata possibile grazie all’uso della camera sensibile al vicino infrarosso e allo spettrometro presenti sul telescopio Hubble.

Per farvi capire l’importanza delle successive misurazioni, ad oggi, gli strumenti utilizzati non consentono, ad esempio, di visualizzare il disco di materiale intorno alla stella centrale. Il motivo di questo e’ di facile comprensione, le emissioni da parte dell’idrogeno vengono automatiamente riassorbite all’interno del disco non apparendo visibili all’esterno.

Esistono ovviamente teorie alternative gia’ formulate e che potrebbero in qualche modo spiegare la presenza del pianeta in quella posizione. Una delle piu’ discusse e’ quella che vorrebbe la possibilita’ che il disco di accrescimento diventi instabile in alcuni casi, portando dunque materiale in zone piu’ lontane dalla stella centrale e consentendo la formazione di pianeti molto periferici.

Concludendo, la presenza di questo piccolo esopianeta orbitante a distanza cosi’ elevata dalla stella centrale, non sarebbe spiegabile con i modelli attualmente accettati. Questa scoperta implica dunque una ridiscussione di alcuni meccanismi di formazione, appunto per capire come sia possibile formare oggetti massivi a distanza cosi’ elevata dal corpo centrale. Ovviamente, questo non significa assolutamente che i precedenti modelli siano da buttare. Cosi’ come avviene nelle scienze, l’osservazione di un fenomeno non aspettato, spinge ad una ridefinizione di alcuni modelli, dal momento che si potrebbero essere raggiunti i limiti di validita’ di quelli attualmente utilizzati. Sicuramente, per la sua piccola distanza e la giovane eta’, il sistema TW Hydrae ci offre un laboratorio senza eguali per comprendere e studiare i meccanismi di formazione dei pianeti del nostro universo, e, duqnue, anche del nostro sistema solare. Come vedete, il bello della scienza e’ anche questo; trovare qualcosa che non ci si aspettava e spingersi oltre per aumentare la conoscenza e la comprensione della natura.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Come misurare distanza e velocita’ di una stella

16 Mag

Diverse volte ci siamo trovati a parlare di stelle e molto spesso abbiamo fatto riferimento alla loro distanza dalla Terra. Questo parametro e’ di fondamentale importanza in tantissime misure fisiche che vengono fatte e, ad esempio, quando abbiamo studiato il caso della WR104. La distanza tra noi e questa stella risultava determinante nell’analisi dell’eventuale Gamma Ray Burst che potrebbe investirci:

WR104: un fucile puntato verso la Terra?

Ora, nella sezione:

Hai domande o dubbi?

Un nostro caro lettore, ragionando su questo parametro, ha espresso un dubbio molto interessante. In particolare, la domanda fatta era mirata a capire come mai, eventualmente, lo spostamento verso il rosso delle stelle poteva essere simultaneamente utilizzato sia per misurare la distanza che lo spettro di una stella. Detto in termini matematici, come facciamo a ricavare due incognite da una sola equazione?

Cerchiamo di rispondere a questa domanda, spiegando anche cosa sarebbe questo spostamento verso il rosso, o redshift, ma soprattutto come vengono misurate le distanze in astronomia.

Questi concetti sono molto interessanti ed in genere trascurati in contesti divulgativi. Quando sentiamo parlare qualche astronomo, vengono tranquillamente citate distanze di anni luce da noi, senza pero’ far capire come sia possibile misurare questi parametri.

Andiamo con ordine, partendo proprio da questa prima riflessione. Come si misurano distanze cosi’ grandi, ma soprattutto distanze di oggetti che non possiamo toccare con mano?

La prima semplice tecnica e’ basata su misure di parallasse. Cosa significa? Per spiegare questo importante concetto, partiamo subito con un esempio. Supponente di guardare qualcosa distante da voi qualche metro. Potete proprio realizzare questo esperimento guardando gli oggettti che avete intorno. Bene, adesso scegliamo un oggetto piccolo o grande a piacere e facciamo un eperimento. Mettete un dito davanti ad i vostri occhi, distante appena l’apertura del braccio, guardando sempre l’oggetto scelto come campione. Bene se adesso chiudete prima un occhio e poi l’altro, vedete che l’oggetto sembra sposarsi a destra e sinistra rispetto al vostro dito.

Non c’e’ nulla di magico in questo, si tratta solo della sovrapposizione della vista dei vostri occhi che forma poi il campo visivo. Sfruttiamo questa caratteristica per calcolare geometricamente la distanza dell’oggetto. Se volete, siamo di fonte ad uno schema del genere:

Triangoli simili

Triangoli simili

Geometricamente, misurando un lato e gli angoli dei due triangoli simili, siamo in grado di ricavare l’altezza, dunque la distanza del corpo da noi.

Attenzione pero’, se provate a ripetere l’eperimento per oggetti sempre piu’ lontani, vi accorgete che la loro dimensione spaziale diventa sempre piu’ piccola. Questo e’ il problema nel cercare di misurare la distanza delle stelle. Si tratta di corpi molto grandi, ma posti ad una distanza tale da noi da impedirci di essere sensibili alla loro estensione spaziale. Prorpio per questo motivo, le stelle ci appaiono come punti luminosi in cielo.

Per farvi capire questo concetto, vi mostro un’immagine:

Come apparirebbe il Sole a diverse distanze

Come apparirebbe il Sole a diverse distanze

Il numero 1 indica l’estensione spaziale del Sole come lo vediamo dalla Terra. Nel punto 2, ecco come ci apparirebbe invece la nostra stella se la distanza con noi sarebbe pari a quella Giove-Terra. Ancora piu’ spinto e’ il caso dei disegni 3 e 4, in cui, in quest’ultimo, viene riportato come ci apparirebbe il Sole se questo fosse ad una distanza da noi pari a quella Terra-Proxima Centauri, cioe’ circa 4 anni luce.

Concentriamoci ancora un secondo su questo ultimo disegno. Il nostro Sole e’ una stella, cosi’ come ce ne sono tantissime nell’universo. Il fatto che il Sole ci appaia cosi’ grande mentre le stelle in cielo sono solo dei punti, e’ dunque solo legato alla distanza dal nostro pianeta.

Per corpi cosi’ distanti, non e’ piu’ sufficiente fare misure di parallasse con gli occhi, ma c’e’ bisogno di aumentare a dismisura la distanza tra le osservazioni. Prorpio per questo motivo, si sfrutta il movimento della Terra intorno al Sole, sfruttando quindi la nostra traiettoria come punti in cui estrapolare la parallasse:

Parallasse lungo l'orbita terrestre

Parallasse lungo l’orbita terrestre

Conoscendo l’asse dell’orbita terrestre, e’ dunque possibile ricavare l’altezza del triangolo, quindi la distanza della stella dalla Terra.

Ovviamente, per costruzione, questo metodo e’ applicabile solo fino ad una certa distanza, in genere fissata a 300 anni luce da noi. Oltre questo limite, i lati del triangolo di parallasse non sono piu’ distinguibili e non si riesce ad estrapolare il dato sulla distanza.

Dunque? Come misurare distanze maggiori?

Ora, arriviamo al gia’ citato “Spostamento verso il Rosso”. Per capire di cosa si tratta, facciamo un esempio semplice. Tutti avranno ascoltato una sirena che si dirige verso di noi. Bene, la frequenza percepita dal nostro orecchio, risulta diversa se l’oggetto si sta avvicinando o allontanando. Perche’ avviene questo? Semplicemente, come mostrato da questa figura:

Fronti d'onda di un corpo in movimento

Fronti d’onda di un corpo in movimento

Nei due versi, il numero di fronti d’onda sonori che ascoltiamo dipende dalla velocita’ della sorgente. Anche se sembra difficile, questo effetto e’ facilmente comprensibile. Proviamo con un altro esempio. Immaginate di essere sulla spiaggia e di contare il numero di creste di onda che arrivano sulla battigia in una unita’ di tempo. Questo parametro e’ molto piu’ simile di quello che immaginate al discorso del suono percepito. Ora, se entrate in acqua e andate incontro alle onde, sicuramente conterete piu’ creste d’onda rispetto al caso precedente. Situazione opposta si ha se vi allontanate. Bene questo e’ quello che si chiama Effetto Doppler.

Lo spostamente veso il rosso e’ una diretta conseguenza dell’effetto Doppler, ma non si parla di onde sonore, bensi’ di onde elettromagnetiche. Equivalentemente al caso della sirena, lo spettro luminoso di un corpo puo’ risultare spostato rispetto al normale se il corpo in questione si avvicina o si allontana. Si parla di redshift perche’ per un oggetto che si allontana da noi, il suo spettro sara’ piu’ spostato verso le basse frequenze.

Immaginate di avere una stella di un certo tipo di fronte a voi. Ora, se la stella si allontana, siamo in grado di misurare il suo spostamento verso il rosso, proprio partendo dallo spettro di altri corpi della stessa famiglia ma a distanza minore. Da questa misura potete dunque ottenere informazioni sulla velocita’ relativa con cui voi e la stella vi state allontanando. Questo importante risultato e’ noto come Legge di Hubble. Questa equazione lega proprio, attraverso una costante detta appunto di Hubble, lo spostamento verso il rosso della sorgente e la sua velocita’. Sempre attraverso la legge di Hubble, siamo poi in grado di ricavare la distanza della sorgente e dunque di estrapolare la distanza della stella dall’osservatore.

Notiamo prima di tutto una cosa, anche questo metodo ha un limite inferiore oltre il quale la distanza diviene  non misurabile, anche se in questo caso il limite e’ molto piu’ grande di quello ottenuto dalla parallasse.

Ritornando alla domanda iniziale, il metodo della parallasse ci consente di misurare distanze fino a qualche centinaio di anno luce da noi. Per distanze maggiori, ci viene in aiuto la legge di Hubble, attraverso la quale possiamo misurare non solo la distanza di un corpo lontano, ma anche la sua velocita’ di allontanamento da noi.

Inoltre, questa legge rappresenta un altro importante risultato a sostegno dell’ipotesi del Big Bang. Come visto in questo articolo:

E parliamo di questo Big Bang

il nostro universo e’ ancora in espansione e questo puo’ essere evidenziato molto bene dai risultati ottenuti mediante la legge di Hubble.

Concludendo, la misura delle distanze a cui si trovano le stelle rappresenta sicuramente un qualcosa di fondamentale negli studi del nostro universo. A tal proposito, abbiamo a disposizione diversi metodi e due di questi, parallasse e redshift, ci consentono, con limiti diversi, di poter estrapolare in modo indiretto questi valori. Oltre ad una mappa dei corpi a noi vicini, la legge di Hubble rappresenta un importante prova a sostegno dell’ipotesi del Big Bang. Ad oggi, il nostro universo e’ ancora in espansione e per questo motivo vediamo gli spettri spostati verso il rosso.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.

Universo: foto da piccolo

24 Mar

In questi ultimi giorni, tutti i giornali, i telegiornali, i siti internet specializzati, sono stati invasi da articoli scientifici riguardanti le ultime scoperte fatte con il telescopio Planck. I dati di questo telescopio, gestito interamente dalla nostra Agenzia Spaziale Europea, hanno mostrato una foto dell’universo quando aveva solo 380000 anni. Ecco la foto che sicuramente vi sara’ capitato di vedere:

L'universo alla tenera eta' di 380000 anni

L’universo alla tenera eta’ di 380000 anni

Si parla anche di risultati sconvolgenti: l’universo e’ piu’ vecchio di quello che si pensava fino ad oggi. Inoltre, la radiazione cosmica di fondo presenta delle differenze tra i due emisferi oltre a mostrare una regione fredda piu’ estesa di quella che si pensava.

Fantastico, direi io, questi risultati mi hanno veramente impressionato. Ora pero’, la domanda che mi sono posto e’ molto semplice, anche su giornali nazionali, ho visto articoli che commentavano questa foto parlando di CMB, anisotropie, fase inflazionistica. In pochissimi pero’, si sono degnati di spiegare in modo semplice il significato di questi termini. Purtroppo, spesso vedo molti articoli che ripetono a pappagallo le notizie senza neanche chiedersi cosa significano quei termini che stanno riportando.

Cerchiamo, per quanto possibile, di provare a fare un po’ chiarezza spiegando in maniera completamente divulgativa cosa significa: radiazione cosmica di fondo, periodo inflazionistitico, ecc.

Andiamo con ordine. La foto da cui siamo partiti ritrae l’universo quando aveva 380000 anni ed in particolare mostra la mappa della radiazione cosmica di fondo.

Prima cosa, come facciamo a fare una foto dell’universo del passato? In questo caso la risposta e’ molto semplice e tutti noi siamo in grado di sperimentarla facilmente. Quando alziamo lo sguardo e vediamo il cielo stellato, in realta’ e’ come se stessimo facendo un viaggio nel tempo. Se guardiamo una stella distante 100 anni luce da noi, significa che quell’immagine che osserviamo ha impiegato 100 anni per giungere fino a noi. Dunque, quella che vediamo non e’ la stella oggi, bensi’ com’era 100 anni fa. Piu’ le stelle sono lontane, maggiore e’ il salto indietro che facciamo.

Bene, questo e’ il principio che stiamo usando. Quando mandiamo un telescopio in orbita, migliore e’ la sua ottica, piu’ lontano possiamo vedere e dunque, equivalentemente, piu’ indietro nel tempo possiamo andare.

Facciamo dunque un altro piccolo passo avanti. Planck sta osservando l’universo quando aveva solo 380000 anni tramite la CMB o radiazione cosmica a microonde. Cosa sarebbe questa CMB?

Partiamo dall’origine. La teoria accettata sull’origine dell’universo e’ che questo si sia espanso inizialmente da un big bang. Un plasma probabilmente formato da materia e antimateria ad un certo punto e’ esploso, l’antimateria e’ scomparsa lasciando il posto alla materia che ha iniziato ad espandersi e, di conseguenza, si e’ raffreddata. Bene, la CMB sarebbe un po’ come l’eco del big bang e, proprio per questo, e’ considerata una delle prove a sostegno dell’esplosione iniziale.

Come si e’ formata la radiazione di fondo? Soltanto 10^(-37) secondi dopo il big bang ci sarebbe stata una fase detta di inflazione in cui l’espansione dell’universo ha subito una rapida accelerazione. Dopo 10^(-6) secondi, l’universo era ancora costituito da un plasma molto caldo di  fotoni, elettroni e protoni, l’alta energia delle particelle faceva continuamente scontrare i fotoni con gli elettroni che dunque non potevano espandersi liberamente. Quando poi la temperatura dell’universo e’ scesa intorno ai 3000 gradi, elettroni e protoni hanno cominciato a combianrsi formando atomi di idrogeno e i fotoni hanno potuto fuoriuscire formando una radiazione piu’ o meno uniforme. Bene, questo e’ avvenuto, piu’ o meno, quando l’universo aveva gia’ 380000 anni.

Capiamo subito due cose: la foto da cui siamo partiti e’ dunque relativa a questo periodo, cioe’ quando la materia (elettroni e protoni) hanno potuto separarsi dalla radiazione (fotoni). Stando a questo meccanismo, capite anche perche’ sui giornali trovate che questa e’ la piu’ vecchia foto che potrebbe essere scattata. Prima di questo momento infatti, la radiazione non poteva fuoriuscire e non esisteva questo fondo di fotoni.

Bene, dopo la separazione tra materia e radiazione, l’universo ha continuato ad espandersi, dunque a raffreddarsi e quindi la temperatura della CMB e’ diminuita. A 380000 anni di eta’ dell’universo, la CMB aveva una temperatura di circa 3000 gradi, oggi la CMB e’ nota come fondo cosmico di microonde con una temperatura media di 2,7 gradi Kelvin. Per completezza, e’ detta di microonde perche’ oggi la temperatura della radiazione sposta lo spettro appunto su queste lunghezze d’onda.

Capite bene come l’evidenza della CMB, osservata per la prima volta nel 1964, sia stata una conferma proprio del modello del big bang sull’origine del nostro universo.

E’ interessante spendere due parole proprio sulla scoperta della CMB. L’esistenza di questa radiazione di fondo venne predetta per la prima volta nel 1948 da Gamow, Alpher e Herman ipotizzando una CMB a 5 Kelvin. Successivamente, questo valore venne piu’ volte corretto a seconda dei modelli che venivano utilizzati e dai nuovi calcoli fatti. Dapprima, a questa ipotesi non venne dato molto peso tra la comunita’ astronomica, fino a quando a partire dal 1960 l’ipotesi della CMB venne riproposta e messa in relazione con la teoria del Big Bang. Da questo momento, inizio’ una vera e propria corsa tra vari gruppi per cercare di individuare per primi la CMB.

Penzias e Wilson davanti all'antenna dei Bell Laboratories

Penzias e Wilson davanti all’antenna dei Bell Laboratories

Con grande sorpresa pero’ la CMB non venne individuata da nessuno di questi gruppi, tra cui i principali concorrenti erano gli Stati Uniti e la Russia, bensi’ da due ingegneri, Penzias e Wilson, con un radiotelescopio pensato per tutt’altre applicazioni. Nel 1965 infatti Penzias e Wilson stavano lavorando al loro radiotelescopio ai Bell Laboratories per lo studio della trasmissione dei segnali attraverso il satellite. Osservando i dati, i due si accorsero di un rumore di fondo a circa 3 Kelvin che non comprendenvano. Diversi tentativi furono fatti per eliminare quello che pensavano essere un rumore elettronico del telescopio. Solo per darvi un’idea, pensarono che questo fondo potesse essere dovuto al guano dei piccioni sull’antenna e per questo motivo salirono sull’antenna per ripulirla a fondo. Nonostante questo, il rumore di fondo rimaneva nei dati. Il punto di svolta si ebbe quando l’astronomo Dicke venne a conoscenza di questo “problema” dell’antenna di Penzias e Wilson e capi’ che in realta’ erano riusciti ad osservare per la prima volta la CMB. Celebre divenne la frase di Dicke quando apprese la notizia: “Boys, we’ve been scooped”, cioe’ “Ragazzi ci hanno rubato lo scoop”. Penzias e Wilson ricevettero il premio Nobel nel 1978 lasciando a bocca asciutta tutti gli astronomi intenti a cercare la CMB.

Da quanto detto, capite bene l’importanza di questa scoperta. La CMB e’ considerata una delle conferme sperimentali al modello del Big Bang e quindi sull’origine del nostro universo. Proprio questa connessione, rende la radiazione di fondo un importante strumento per capire quanto avvenuto dopo il Big Bang, cioe’ il perche’, raffreddandosi, l’universo ha formato aggreggati di materia come stelle e pianeti, lasciando uno spazio quasi vuoto a separazione.

Le osservazioni del telescopio Planck, e dunque ancora la foto da cui siamo partiti, hanno permesso di scoprire nuove importanti dinamiche del nostro universo.

Prima di tutto, la mappa della radiazione trovata mostra delle differenze, o meglio delle anisotropie. In particolare, i due emisferi presentano delle piccole differenze ed inoltre e’ stata individuata una regione piu’ fredda delle altre, anche detta “cold region”. Queste differenze furono osservate anche con la precedente missione WMAP della NASA, ma in questo caso si penso’ ad un’incertezza strumentale del telescopio. Nel caso di Plack, la tecnologia e le performance del telescopio confermano invece l’esistenza di regioni “diverse” rispetto alle altre.

Anche se puo’ sembrare insignificante, l’evidenza di queste regioni mette in dubbio uno dei capisaldi dell’astronomia, cioe’ che l’universo sia isotropo a grande distanza. Secondo i modelli attualmente utilizzati, a seguito dell’espansione, l’universo dovrebbe apparire isotropo, cioe’ “uniforme”, in qualsiasi direzione. Le differenze mostrate da Planck aprono dunque lo scenario a nuovi modelli cosmologici da validare. Notate come si parli di “grande distanza”, questo perche’ su scale minori esistono anisotropie appunto dovute alla presenza di stelle e pianeti.

Ci sono anche altri importanti risultati che Planck ha permesso di ottenere ma di cui si e’ parlato poco sui giornali. In primis, i dati misurati da Planck hanno permesso di ritoccare il valore della costante di Hubble. Questo parametro indica la velocita’ con cui le galassie si allontanano tra loro e dunque e’ di nuovo collegato all’espansione dell’universo. In particolare, il nuovo valore di questa costante ha permesso di modificare leggermente l’eta’ dell’universo portandola a 13,82 miliardi di anni, circa 100 milioni di anni di piu’ di quanto si pensava. Capite dunque perche’ su alcuni articoli si dice che l’universo e’ piu’ vecchio di quanto si pensava.

Inoltre, sempre grazie ai risultati di Planck e’ stato possibile ritoccare le percentuali di materia, materia oscura e energia oscura che formano il nostro universo. Come saprete, la materia barionica, cioe’ quella di cui siamo composti anche noi, e’ in realta’ l’ingrediente meno abbondante nel nostro universo. Solo il 4,9% del nostro universo e’ formato da materia ordinaria che conosciamo. Il 26,8% dell’universo e’ invece formato da “Materia Oscura”, qualcosa che sappiamo che esiste dal momento che ne vediamo gli effetti gravitazionali, ma che non siamo ancora stati in grado di indentificare. In questo senso, un notevole passo avanti potra’ essere fatto con le future missioni ma anche con gli acceleratori di particelle qui sulla terra.

Una considerazione, 4,9% di materia barionica, 26,8% di materia oscura e il resto? Il 68,3% del nostro universo, proprio l’ingrediente piu’ abbondante, e’ formato da quella che viene detta “Energia Oscura”. Questo misterioso contributo di cui non sappiamo ancora nulla si ritiene essere il responsabile proprio dell’espansione e dell’accelerazione dell’universo.

Da questa ultima considerazione, capite bene quanto ancora abbiamo da imparare. Non possiamo certo pensare di aver carpito i segreti dell’universo conoscendo solo il 5% di quello che lo compone. In tal senso, la ricerca deve andare avanti e chissa’ quante altre cose strabilinati sara’ in grado di mostrarci in futuro.

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.